
1

Calibration of Watershed Models using Cloud Computing

Marty Humphrey, Norm Beekwilder

Department of Computer Science

University of Virginia

Charlottesville, VA 22904

Jonathan L. Goodall, Mehmet B. Ercan

Department of Civil and Environmental Engineering

University of South Carolina

Columbia, SC 29208

Abstract— Understanding hydrologic systems at the scale of large

watersheds and river basins is critically important to society

when faced with extreme events, such as floods and droughts, or

with concerns about water quality. A critical requirement of

watershed modeling is model calibration, in which the

computational model’s parameters are varied during a search

algorithm in order to find the best match against physically-

observed phenomena such as streamflow. Because it is generally

performed on a laptop computer, this calibration phase can be

very time-consuming, significantly limiting the ability of a

hydrologist to experiment with different models. In this paper, we

describe our system for watershed model calibration using cloud

computing, specifically Microsoft Windows Azure. With a

representative watershed model whose calibration takes 11.4

hours on a commodity laptop, our cloud-based system calibrates

the watershed model in 43.32 minutes using 16 cloud cores

(15.78x speedup), 11.76 minutes using 64 cloud cores (58.13x

speedup), and 5.03 minutes using 256 cloud cores (135.89x

speedup). We believe that such speed-ups offer the potential

toward real-time interactive model creation with continuous

calibration, ushering in a new paradigm for watershed modeling.

Keywords-cloud computing, watershed modeling, model calibration,

SWAT, Windows Azure

I. INTRODUCTION

Understanding hydrologic systems at the scale of large
watersheds and river basins is critically important to society
when faced with extreme events, such as floods and droughts,
or with concerns about water quality. Climate change and
increasing population are further complicating watershed-scale
prediction by placing additional uncertainty on future water
resource conditions.

Computational tools are critical to hydrologic analysis and
simulation. However, today, many of the models that are used
for analysis of hydrologic systems do not make use of recent
advances in computing and data resources, making them less
effective tools for addressing current water resource challenges.
This challenge extends beyond simply developing the
simulation code and includes the entire workflow needed to
support models from data collection, to data preparation, to
modeling, to post-processing model results to support decision
makers.

One of the specific goals of the hydrologic modeling
community is to scale-up models to better address complex
water resource problems (droughts, floods, water quality). This
scaling-up essentially results in considering larger and more
complex physical domains within hydrologic models. For
example, a few decades ago water quality modeling typically
only took into account so-called point source discharges of

pollution to water bodies. Now models must also take into
account non-point sources, i.e. runoff from agricultural and
urban lands to water bodies. This difference in scope
introduces a significant change in the complexity of the model
from considering only river systems to now consider the entire
watershed that drains to the river as well.

Because of the complexity introduced by needing to
simulate hydrology at a watershed-scale, an important step in
the modeling process is the assessment of the model against
observed historical conditions measured within the watershed,
such as streamflow measured by sensors in the watershed
outlet. That is, after a candidate model is produced from
available spatial datasets (elevation, land use, soils, etc.), it
must be “calibrated” in a computationally-expensive process
whereby a subset of parameters of the model thought to be
uncertain are selected (each model can have dozens of
parameters), values are set for each parameter, the model is
used as the basis of a simulation, and the results of the
simulation are compared against observed measurements. The
number of parameter sets and values considered is typically
very large in order to attain sufficient confidence – typically a
desktop computer must run for hours or even days in order to
run a sufficient number of simulations of the model in order to
calibrate. Increasingly, the duration of this necessary
calibration step is impeding hydrologic modeling as, simply,
scientists and engineers are limited in how well they are able to
calibrate their model given available time and computational
resources. While there have been some efforts to use multiple
computers—in either a networked situation or in a compute
cluster configuration—to speed up the calibration [1][2],
perhaps the most significant limitation of these efforts is the
relatively rigid and static use of computational resources.

In this paper, we report on our cloud-based system for
watershed model calibration. We currently support the SWAT
watershed model [3][4], and we are using the Microsoft
Windows Azure platform [5]. We have created a Web-based
portal for the watershed modeling community, and we
anticipate that usage of this portal will be sporadic, which maps
well to the cloud’s ability to ramp up and ramp down
dynamically. In addition to the flexibility offered by the cloud
model, we are beginning to use cloud storage as the basis for
community-based sharing of models and raw (and processed)
input data for the hydrology community. More specifically, in
this paper we describe:

 the design and implementation of the watershed model
calibration Web portal – attempting to achieve a delicate
balance between hiding and exposing parts of the back-end
cloud infrastructure

Preliminary version. Final version to appear in 8
th

 IEEE International

Conference on eScience 2012. Chicago Illinois. Oct 8-12 2012.

