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Abstract— Existing workflow systems attempt to achieve high performance by intelligently 

scheduling tasks on resources, sometimes even attempting to move the largest data files on 

the highest-capacity links. However, such approaches are inherently limited, in that there is 

only minimal control available regarding the arrival time and rate of data transfer between 

nodes, resulting in unbalanced workflows in which one task is idle while waiting for data to 

arrive. This paper describes a data throttling framework that can be exploited by workflow 

systems to  uniquely regulate the rate of data transfers between the workflow tasks via a 

specially-created QoS-enabled GridFTP server. Our workflow planner constructs a 

schedule that both specifies when/where individual tasks are to be executed, as well as when 

and at what rate data is to be transferred. Simulation results involving a simple workflow 

indicate that our system can achieve a 30% speedup when nodes show a 

computation/communication ratio of approximately 0.5. We reinforce and confirm these 

results via the actual implementation of the Montage workflow in the wide area, obtaining 

a maximum speedup of 31% and an average speedup with 16%. Overall, we believe that 

our data throttling Grid workflow system both executes workflows more efficiently (by 

better establishing balanced workflow graphs) and operates more cooperatively with 

unrelated concurrent Grid activities by consuming less overall network bandwidth, 

allowing such unrelated activities to execute more efficiently as well. 

I. INTRODUCTION 

N today’s e-science collaborations, workflows play an increasingly important role by allowing 

scientists to describe the logic of scientific computational experiments in terms of tasks and 

dependencies between the tasks, often in the form of an intuitive diagram. The overall workflow-

based infrastructure consisting of workflow planners, enactment engines, data movement tools, 

etc., hides the complex nature of underlying distributed resources and distributed system 

technologies from the domain scientists such that the scientists can concentrate on solving their 

problems without being distracted by the scale and complexity of infrastructure running the 

application. Many applications from such diverse domains as astronomy [1], physics [2], biology 

[3], and earthquake science [4] have recently used workflow languages and engines to 

successfully execute large-scale experiments on local resources and the Grid. 

However, there are several obstacles that limit the workflow system’s efficiency in the wide-

area and diverse environment of the Grid. While sometimes the obstacles are found within the 

application – such as inherently limited parallelism because of the application structure, often 

times the reduced performance is due to the workflow engine that maps the abstract workflow to 

underlying resources in an inefficient manner. The first generation of Grid workflow engines 

were largely considered a success if they were consistently able to successfully execute any large 

workflow (not just the most efficient) across the uncertain Grid infrastructure, and recent efforts 

have been focused on generally scheduling component tasks more intelligently (e.g., [5]). 

Perhaps the most significant open challenge of Grid workflows arises from the data-intensive 

nature of e-science workflows: individual tasks in the workflow can become bottlenecks as they 
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sit idle waiting for large amounts of data being produced by and/or delivered from other tasks. 

Some existing approaches attempt to take into account the data location and the link bandwidth 

information to attempt to avoid the data movement completely or move data via higher-capacity 

links whenever available [6][7]. However, the simplistic approach of moving the largest files (or 

the highest required data streaming rate) via the highest-capacity links can result in sub-optimal 

workflow execution:  

• [INBOUND DATA] Even if the largest files are moved across the highest-capacity links, 

nodes can often wait for the last predecessor node to deliver its data before the node (by 

definition) can perform its intended functionality.  

• [OUTBOUND DATA] Upon completing its execution, a task will often immediately move 

its output data to a successor node, with such data often arriving significantly before the receiving 

task can actually use it. 

Intuitively, we desire that the last file arrive earlier, and the earliest-arriving files can actually 

arrive later if it were to some advantage to do so. If we were to achieve this, we could reduce or 

ideally eliminate such unbalanced execution, where some activity in the workflow is waiting for 

another activity. In fact, in general, the current practice of moving data from one location to 

another as early as possible is often either: 

• unnecessary when viewed in isolation: any data that arrives before the last data arrives can 

be delayed, or  

• harmful when viewed in-the-large: there is only finite capacity on each link, so multiple 

concurrent data movement operations can slow each other down significantly. Intuitively, 

more of the bandwidth should be used by the data movement for which a task waits.   

This paper presents an end-to-end workflow system to minimize unbalanced computation in 

workflows for data-intensive e-science. The core of our approach is a unique data throttling 

framework that regulates the rate of data transfers between the workflow tasks via a specially-

created QoS-enabled GridFTP server. Our workflow planner constructs a schedule that both 

specifies when/where individual tasks are to be executed, as well as when and at what rate data 

is to be transferred. Simulation results involving a simple workflow indicate that our system can 

achieve a 30% speedup when nodes show a computation/communication ratio of 0.5. To further 

evaluate our approach, we applied our workflow system to a well-known real Grid workflow 

(Montage). Across all runs, the least speedup was 11% and the most speedup with 31%, with an 

average speedup of 16%. Overall, we believe that our data throttling Grid workflow system both 

executes workflows more efficiently (by reducing unbalanced workflow graphs) and operates 

more cooperatively with unrelated concurrent Grid activities by consuming less overall network 

bandwidth, allowing such unrelated activities to execute more efficiently as well.  

