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Abstract— Understanding hydrologic systems at the scale of large 

watersheds and river basins is critically important to society 

when faced with extreme events, such as floods and droughts, or 

with concerns about water quality. A critical requirement of 

watershed modeling is model calibration, in which the 

computational model’s parameters are varied during a search 

algorithm in order to find the best match against physically-

observed phenomena such as streamflow. Because it is generally 

performed on a laptop computer, this calibration phase can be 

very time-consuming, significantly limiting the ability of a 

hydrologist to experiment with different models. In this paper, we 

describe our system for watershed model calibration using cloud 

computing, specifically Microsoft Windows Azure. With a 

representative watershed model whose calibration takes 11.4 

hours on a commodity laptop, our cloud-based system calibrates 

the watershed model in 43.32 minutes using 16 cloud cores 

(15.78x speedup), 11.76 minutes using 64 cloud cores (58.13x 

speedup), and 5.03 minutes using 256 cloud cores (135.89x 

speedup).  We believe that such speed-ups offer the potential 

toward real-time interactive model creation with continuous 

calibration, ushering in a new paradigm for watershed modeling.  

Keywords-cloud computing, watershed modeling, model calibration, 

SWAT, Windows Azure 

I.  INTRODUCTION 

Understanding hydrologic systems at the scale of large 
watersheds and river basins is critically important to society 
when faced with extreme events, such as floods and droughts, 
or with concerns about water quality. Climate change and 
increasing population are further complicating watershed-scale 
prediction by placing additional uncertainty on future water 
resource conditions. 

Computational tools are critical to hydrologic analysis and 
simulation. However, today, many of the models that are used 
for analysis of hydrologic systems do not make use of recent 
advances in computing and data resources, making them less 
effective tools for addressing current water resource challenges.  
This challenge extends beyond simply developing the 
simulation code and includes the entire workflow needed to 
support models from data collection, to data preparation, to 
modeling, to post-processing model results to support  decision 
makers.  

One of the specific goals of the hydrologic modeling 
community is to scale-up models to better address complex 
water resource problems (droughts, floods, water quality).  This 
scaling-up essentially results in considering larger and more 
complex physical domains within hydrologic models.  For 
example, a few decades ago water quality modeling typically 
only took into account so-called  point source discharges of 

pollution to water bodies. Now models must also take into 
account non-point sources, i.e. runoff from agricultural and 
urban lands to water bodies.  This difference in scope 
introduces a significant change in the complexity of the model 
from considering only river systems to now consider the entire 
watershed that drains to the river as well.   

Because of the complexity introduced by needing to 
simulate hydrology at a watershed-scale, an important step in 
the modeling process is the assessment of the model against 
observed historical conditions measured within the watershed, 
such as streamflow measured by sensors in the watershed 
outlet. That is, after a candidate model is produced from 
available spatial datasets (elevation, land use, soils, etc.), it 
must be “calibrated” in a computationally-expensive process 
whereby a subset of parameters of the model thought to be 
uncertain are selected (each model can have dozens of 
parameters), values are set for each parameter, the model is 
used as the basis of a simulation, and the results of the 
simulation are compared against observed measurements. The 
number of parameter sets and values considered is typically 
very large in order to attain sufficient confidence – typically a 
desktop computer must run for hours or even days in order to 
run a sufficient number of simulations of the model in order to 
calibrate. Increasingly, the duration of this necessary 
calibration step is impeding hydrologic modeling as, simply, 
scientists and engineers are limited in how well they are able to 
calibrate their model given available time and computational 
resources. While there have been some efforts to use multiple 
computers—in either a networked situation or in a compute 
cluster configuration—to speed up the calibration [1][2], 
perhaps the most significant limitation of these efforts is the 
relatively rigid and static use of computational resources.   