2

 the experiences of adapting our “MODISAzure”
framework [6] for use in watershed model calibration
(including a “CloudBurst” approach [7], which means that
jobs are attempted to be executed using local enterprise
resources first, but – when needed – jobs are pushed to
“the cloud”)

 the adaptation of an existing watershed model calibration
search algorithm (DDS [8][9]) specifically to leverage a
cloud environment such as Windows Azure

 the evaluation of Windows Azure for performing this
watershed model calibration, specifically focusing on the
computational efficiency as a function of the number of
Windows Azure cores used.

We believe that our system makes efficient use of cloud
resources. With a representative watershed model whose
calibration takes 11.4 hours on a commodity laptop, our cloud-
based system calibrates the watershed model in 43.32 minutes
using 16 cloud cores (15.78x speedup), 11.76 minutes using 64
cloud cores (58.13x speedup), and 5.03 minutes using 256
cloud cores (135.89x speedup). We believe that such speed-
ups offer the potential toward real-time interactive model
creation with continuous calibration, ushering in a new
paradigm for watershed modeling.

The rest of this paper is organized as follows. Section II
contains related work. Section III gives background on SWAT
model calibration and the Microsoft Windows Azure cloud.
Section IV gives the details of our architecture that uses
Windows Azure. Section V contains the evaluation and
discussion, and Section VI contains the conclusion.

II. RELATED WORK

A number of efforts have been focusing on using the cloud
to perform scientific experiments (e.g., CloudBLAST [10],
coupled atmospheric-ocean climate models [11], data mining
[12], astrophysics [13], astronomy [14][15], high energy
physics [16]). Windows Azure has been used as the platform
for executing BLAST very effectively [17][18].

While cloud computing has not been applied to hydrologic
system modeling, there have been an increasing number of
applications of advanced computing architectures and
approaches for simulating hydrologic systems. One area of
interest has been utilizing modern software engineering
paradigms in order to support community-based scientific
models (CSDMS [19], ESMF [20], OMS [21] and OpenMI
[22] are examples). The recent application of modern software
engineering paradigms such as component-based [23] and
service-oriented architectures [24] to scientific computing
provides a technical means for advancing cross-disciplinary
scientific modeling that can be advanced by a large
community. Hydrologists have long noted that water resource
management requires sophisticated models capable of
predicting how coupled hydrologic, climate, and socio-
economic systems respond to change in order to estimate
response in one system (e.g. water quality) caused by changes
within another system (e.g. energy policy) [25][26][27]. Most
existing earth science and environmental management models
are only starting to consider complex system interactions such

as feedback loops across disciplinary models, because each
subdiscipline builds their own models, and fully coupling
models between disciplinary boundaries remains a major
research challenge.

III. BACKGROUND: SWAT MODEL CALIBRATION AND

WINDOWS AZURE

We first describe the specific watershed modeling
framework we are using (SWAT) and also describe existing
approaches to calibrate SWAT models. We then give an
overview of the Microsoft cloud: Windows Azure.

A. Soil and Water Assessment Tool (SWAT) Model

Calibration

Soil and Water Assessment Tool (SWAT) [3][4] is a
comprehensive modeling framework that supports weather,
hydrology, soil, plant growth, nutrients, pesticides, bacteria and
pathogens, and land management. In SWAT, a watershed is
divided into subwatersheds, which are then further divided into
hydrologic response units (HRUs). The potential inputs to a
SWAT model include daily precipitation, max/min
temperature, relative humidity, wind speed data, etc. During
the “execution” of a model, the water balance is simulated for
each HRU. The runoff generated within each HRU is then
aggregated at the subwatershed level and routed through the
streams, ponds, wetlands, etc., to the watershed outlet.

A key step in hydrologic modeling is both the calibration
and validation of a model. In SWAT, the Nash–Sutcliffe model
efficiency coefficient (E) is typically used and represents how
well the simulated result matches the observed result (e.g., for
streamflow). The “goodness” of the model increases as the E
coefficient increases up to a value of 1, which represents a
perfect model.