In this paper, we report on our cloud-based system for 
watershed model calibration. We currently support the SWAT 
watershed model [3][4], and we are using the Microsoft 
Windows Azure platform [5]. We have created a Web-based 
portal for the watershed modeling community, and we 
anticipate that usage of this portal will be sporadic, which maps 
well to the cloud’s ability to ramp up and ramp down 
dynamically. In addition to the flexibility offered by the cloud 
model, we are beginning to use cloud storage as the basis for 
community-based sharing of models and raw (and processed) 
input data for the hydrology community. More specifically, in 
this paper we describe: 

 the design and implementation of the watershed model 
calibration Web portal – attempting to achieve a delicate 
balance between hiding and exposing parts of the back-end 
cloud infrastructure 
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 the experiences of adapting our “MODISAzure” 
framework [6] for use in watershed model calibration 
(including a “CloudBurst” approach [7], which means that 
jobs are attempted to be executed using local enterprise 
resources first, but – when needed – jobs are pushed to 
“the cloud”)  

 the adaptation of an existing watershed model calibration 
search algorithm (DDS [8][9]) specifically to leverage a 
cloud environment such as Windows Azure  

 the evaluation of Windows Azure for performing this 
watershed model calibration, specifically focusing on  the 
computational efficiency as a function of the number of 
Windows Azure cores used.  

We believe that our system makes efficient use of cloud 
resources. With a representative watershed model whose 
calibration takes 11.4 hours on a commodity laptop, our cloud-
based system calibrates the watershed model in 43.32 minutes 
using 16 cloud cores (15.78x speedup), 11.76 minutes using 64 
cloud cores (58.13x speedup), and 5.03 minutes using 256 
cloud cores (135.89x speedup).  We believe that such speed-
ups offer the potential toward real-time interactive model 
creation with continuous calibration, ushering in a new 
paradigm for watershed modeling.    

The rest of this paper is organized as follows. Section II 
contains related work. Section III gives background on SWAT 
model calibration and the Microsoft Windows Azure cloud. 
Section IV gives the details of our architecture that uses 
Windows Azure. Section V contains the evaluation and 
discussion, and Section VI contains the conclusion. 

II. RELATED WORK 

A number of efforts have been focusing on using the cloud 
to perform scientific experiments (e.g., CloudBLAST [10], 
coupled atmospheric-ocean climate models [11], data mining 
[12], astrophysics [13], astronomy [14][15], high energy 
physics [16]). Windows Azure has been used as the platform 
for executing BLAST very effectively [17][18].   

While cloud computing has not been applied to hydrologic 
system modeling, there have been an increasing number of 
applications of advanced computing architectures and 
approaches for simulating hydrologic systems.  One area of 
interest has been utilizing modern software engineering 
paradigms in order to support community-based scientific 
models (CSDMS [19], ESMF [20], OMS [21] and OpenMI 
[22] are examples).  The recent application of modern software 
engineering paradigms such as component-based [23] and 
service-oriented architectures [24] to scientific computing 
provides a technical means for advancing cross-disciplinary 
scientific modeling that can be advanced by a large 
community. Hydrologists have long noted that water resource 
management requires sophisticated models capable of 
predicting how coupled hydrologic, climate, and socio-
economic systems respond to change in order to estimate 
response in one system (e.g. water quality) caused by changes 
within another system (e.g. energy policy) [25][26][27].  Most 
existing earth science and environmental management models 
are only starting to consider complex system interactions such 

as feedback loops across disciplinary models, because each 
subdiscipline builds their own models, and fully coupling 
models between disciplinary boundaries remains a major 
research challenge.     

III. BACKGROUND: SWAT MODEL CALIBRATION AND 

WINDOWS AZURE 

We first describe the specific watershed modeling 
framework we are using (SWAT) and also describe existing 
approaches to calibrate SWAT models. We then give an 
overview of the Microsoft cloud: Windows Azure. 

A. Soil and Water Assessment Tool (SWAT) Model 

Calibration 

Soil and Water Assessment Tool (SWAT) [3][4] is a 
comprehensive modeling framework that supports weather, 
hydrology, soil, plant growth, nutrients, pesticides, bacteria and 
pathogens, and land management. In SWAT, a watershed is 
divided into subwatersheds, which are then further divided into 
hydrologic response units (HRUs). The potential inputs to a 
SWAT model include daily precipitation, max/min 
temperature, relative humidity, wind speed data, etc.  During 
the “execution” of a model, the water balance is simulated for 
each HRU. The runoff  generated within each HRU is then 
aggregated at the subwatershed level and routed through the 
streams, ponds, wetlands, etc., to the watershed outlet.   