Before a watershed model can be used as the basis for
prediction (e.g., of streamflow), it must be calibrated to
observed historical conditions within the watershed.
Calibration can be manual such as a trial-and-error approach, in
which an expert selects which parameters to vary and by how
much, or it can be automated. There are a number of examples
of techniques to automate the watershed model calibration
procedure. We focus on the calibration of SWAT models, but
each modeling framework (e.g., HSPF [28]) has similar
approaches. Automated approaches are usually Monte Carlo-
based, such as the Shuffled Complex Evolution (SCE) [29].
The approach used in our system is called the Dynamically
Dimensioned Search (DDS [8]) and has been shown to be more
efficient and more effective than SCE (e.g., “In two cases,
DDS requires only 15–20% of the number of model
evaluations used by SCE in order to find equally good values
of the objective function.” [8]). The goal of DDS is to begin by
searching for a good candidate parameter set in the global
search space and then switching to a local search space by
gradually reducing the number of candidate parameters to
modify as well as the range of acceptable values for each
candidate parameter. During the search, the next candidate is
chosen via a random and uniform perturbation of a particular
parameter. Search continues for either a fixed number of

3

iterations or until termination criteria is satisfied (e.g., a
sufficient value of E is achieved).

There have been recent efforts to attempt to use multiple
computers to speed up the SWAT model calibration procedure.
As discussed later in this paper, the DDS approach is not
trivially parallelizable because it uses the results of the most
recent parameter set and values as the basis of the next
parameter set and values. In other words, DDS is implicitly a
sequential algorithm. However, DDS has been used as the basis
of two parallel implementations: EP-DDS and P-DDS [9].
Other efforts use a computer cluster to speed up the calibration
[1][2], including via the use of Genetic Algorithms (GA) [30].
A recent study has investigated DDS, “Particle Swarm
Optimization” (PSO), and a Generic Algorithm (GA), showing
favorable results for DDS [31]. It is important to note that none
of these efforts utilize cloud computing to perform watershed
model calibration.

B. Windows Azure

Windows Azure was announced by Microsoft as its cloud
computing platform at its Professional Developers Conference
(PDC) Nov 2008. Initially, Windows Azure focused on
providing a .NET-based hosting platform that was integrated
into a virtual machine abstraction. Thus, developers who are
familiar with .NET application development could take
advantage of this homogeneous cloud environment and develop
applications for Windows Azure just like ordinary .NET
applications by using Visual Studio. In contrast to this
“Platform as a Service” (PaaS), Amazon’s EC2 has focused on
support for virtual machine technology (aka Infrastructure as a
Service, or IaaS). Microsoft has more recently augmented its
PaaS with IaaS as well. In both EC2 and Windows Azure, users
can customize the environment for their application by
installing specific software or by purchasing particular machine
images.

In Windows Azure, the virtual machine instances can be
separated into three different roles: the front-end website
hosting server instances are called Web Roles, the back-end
computational instances called Worker Roles, and the more
recent Virtual Machine (VM) roles. Developers can specify the
number of instances for roles at the deployment of their
application or can dynamically adjust the number of instances
at runtime.

Windows Azure provides three types of cloud storage
services, in addition to SQL Azure:

• Blob service, the main storage service for storing
durable large data items;

• Queue service, which provides a basic reliable queue
model to allow asynchronous task dispatch and to enable
service communication;

• Table service, which provides the structured storage in
the form of tables and supports simple queries on partitions,
row keys, and attributes.

The key aspect of cloud storage is that it is accessible via
any virtual machine in Windows Azure (with the proper
authentication/authorization). Therefore, while there is local

storage available to a particular computation, it is assumed that
one of the cloud storage services will be used if the data is to be
shared across virtual machine instances.

Windows Azure continues to evolve. For example, on June
6 2012, Microsoft announced support for running Linux-based
VMs in Windows Azure [32]. Microsoft also recently
announced the wide-scale availability of its “Virtual Network”,
whereby giving the ability to create a virtual private network
(VPN) between the local enterprise and Windows Azure (in
later parts of this paper, we describe how we used this feature
when it was in its “early adopter” version).

IV. SWAT MODEL CALIBRATION USING WINDOWS AZURE

In this project, our broad goals are to use Windows Azure
for watershed model data preparation (raw data exists, but files
are large and require preprocessing, suitable for workflow
processing), watershed model calibration, and large-scale
watershed model execution (too large to execute on a single
workstation). To date, we have focused on watershed model
calibration, which is the focus of this paper.

A. Requirements

There were a number of critical requirements that we
established for our cloud-based watershed model calibration
system. The overall requirement of course is to provide a
significant speed-up in watershed model calibration as
compared to the typical operating environment of a hydrology
researcher (which is assumed to be a commodity laptop
computer). A number of key additional requirements were
established, both from the perspective of the systems
implementer as well as from the perspective of the hydrology
researcher:

 Local (enterprise) resources should be used first
(because latency is less, resources are largely already
paid for, local resources are behind the firewall, etc.); if
additional resources are needed, cloud computing
should provide the capacity needed.