A key step in hydrologic modeling is both the calibration 
and validation of a model. In SWAT, the Nash–Sutcliffe model 
efficiency coefficient (E) is typically used and represents how 
well the simulated result matches the observed result (e.g., for 
streamflow).  The “goodness” of the model increases as the E 
coefficient increases up to a value of 1, which represents a 
perfect model. 

Before a watershed model can be used as the basis for 
prediction (e.g., of streamflow), it must be calibrated to 
observed historical conditions within the watershed. 
Calibration can be manual such as a trial-and-error approach, in 
which an expert selects which parameters to vary and by how 
much, or it can be automated. There are a number of examples 
of techniques to automate the watershed model calibration 
procedure. We focus on the calibration of SWAT models, but 
each modeling framework (e.g., HSPF [28]) has similar 
approaches.  Automated approaches are usually Monte Carlo-
based, such as the Shuffled Complex Evolution (SCE) [29]. 
The approach used in our system is called the Dynamically 
Dimensioned Search (DDS [8]) and has been shown to be more 
efficient and more effective than SCE  (e.g., “In two cases, 
DDS requires only 15–20% of the number of model 
evaluations used by SCE in order to find equally good values 
of the objective function.” [8]).  The goal of DDS is to begin by 
searching for a good candidate parameter set in the global 
search space and then switching to a local search space by 
gradually reducing the number of candidate parameters to 
modify as well as the range of acceptable values for each 
candidate parameter. During the search, the next candidate is 
chosen via a random and uniform perturbation of a particular 
parameter. Search continues for either a fixed number of 
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iterations or until termination criteria is satisfied (e.g., a 
sufficient value of E is achieved).  

There have been recent efforts to attempt to use multiple 
computers to speed up the SWAT model calibration procedure. 
As discussed later in this paper, the DDS approach is not 
trivially parallelizable because it uses the results of the most 
recent parameter set and values as the basis of the next 
parameter set and values. In other words, DDS is implicitly a 
sequential algorithm. However, DDS has been used as the basis 
of two parallel implementations: EP-DDS and P-DDS [9]. 
Other efforts use a computer cluster to speed up the calibration 
[1][2], including via the use of Genetic Algorithms (GA) [30]. 
A recent study has investigated DDS, “Particle Swarm 
Optimization” (PSO), and a Generic Algorithm (GA), showing 
favorable results for DDS [31]. It is important to note that none 
of these efforts utilize cloud computing to perform watershed 
model calibration. 

B. Windows Azure 

Windows Azure was announced by Microsoft as its cloud 
computing platform at its Professional Developers Conference 
(PDC) Nov 2008. Initially, Windows Azure focused on 
providing a .NET-based hosting platform that was integrated 
into a virtual machine abstraction. Thus, developers who are 
familiar with .NET application development could take 
advantage of this homogeneous cloud environment and develop 
applications for Windows Azure just like ordinary .NET 
applications by using Visual Studio. In contrast to this 
“Platform as a Service” (PaaS), Amazon’s EC2 has focused on 
support for virtual machine technology (aka Infrastructure as a 
Service, or IaaS). Microsoft has more recently augmented its 
PaaS with IaaS as well. In both EC2 and Windows Azure, users 
can customize the environment for their application by 
installing specific software or by purchasing particular machine 
images.  

In Windows Azure, the virtual machine instances can be 
separated into three different roles: the front-end website 
hosting server instances are called Web Roles, the back-end 
computational instances called Worker Roles, and the more 
recent Virtual Machine (VM) roles. Developers can specify the 
number of instances for roles at the deployment of their 
application or can dynamically adjust the number of instances 
at runtime.           

Windows Azure provides three types of cloud storage 
services, in addition to SQL Azure:  

• Blob service, the main storage service for storing 
durable large data items;  

• Queue service, which provides a basic reliable queue 
model to allow asynchronous task dispatch and to enable 
service communication;  

• Table service, which provides the structured storage in 
the form of tables and supports simple queries on partitions, 
row keys, and attributes.  