 As per the value/appeal of cloud computing, the level
of back-end cloud resource consumption should match
the level of activity by hydrology researchers. That is,
an idle system should incur little to no recurring cost.

 The hydrology researcher should be able to use our
system via a WWW browser, with as little a learning
curve as possible.

There were key additional constraints that we established to
ensure future enhancements. That is, we attempted to create a
current design that did not prevent the following
architecturally:

 To evaluate the effectiveness and feasibility of a cloud-
based watershed model calibration system, it was
acceptable that the system only support a single
(authenticated) user. However, the design should not
hinder a multi-user system, in which end users are
isolated from each. More specifically, end users should
not see each other’s models, and the computing

4

resources available for one user should not be impacted
by the use of computing resources by another user.

 The architecture should support potential cost-per-use
passed on to the end user. This is important for
sustainability – while we were certainly not interested
in running this for profit, we recognize that we wanted
to create a potentially long-lived service for the
hydrology community, but it was unlikely that we
could directly pay for its long-term operation.

B. User Interface

The user interacts with the system via a WWW browser.
The submission frame is shown in Figure 1. The key aspect of
the pane is the ability to select any number of watershed model
parameters to modify and the ability to specify how each is to
be modified by our system during the search process. The other
key feature of the pane is its showing of the number of
currently-idle cloud cores (the user can select any number from
1 up to the number of idle cores; note that currently we
manually boot cores as part of the system administrator
console).

Figure 1. Submitting a watershed model calibration request.

After job(s) have been submitted, the user has a number of
additional panes available to view the status or previous results.
For example, the user has the ability to check the current status
of a model calibration submission, as shown in Figure 2. This
pane shows the status of all of the model executions, as well as
the currently-best model found (e.g., so that the user can
choose to manually abort the calibration request if desired.)

Figure 2. Checking the status of a watershed model calibration.

Our user interface design is meant to be simple, specifically
hiding most of the details of the cloud back-end both so that the
hydrologist is not required to understand the computing
infrastructure as well as to give us the ability to re-architect and
re-configure the processing if necessary. The closest we get to
exposing the back-end is via the number of cores the user
requests (which we expose as “concurrency level”). We further
note that we are in the process of replacing this low-level
concurrency knob with the more-useful “requested duration to
complete” (which we would translate into a “concurrency
level”), which will in part be based on our project’s research
into deadline-based cloud computing [33][34]. This research
will also be leveraged when (as part of future research) we
auto-scale cloud resources instead of manually controlling the
level of cloud resources manually.

C. System Architecture: Cloudbursting

The overall architecture of our system is shown in Figure
3. To satisfy the requirement of using local resources first, we
leverage our MODIS cloudbursting architecture [7] (which
itself highly leveraged our MODISAzure system [6], a
Windows Azure-only application we created for large-scale
satellite image processing). The nature of our MODIS
cloudbursting architecture is to provide a framework by which
any number of days/years of the MODIS satellite data could
be analyzed in parallel via a researcher-specific application
uploaded to the cloud – using one cloud core per day of
satellite data (thus, for example, to process 1 year worth of
data, we created 365 independent jobs that would be processed
in parallel on 365 cores on Windows Azure). We adapted this
system for our watershed model calibration system,
particularly leveraging our database-centric approach for
managing the parameters for a particular set of jobs.

Figure 3. Overall system architecture utilizing cloudbursting.

The center of Figure 3 shows the Microsoft Windows HPC
job scheduler [35], which inherently supports a cloudbursting
model (whereby Windows Azure nodes can be dynamically
“added” to an otherwise enterprise-only Windows Compute
Cluster). When a user submits a watershed model calibration
request that, for example, requests that 1000 model executions
be performed in a search for the best match, 1000 jobs are
submitted to the Windows HPC job scheduler. Then, the
Windows HPC scheduler dispatches the jobs, preferring the
local resources we have at the University of Virginia. When
theses nodes are all executing SWAT model executions, we

5

“burst” onto Windows Azure. Upon execution, the first action
each job performs is to check back with the database to obtain
its parameters for the SWAT model (We modify these
parameters in the database, as described next in this section),
This architecture has shown to be very flexible, as we are able
to spin up new compute nodes in Windows Azure (and shut
them down) whenever we desire. Within Windows Azure, we
use Blob storage to prepare the nodes – i.e., when they boot,
they automatically load our watershed modeling support code
– but, because each execution of the model is largely
independent, we do not use Blob storage after the VMs have
booted (and rather rely on local storage within the VMs). We
use the Windows Azure Connect CTP to provide VPN
capability between the head node inside UVa and our
Windows Azure compute nodes. Specifically, this VPN
support allows the Windows Azure nodes to automatically see
a disk on the head node as being just another “share” by which
to read/write data – i.e., we use this for security and
convenience, not generally for high-performance.