The key aspect of cloud storage is that it is accessible via 
any virtual machine in Windows Azure (with the proper 
authentication/authorization). Therefore, while there is local 

storage available to a particular computation, it is assumed that 
one of the cloud storage services will be used if the data is to be 
shared across virtual machine instances. 

Windows Azure continues to evolve. For example, on June 
6 2012, Microsoft announced support for running Linux-based 
VMs in Windows Azure [32]. Microsoft also recently 
announced the wide-scale availability of its “Virtual Network”, 
whereby giving the ability to create a virtual private network 
(VPN) between the local enterprise and Windows Azure (in 
later parts of this paper, we describe how we used this feature 
when it was in its “early adopter” version). 

IV. SWAT MODEL CALIBRATION USING WINDOWS AZURE 

In this project, our broad goals are to use Windows Azure 
for watershed model data preparation (raw data exists, but files 
are large and require preprocessing, suitable for workflow 
processing), watershed model calibration, and large-scale 
watershed model execution (too large to execute on a single 
workstation). To date, we have focused on watershed model 
calibration, which is the focus of this paper. 

A. Requirements 

There were a number of critical requirements that we 
established for our cloud-based watershed model calibration 
system. The overall requirement of course is to provide a 
significant speed-up in watershed model calibration as 
compared to the typical operating environment of a hydrology 
researcher (which is assumed to be a commodity laptop 
computer). A number of key additional requirements were 
established, both from the perspective of the systems 
implementer as well as from the perspective of the hydrology 
researcher: 

 Local (enterprise) resources should be used first 
(because latency is less, resources are largely already 
paid for, local resources are behind the firewall, etc.); if 
additional resources are needed, cloud computing 
should provide the capacity needed. 

 As per the value/appeal of cloud computing, the level 
of back-end cloud resource consumption should match 
the level of activity by hydrology researchers. That is, 
an idle system should incur little to no recurring cost. 

 The hydrology researcher should be able to use our 
system via a WWW browser, with as little a learning 
curve as possible. 

There were key additional constraints that we established to 
ensure future enhancements. That is, we attempted to create a 
current design that did not prevent the following 
architecturally: 

 To evaluate the effectiveness and feasibility of a cloud-
based watershed model calibration system, it was 
acceptable that the system only support a single 
(authenticated) user. However, the design should not 
hinder a multi-user system, in which end users are 
isolated from each. More specifically, end users should 
not see each other’s models, and the computing 
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resources available for one user should not be impacted 
by the use of computing resources by another user. 

 The architecture should support potential cost-per-use 
passed on to the end user. This is important for 
sustainability – while we were certainly not interested 
in running this for profit, we recognize that we wanted 
to create a potentially long-lived service for the 
hydrology community, but it was unlikely that we 
could directly pay for its long-term operation. 

B. User Interface 

The user interacts with the system via a WWW browser. 
The submission frame is shown in Figure 1.  The key aspect of 
the pane is the ability to select any number of watershed model 
parameters to modify and the ability to specify how each is to 
be modified by our system during the search process. The other 
key feature of the pane is its showing of the number of 
currently-idle cloud cores (the user can select any number from 
1 up to the number of idle cores; note that currently we 
manually boot cores as part of the system administrator 
console). 

 

Figure 1.  Submitting a watershed model calibration request. 

After job(s) have been submitted, the user has a number of 
additional panes available to view the status or previous results. 
For example, the user has the ability to check the current status 
of a model calibration submission, as shown in Figure 2. This 
pane shows the status of all of the model executions, as well as 
the currently-best model found (e.g., so that the user can 
choose to manually abort the calibration request if desired.) 

 

Figure 2.  Checking the status of a watershed model calibration. 

Our user interface design is meant to be simple, specifically 
hiding most of the details of the cloud back-end both so that the 
hydrologist is not required to understand the computing 
infrastructure as well as to give us the ability to re-architect and 
re-configure the processing if necessary. The closest we get to 
exposing the back-end is via the number of cores the user 
requests (which we expose as “concurrency level”). We further 
note that we are in the process of replacing this low-level 
concurrency knob with the more-useful “requested duration to 
complete” (which we would translate into a “concurrency 
level”), which will in part be based on our project’s research 
into deadline-based cloud computing [33][34]. This research 
will also be leveraged when (as part of future research) we 
auto-scale cloud resources instead of manually controlling the 
level of cloud resources manually. 

C. System Architecture: Cloudbursting 

The overall architecture of our system is shown in Figure 
3. To satisfy the requirement of using local resources first, we 
leverage our MODIS cloudbursting architecture [7] (which 
itself highly leveraged our MODISAzure system [6], a 
Windows Azure-only application we created for large-scale 
satellite image processing). The nature of our MODIS 
cloudbursting architecture is to provide a framework by which 
any number of days/years of the MODIS satellite data could 
be analyzed in parallel via a researcher-specific application 
uploaded to the cloud – using one cloud core per day of 
satellite data (thus, for example, to process 1 year worth of 
data, we created 365 independent jobs that would be processed 
in parallel on 365 cores on Windows Azure). We adapted this 
system for our watershed model calibration system, 
particularly leveraging our database-centric approach for 
managing the parameters for a particular set of jobs. 

 

Figure 3.  Overall system architecture utilizing cloudbursting. 

The center of Figure 3 shows the Microsoft Windows HPC 
job scheduler [35], which inherently supports a cloudbursting 
model (whereby Windows Azure nodes can be dynamically 
“added” to an otherwise enterprise-only Windows Compute 
Cluster). When a user submits a watershed model calibration 
request that, for example, requests that 1000 model executions 
be performed in a search for the best match, 1000 jobs are 
submitted to the Windows HPC job scheduler. Then, the 
Windows HPC scheduler dispatches the jobs, preferring the 
local resources we have at the University of Virginia. When 
theses nodes are all executing SWAT model executions, we 
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“burst” onto Windows Azure. Upon execution, the first action 
each job performs is to check back with the database to obtain 
its parameters for the SWAT model (We modify these 
parameters in the database, as described next in this section), 
This architecture has shown to be very flexible, as we are able 
to spin up new compute nodes in Windows Azure (and shut 
them down) whenever we desire.  Within Windows Azure, we 
use Blob storage to prepare the nodes – i.e., when they boot, 
they automatically load our watershed modeling support code 
– but, because each execution of the model is largely 
independent, we do not use Blob storage after the VMs have 
booted (and rather rely on local storage within the VMs). We 
use the Windows Azure Connect CTP to provide VPN 
capability between the head node inside UVa and our 
Windows Azure compute nodes. Specifically, this VPN 
support allows the Windows Azure nodes to automatically see 
a disk on the head node as being just another “share” by which 
to read/write data – i.e., we use this for security and 
convenience, not generally for high-performance.  

To better understand/predict how our system should 
dispatch jobs between local nodes and cloud nodes, we 
conducted experiments to measure a typical watershed model 
execution in our cloudbursting system (to minimize latency, we 
chose to exclusively use the datacenter closest to us, which was 
the Chicago Windows Azure datacenter). That is, if the overall 
execution time for a cloud node was too long, then it wouldn’t 
make sense to ever execute this application via cloudbursting. 
Table I shows the results of executing a typical watershed 
model on our three available platforms, measuring both the 
duration to move the model and its input data and also the 
duration to execute the model (we measured output, but found 
it to be analogous in cost to the input costs, so we do not report 
that here). As shown in Table 1, there are no data transfer costs 
when the model is executed on the scientist laptop (the data and 
model are assumed to be on the scientist laptop).  In the case of 
the enterprise node, the data and node are transferred within 
enterprise networks to a network node. The wide-area data 
transfer from the enterprise node at UVa to the Windows Azure 
node takes significant time via the VPN – however, the 
Windows Azure nodes are significantly more recent than our 
enterprise nodes, so the overall time is comparable.  We note 
that it is not necessary that the overall time in the cloud be less 
than within the enterprise, as our queuing system will 
accommodate various dynamic latencies by only dispatching to 
those nodes that are available (whenever that might be). 