To better understand/predict how our system should
dispatch jobs between local nodes and cloud nodes, we
conducted experiments to measure a typical watershed model
execution in our cloudbursting system (to minimize latency, we
chose to exclusively use the datacenter closest to us, which was
the Chicago Windows Azure datacenter). That is, if the overall
execution time for a cloud node was too long, then it wouldn’t
make sense to ever execute this application via cloudbursting.
Table I shows the results of executing a typical watershed
model on our three available platforms, measuring both the
duration to move the model and its input data and also the
duration to execute the model (we measured output, but found
it to be analogous in cost to the input costs, so we do not report
that here). As shown in Table 1, there are no data transfer costs
when the model is executed on the scientist laptop (the data and
model are assumed to be on the scientist laptop). In the case of
the enterprise node, the data and node are transferred within
enterprise networks to a network node. The wide-area data
transfer from the enterprise node at UVa to the Windows Azure
node takes significant time via the VPN – however, the
Windows Azure nodes are significantly more recent than our
enterprise nodes, so the overall time is comparable. We note
that it is not necessary that the overall time in the cloud be less
than within the enterprise, as our queuing system will
accommodate various dynamic latencies by only dispatching to
those nodes that are available (whenever that might be).

TABLE I. EXECUTING A TYPICAL SWAT WATERSHED MODEL ON

DIFFERENT PLATFORMS

 Stage-in Compute Total

Scientist laptop 0 55 sec 55 sec

Enterprise node 5 sec 60 sec 65 sec

Windows Azure (ex-large) 53 sec 32 sec 85 sec

D. System Internals

Having the overall system architecture in place, we next
focused on how to control the actual search through the
potential watershed model parameter sets attempting to find the

parameter set that best matches observed measures. As
mentioned earlier, because of its excellent results on a single-
core system, we focused on the DDS algorithm as the basis of
our cloud-based watershed model calibration system. Our
adaption of the DDS algorithm is shown in Figure 4. At the top
of the figure, the user input is passed to the overall SWAT
calibration mechanism. The left of the figure depicts a
potentially large number of model executions occurring in
parallel, where each simulation commences via modification of
the specific SWAT input files to match the chosen parameter
values, followed by the execution of the model and the scoring
of the model’s predictions (“Calculate E” by comparing against
actual streamflow measures). The right of Figure 3 shows the
mechanism by which the calibration either continues or
terminates (at which point the results are returned to the user
via a browser page).

Figure 4. SWAT model calibration using Windows Azure.

As stated previously in this paper, DDS is an implicitly
sequential algorithm in which the values for the next model
execution are based on the results of the previous model
execution. In our first cloud version of the DDS algorithm, we
attempted to preserve (as much as possible) the behavior of the
sequential algorithm by designing an approach by which N
model executions would base their parameters on the last (best)
model execution and execute in parallel, as shown in Figure 5.

Figure 5. Parallel DDS Implementation, first version

6

At this point in the development process, we focused on the
quality of the resultant model as compared to the watershed
calibration mechanism that is distributed with the SWAT
modeling framework (which runs on a desktop). Having
confirmed that the cloud-based system produced a best-model
that was roughly the same quality, we began to evaluate the
efficiency of the platform, which we describe next.

V. EVALUATION AND DISCUSSION

Whereas we were producing high-quality calibrations, our
first measurements indicated that the cloud-based system was
not as efficient as it should have been. For example, a simple
model that required approximately 10 hours to calibrate via the
built-in SWAT calibration routine for the desktop required 2
hours and 44 minutes in our cloud-based system with 16 cores
– clearly not using the cloud nodes efficiently. (Note: we chose
to use only the largest-sized VMs in Windows Azure, to
simplify the booting/halting overhead). In this section, we
describe how we measured our cloud-based system and
improved it. In the rest of this section, we focus on a particular
watershed model, but have found similar results for other
models, both larger and smaller. In addition, to focus on worst-
case, the results described in this section are without any local
(enterprise) nodes.