TABLE I.  EXECUTING A TYPICAL SWAT WATERSHED MODEL ON 

DIFFERENT PLATFORMS 

 Stage-in Compute Total 

Scientist laptop 0 55 sec 55 sec 

Enterprise node 5 sec 60 sec 65 sec 

Windows Azure (ex-large) 53 sec 32 sec 85 sec 

D. System Internals  

Having the overall system architecture in place, we next 
focused on how to control the actual search through the 
potential watershed model parameter sets attempting to find the 

parameter set that best matches observed measures. As 
mentioned earlier, because of its excellent results on a single-
core system, we focused on the DDS algorithm as the basis of 
our cloud-based watershed model calibration system. Our 
adaption of the DDS algorithm is shown in Figure 4. At the top 
of the figure, the user input is passed to the overall SWAT 
calibration mechanism.  The left of the figure depicts  a 
potentially large number of model executions occurring in 
parallel, where each simulation commences via modification of 
the specific SWAT input files to match the chosen parameter 
values, followed by the execution of the model and the scoring 
of the model’s predictions (“Calculate E” by comparing against 
actual streamflow measures). The right of Figure 3 shows the 
mechanism by which the calibration either continues or 
terminates (at which point the results are returned to the user 
via a browser page).  

 

Figure 4.  SWAT model calibration using Windows Azure. 

As stated previously in this paper, DDS is an implicitly 
sequential algorithm in which the values for the next model 
execution are based on the results of the previous model 
execution. In our first cloud version of the DDS algorithm, we 
attempted to preserve (as much as possible) the behavior of the 
sequential algorithm by designing an approach by which N  
model executions would base their parameters on the last (best) 
model execution and execute in parallel, as shown in Figure 5.   

 

Figure 5.  Parallel DDS Implementation, first version 
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At this point in the development process, we focused on the 
quality of the resultant model as compared to the watershed 
calibration mechanism that is distributed with the SWAT 
modeling framework (which runs on a desktop). Having 
confirmed that the cloud-based system produced a best-model 
that was roughly the same quality, we began to evaluate the 
efficiency of the platform, which we describe next. 

V. EVALUATION AND DISCUSSION 

Whereas we were producing high-quality calibrations, our 
first measurements indicated that the cloud-based system was 
not as efficient as it should have been. For example, a simple 
model that required approximately 10 hours to calibrate via the 
built-in SWAT calibration routine for the desktop required 2 
hours and 44 minutes in our cloud-based system with 16 cores 
– clearly not using the cloud nodes efficiently. (Note: we chose 
to use only the largest-sized VMs in Windows Azure, to 
simplify the booting/halting overhead). In this section, we 
describe how we measured our cloud-based system and 
improved it. In the rest of this section, we focus on a particular 
watershed model, but have found similar results for other 
models, both larger and smaller. In addition, to focus on worst-
case, the results described in this section are without any local 
(enterprise) nodes. 

We measured the number of cores that were active as a 
function of time, shown in Figure 6. This data led us to 
conclude that, while attempting to preserve the behavioral 
characteristics of the original DDS was important, the 
synchronization point in our implementation (“choose best 
value” in Figure 5) was having too big a negative impact on our 
overall efficiency.   

 

Figure 6.  Parallel DDS implementation idle time. 

Before potentially changing our implementation of DDS, 
we also wanted to determine what, specifically, each core was 
doing. We therefore instrumented our implementation along 
major categories, resulting in data shown in Figure 7, which 
shows the breakdown for each of the 1000 executions of the 
model. The biggest lesson reinforced from the data in Figure 7 
was: be very careful when crossing the cloud/enterprise 
boundary (e.g., whenever possible, only move data once). This 
was important for both the “Stage In” as well as “Stage Out” 
phases. In “Stage in”, we took a simple approach whereby we 
get the SWAT model and input data into place for model 
execution on a VM in the cloud by copying the particular 
SWAT model from our head node (within the enterprise). 
Although the model was relatively small, many nodes could 
potentially be attempting this copy in parallel. To remedy this, 

we changed our implementation so that the model was copied 
into blob storage and no longer retrieved every time from the 
head node (it was retrieved from blob storage, and furthermore 
it was not retrieved if it was already present on the cloud VM.) 
This reduced the number of copies from 1000 to 1+ the number 
of VMs being used. To reduce the cost of the “Stage Out” we 
recognized that it was not the actual result of the model 
execution that was necessary for the hydrologist to see, it was 
the parameters for that particular model execution. In other 
words, we already kept the parameter set for each of the 1000 
model executions in a SQL database, so we completely 
eliminated this Stage Out mechanism. This improvement was 
made possible by first determining exactly where the time in 
each model execution was spent, and then asking the hydrology 
researcher if this step was truly necessary (which it wasn’t). 

 

Figure 7.  Performance of each model execution. 

Next, we took one final step: eliminating the 
synchronization point in our algorithm (this synchronization 
point was the sole reason for idle cores in Figure 6). After 
numerous tests to confirm that the resulting algorithm was able 
to produce high-quality calibrated models, and confirming 
100% utilization on our 16 cores (not shown in this paper), we 
re-ran our experiments from Figure 7, which resulted in the 
data shown in Figure 8. By re-architecting our approach 
whereby almost 95% of the time was spent executing 
watershed models, we were able to reduce our overall 
execution time. 

 

Figure 8.  Performance of each model execution, new verstion. 
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Finally, we conducted experiments to determine the 
scalability of our approach. Figure 9 shows the same model 
calibration as used in previous results with 16 cores, Figure 10 
shows with 64 cores, and Figure 11 shows with 256 cores.  

 

Figure 9.  Watershed model calibration using cloud computing (16 cores)  

 

Figure 10.  Watershed model calibration using cloud computing (64 cores)  

 

Figure 11.  Watershed model calibration using cloud computing (256 cores)  

Table 2 summarizes the results. While the speedup over the 
desktop option is significant, in general as the number of cores 
increase, the overall duration becomes dominated by stragglers 
(toward the end of the 1000 model executions, there will be 
idle cores). Additionally, because the hydrologist wants the 

actual results from the best model execution, we re-run the best 
model execution at the end to capture the actual results (which 
are generally discarded during the execution itself). This can be 
seen particularly in Figure 10 and 11. For these particular 
experiments, to capture the worst case behavior, we assume a 
single user and a single model calibration. However, in general 
practice, there will be multiple users/calibrations, meaning that 
these n-1 cores will in general be consumed by another model 
calibration and will not be idle. 

TABLE II.  EFFICIENCY/SPEED-UP OF WATERSHED MODEL CALIBRATION 

SYSTEM USING CLOUD COMPUTING 

 Duration Speedup 

Desktop, SWAT internal calibration 
(single threaded) 

 

11.4 hours 

(41040 sec) 
-- 

Windows Azure, Ex-large VM, 16 

cores, NW-DDS 

43.32 min 

(2599 sec) 
15.78x 

Windows Azure, Ex-large VM, 64 

cores, NW-DDS 

11.76 min (706 

sec) 
58.13x 

Windows Azure, Ex-large VM, 256 
cores, NW-DDS 

5.03 min (302 
sec) 

135.89x 

VI. CONCLUSION  

Next-generation hydrology modeling will be increasingly 
sophisticated, encompassing a wide range of natural 
phenomena. Furthermore, calibrating models will soon cease to 
be practically feasible on desktop computers. In this paper, we 
have presented the design, implementation, and evaluation of a 
cloud-based system for watershed model calibration. With a 
representative watershed model whose calibration takes 11.4 
hours on a commodity laptop, our cloud-based system 
calibrates the watershed model in 43.32 minutes using 16 cloud 
cores (15.78x speedup), 11.76 minutes using 64 cloud cores 
(58.13x speedup), and 5.03 minutes using 256 cloud cores 
(135.89x speedup).  We believe that such speed-ups we achieve 
in our cloud-based watershed model calibration system offer 
the potential toward real-time interactive model creation with 
continuous calibration, ushering in a new paradigm for 
watershed modeling. 

In the future, we plan to expand our support for different 
watershed modeling frameworks (e.g., HSPF), support 
additional user-defined calibration models, a visual 
representation of the search process, and provide support for 
community-based sharing of hydrologic models.    
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