We measured the number of cores that were active as a
function of time, shown in Figure 6. This data led us to
conclude that, while attempting to preserve the behavioral
characteristics of the original DDS was important, the
synchronization point in our implementation (“choose best
value” in Figure 5) was having too big a negative impact on our
overall efficiency.

Figure 6. Parallel DDS implementation idle time.

Before potentially changing our implementation of DDS,
we also wanted to determine what, specifically, each core was
doing. We therefore instrumented our implementation along
major categories, resulting in data shown in Figure 7, which
shows the breakdown for each of the 1000 executions of the
model. The biggest lesson reinforced from the data in Figure 7
was: be very careful when crossing the cloud/enterprise
boundary (e.g., whenever possible, only move data once). This
was important for both the “Stage In” as well as “Stage Out”
phases. In “Stage in”, we took a simple approach whereby we
get the SWAT model and input data into place for model
execution on a VM in the cloud by copying the particular
SWAT model from our head node (within the enterprise).
Although the model was relatively small, many nodes could
potentially be attempting this copy in parallel. To remedy this,

we changed our implementation so that the model was copied
into blob storage and no longer retrieved every time from the
head node (it was retrieved from blob storage, and furthermore
it was not retrieved if it was already present on the cloud VM.)
This reduced the number of copies from 1000 to 1+ the number
of VMs being used. To reduce the cost of the “Stage Out” we
recognized that it was not the actual result of the model
execution that was necessary for the hydrologist to see, it was
the parameters for that particular model execution. In other
words, we already kept the parameter set for each of the 1000
model executions in a SQL database, so we completely
eliminated this Stage Out mechanism. This improvement was
made possible by first determining exactly where the time in
each model execution was spent, and then asking the hydrology
researcher if this step was truly necessary (which it wasn’t).

Figure 7. Performance of each model execution.

Next, we took one final step: eliminating the
synchronization point in our algorithm (this synchronization
point was the sole reason for idle cores in Figure 6). After
numerous tests to confirm that the resulting algorithm was able
to produce high-quality calibrated models, and confirming
100% utilization on our 16 cores (not shown in this paper), we
re-ran our experiments from Figure 7, which resulted in the
data shown in Figure 8. By re-architecting our approach
whereby almost 95% of the time was spent executing
watershed models, we were able to reduce our overall
execution time.

Figure 8. Performance of each model execution, new verstion.

7

Finally, we conducted experiments to determine the
scalability of our approach. Figure 9 shows the same model
calibration as used in previous results with 16 cores, Figure 10
shows with 64 cores, and Figure 11 shows with 256 cores.

Figure 9. Watershed model calibration using cloud computing (16 cores)

Figure 10. Watershed model calibration using cloud computing (64 cores)

Figure 11. Watershed model calibration using cloud computing (256 cores)

Table 2 summarizes the results. While the speedup over the
desktop option is significant, in general as the number of cores
increase, the overall duration becomes dominated by stragglers
(toward the end of the 1000 model executions, there will be
idle cores). Additionally, because the hydrologist wants the

actual results from the best model execution, we re-run the best
model execution at the end to capture the actual results (which
are generally discarded during the execution itself). This can be
seen particularly in Figure 10 and 11. For these particular
experiments, to capture the worst case behavior, we assume a
single user and a single model calibration. However, in general
practice, there will be multiple users/calibrations, meaning that
these n-1 cores will in general be consumed by another model
calibration and will not be idle.

TABLE II. EFFICIENCY/SPEED-UP OF WATERSHED MODEL CALIBRATION

SYSTEM USING CLOUD COMPUTING

 Duration Speedup

Desktop, SWAT internal calibration
(single threaded)

11.4 hours

(41040 sec)
--

Windows Azure, Ex-large VM, 16

cores, NW-DDS

43.32 min

(2599 sec)
15.78x

Windows Azure, Ex-large VM, 64

cores, NW-DDS

11.76 min (706

sec)
58.13x

Windows Azure, Ex-large VM, 256
cores, NW-DDS

5.03 min (302
sec)

135.89x

VI. CONCLUSION

Next-generation hydrology modeling will be increasingly
sophisticated, encompassing a wide range of natural
phenomena. Furthermore, calibrating models will soon cease to
be practically feasible on desktop computers. In this paper, we
have presented the design, implementation, and evaluation of a
cloud-based system for watershed model calibration. With a
representative watershed model whose calibration takes 11.4
hours on a commodity laptop, our cloud-based system
calibrates the watershed model in 43.32 minutes using 16 cloud
cores (15.78x speedup), 11.76 minutes using 64 cloud cores
(58.13x speedup), and 5.03 minutes using 256 cloud cores
(135.89x speedup). We believe that such speed-ups we achieve
in our cloud-based watershed model calibration system offer
the potential toward real-time interactive model creation with
continuous calibration, ushering in a new paradigm for
watershed modeling.

In the future, we plan to expand our support for different
watershed modeling frameworks (e.g., HSPF), support
additional user-defined calibration models, a visual
representation of the search process, and provide support for
community-based sharing of hydrologic models.

REFERENCES

[1] M. Sloboda, V. Sharma, S. Hood, D. Swayne, W. Booty, D.
Lam and I. Wong. Innovative Autocalibration Techniques Using
High Performance Computing. 18th World IMACS / MODSIM
Congress, Cairns, Australia 13-17 July 2009.

[2] E. Rouholahnejad, K.C. Abbaspour, M. Vejdani, R. Srinivasan,
R. Schulin, A. Lehmann, A parallelization framework for
calibration of hydrological models, Environmental Modelling &
Software, Available online 5 January 2012, ISSN 1364-8152,
10.1016/j.envsoft.2011.12.001.
(http://www.sciencedirect.com/science/article/pii/S13648152110
02829)

[3] P. Gassman, M.R. Reyes, C. Green, J. Arnold.The soil and water
assessment tool: development, applications, and future research
directions. Transactions on the ASABE. 50(4), pp. 1211-1250.

8

[4] Soil and Water Assessment Tool (SWAT).
http://swatmodel.tamu.edu/

[5] Microsoft Windows Azure. http://www.windowsazure.com

[6] J. Li, D. Agarwal, M. Humphrey, C. van Ingen, K. Jackson, and

Y. Ryu. eScience in the Cloud: A MODIS Satellite Data

Reprojection and Reduction Pipeline in the Windows Azure

Platform. In Proceedings of the 24th IEEE International Parallel

and Distributed Processing Symposium (IPDPS 2010), Apr 19-

23, 2010. Atlanta, Georgia.

[7] M. Humphrey, Z. Hill, C. van Ingen, J. Jackson, and Y. Ryu.
Assessing the Value of Cloudbursting: A Case Study of Satellite
Image Processing on Windows Azure. In IEEE e-Science 2011
Conference. Stockholm, Sweden. Dec 5-8, 2011.

[8] B.A. Tolson and C. A. Shoemaker, Dynamically dimensioned

search algorithm for computationally efficient watershed model

calibration. Water Resources Research, 43, W01413,

doi:10.1029/2005WR004723.

[9] B.A. Tolson, Sharma, V., Swayne, D., and Fan, L. (2007) “A

parallel implementation of the Dynamically Dimensioned

Search (DDS) algorithm.” International Symposium on

Environmental Software Systems (ISESS) 2007. Prague, Czech

Republic. May 22 - 25, 2007.

[10] A. Matsunaga, M. Tsugawa, J. Fortes. CloudBLAST:
Combining MapReduce and Virtualization on Distributed
Resources for Bioinformatics Applications Proceedings of 4th
IEEE International Conference on e-Science (eScience 2008),
Indianapolis, IN, Dec 2008.

[11] C. Evangelinos and C. Hill. Cloud Computing for parallel
Scientific HPC Applications: Feasibility of running Coupled
Atmosphere-Ocean Climate Models on Amazon’s EC2. Cloud
Computing and its Applications (CCA-08). Chicago, IL. Oct 22-
23, 2008.

[12] R. Grossman, Y. Gu, Data mining using high performance data
clouds: experimental studies using sector and sphere. Proceeding
of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD’08). Las Vegas,
NV, 2008.

[13] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib, J. Wang.
Introducing Map-Reduce to High End Computing. 3rd petascale
data storage workshop (held in conjunction with SC’08). Austin,
TX. Mon Nov 17, 2008.

[14] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good. The
Cost of Doing Science on the Cloud: The Montage Example.
Proceedings of Supercomputing 2008, Austin, TX, Nov 15-21,
2008.

[15] K. Jackson, L. Ramakrishnan, K. Runge, and R. Thomas.
“Seeking Supernovae in the Clouds: A Performance Study”. 1st
Workshop on Scientific Cloud Computing (ScienceCloud 2010),
Chicago, IL, June 21 2010.

[16] M. Palankar, A. Lamnitchi, M. Ripeanu, S. Garfinkel. Amazon
S3 for Science Grids: A Viable Solution? International
Workshop on Data-Aware Distributed Computing, Boston,
Massachusetts, June 2008.

[17] W. Lu, J. Jackson, and R. Barga. “AzureBlast: A Case Study of
Developing Science Applications on the Cloud.” 1st Workshop
on Scientific Cloud Computing (ScienceCloud 2010), Chicago,
IL, June 21 2010.

[18] W. Lu, J. Jackson, J. Ekanayake, R. S. Barga, N. Araujo.
Performing Large Science Experiments on Azure: Pitfalls and
Solutions. IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2010), Nov. 30-Dec.1,
2010, Bloomington, Ind.

[19] Community Surface Dynamics Modeling System (CSDMS).
http://csdms.colorado.edu

[20] Earth System Modeling Framework (ESMF).
http://www.earthsystemmodeling.org/

[21] Object Modeling System (OMS).
http://www.javaforge.com/project/oms

[22] Open Modeling Interface (OpenMI). http://www.openmi.org

[23] B.A. Allan, R. Armstrong, D.E. Bernholdt, F. Bertrand, K. Chiu,
T.L. Dahlgren, K. Damevski, W.R. Elwasif, T.G.W. Epperly, M.
Govindaraju, D.S. Katz, J.A. Kohl, M. Krishnan, G. Kumfert,
J.W. Larson, S. Lefantzi, M.J. Lewis, A.D. Malony, L.C.
McInnes, J. Nieplocha, B. Norris, S.G. Parker, J. Ray, S.
Shende, T.L. Windus, and S.J. Zhou, “A component architecture
for high-performance scientific computing,” International
Journal of High Performance Computing Applications, vol. 20,
2006, pp. 163-202.

[24] I. Foster, “Service-Oriented Science,” Science, vol. 308, 2005,
pp. 814-817.

[25] N.S. Christensen, A.W. Wood, N. Voisin, D.P. Lettenmaier, and
R.N. Palmer, “The effects of climate change on the hydrology
and water resources of the Colorado River basin,” Climatic
Change, vol. 62, 2004, pp. 337–363.

[26] A.F. Hamlet and D.P. Lettenmaier, “Effects of climate change
on hydrology and water resources in the Columbia River basin,”
Journal of the American Water Resources Association, vol. 35,
1999, pp. 1597–1623.

[27] J.T. Payne, A.W. Wood, A.F. Hamlet, R.N. Palmer, and D.P.
Lettenmaier, “Mitigating the Effects of Climate Change on the
Water Resources of the Columbia River Basin,” Climatic
Change, vol. 62, 2004, pp. 233-256.

[28] B.R. Bicknell, J.C. Imhoff, J.L. Kittle, A.S. Donigian and R.C.
Johanson, R.C., 1997, Hydrological Simulation Program--
Fortran, User's manual for version 11: U.S. Environmental
Protection Agency, National Exposure Research Laboratory,
Athens, Ga., EPA/600/R-97/080, 755 p., 1997.

[29] K. Eckhardt and J.G. Arnold. Automatic calibration of a
distributed catchment model. Journal of Hydrology. Vol 251,
issues 1-2,15 Sept 2001, pages 103-109.

[30] C.-T. Cheng, Wu, X.-Y. Chau, K. W. Multiple criteria rainfall-
runoff model calibration using a parallel genetic algorithm in a
cluster of computers. Hydrological Sciences Journal. 2005, Vol
50(6), pages 1069-1088.

[31] T. Francke, A. Bronster, and C. A. Shoemaker. Heuristic
optimization methods for run-time intensive models
(Dynamically Dimensioned Search, Particle Swarm
optimization, GA) – a comparison of performance and parallel
implementation using R. Geophysical Research Abstracts. Vol
12. EGU2010-8741, 2010.

[32] “Announcing New Windows Azure Services to Deliver ‘Hybrid
Cloud’”.
http://blogs.msdn.com/b/windowsazure/archive/2012/06/06/announcing-
new-windows-azure-services-to-deliver-hybrid-cloud.aspx

[33] M. Mao, Jie Li and M. Humphrey. Cloud Auto-Scaling with
Deadline and Budget Constraints. In Proceedings of 11th
ACM/IEEE International Conference on Grid Computing (Grid
2010). Oct 25-28, 2010. Brussels, Belgium.

[34] M. Mao and M. Humphrey. Auto-Scaling to Minimize Cost and
Meet Application Deadlines in Cloud Workflows. Proceedings
of Supercomputing 2011, Seattle, WA, Nov 15-20, 2011.

[35] Microsoft Corporation. Windows HPC Server 2008 R2 Suite.
http://www.microsoft.com/hpc/en/us/product/cluster-computing.aspx