The rest of this paper is organized as follows. In Section 2 we present related work. Section 3 

elaborates the concept and motivation of data throttling for workflow. The design of the 

throttling framework with the discussions on design decisions is presented in Section 4, followed 

by the presentation on the implementation in Section 5. Section 6 evaluates the framework and 

Section 7 concludes the paper with a discussion on future research. 

II. RELATED WORK 

Yu at al. provides a comprehensive survey of the existing workflow systems for e-science 

applications [8]. Pegasus [6] is a representative workflow system for e-science. It has been 

developed as a unified platform that allows scientists from diverse domains to describe the 

application logic in abstract way using a direct acyclic graph (DAG). The planner component of 
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Pegasus transforms the abstract DAG into concrete DAG that is executable on the distributed 

resources. It utilizes DAGMan and Condor-G [9] as an underlying enactment engine that 

coordinates the tasks and the data movement between the tasks. They run on top of GSI, GRAM, 

MDS, and GridFTP of Globus Toolkit [10] which provides the Grid-enabling functionality 

including authentication/authorization, remote execution, information monitoring, and data 

movement. 

There have been efforts to enhance the performance of workflow execution. In Pegasus, the 

abstract DAG written by scientists goes through the process of clustering and partitioning by 

which the transformed DAG is made more efficient while the semantics remain the same. With 

clustering, the small tasks are grouped together as one executable unit such that the overhead of 

data movement and running the small tasks can be eliminated. Partitioning sets the scheduling 

horizon which determines which part of workflow will be scheduled at any given time. Similar 

approaches have been taken in [11] with further optimization at runtime by adapting to the 

dynamically changing state of underlying resources. Scheduling is a foundation of workflow 

optimization and there are works on the efficient scheduling of workflow applications on Grid 

[12][13]. Many of the scheduling algorithms for workflow use the heuristics for parameter-

sweep applications [13] and enhance the heuristics with additional optimizing steps which 

consider the global structure of the workflow. 

Nerieri et al. [14] presents the study of overhead analysis for Grid workflow applications. They 

found via a case study on two applications that load imbalance and data movement are among 

the very significant sources of overhead. Load imbalance occurs when some of parallel sections 

of workflow take longer to finish and make the workflow stall until the completion of the 

sections. This is a result of poor scheduling decision that could not make a balanced resource 

allocation. The data throttling plays an important role in coping with the load imbalance problem 

because the throttling can hide the imbalance by throttling up to the sections of parallel tasks that 

take longer to execute. The throttling can fix or complement the poor schedules at run time. We 

present this in more detail in the next section. 

We have implemented an application level rate limiter as part of data throttling framework. 

The rate limiter implements the token bucket algorithm that is widely implemented in network 

routers [15]. Zhang et al. [16] uses the similar technique to implement an experimental QoS-

aware GridFTP server in an application level. Globus Toolkit recently released the rate limiting 

XIO driver that uses the token bucket algorithm [17]. Though we use a similar overall approach 

to implement the rate limiting functionality, the architecture is different in many respects: our 

design is more centralized one in which there is a coordinator that manages multiple transfers 

and enforces the application’s requirements on the transfer rate. The centralized management 

allows the coordinator to rapidly adapt to changes in the observed transfer rate in order to keep 

the application’s requirements satisfied at all times. Furthermore, we report the novel use of 

application level rate limiting for workflow applications. 

III. DATA THROTTLING FOR WORKFLOW 

We define the general models of workflow in the form of a DAG as depicted in Figure 2. The 

workflow is expressed as a set of tasks with data dependencies between them. The node and edge 

in a DAG represents the task and the data dependencies respectively. A task becomes executable 

when all of its inputs are ready. There are two types of workflow -- abstract and concrete 

workflow. An abstract workflow is written by the workflow programmer (e.g., scientists) and 

describes the application’s logic at a high level of abstraction. It becomes a concrete workflow 



 4

after a scheduler maps the tasks to resources. Makespan is a term referring to the performance 

metric of workflow and defined as the interval between the start time of first task and the end 

time of final task. We use the example workflow in Figure 1 throughout this Section. Figure 1 is 

an abstract workflow. We will identify the resource binding explicitly if it is to be interpreted as a 

concrete workflow. 

 

 

Figure 1. Representative Workflow 

 

Two of the characteristics of workflow that motivate the data throttling are load imbalance and 

synchronization. (The third motivation – generally to consume as little bandwidth as possible 

without compromising performance, so that more bandwidth is available to unrelated Grid 

activities – is not discussed in this section). Load imbalance occurs when some of workflow’s 

branches take longer to finish than the others. For example, load imbalance in Figure 1 can cause 

the synchronization point (T6) to stall until all of the branches have completed the tasks (T2, T4, 

T5). There are the two main sources of load imbalance. One is a structural imbalance that can 

exist due to the unbalanced structure of abstract workflow. Figure 1 has a structural imbalance as 

paths from T1 to T6 have different depths (assuming all tasks require the same amount of time). 

Some applications inherently reveal the unbalanced structure in its flow of logic. For instance, the 

physics application LIGO [2] has a highly unbalanced workflow structure. The other type of 

imbalance, called schedule imbalance, is due to the unbalanced resource allocation made by the 

scheduler. The scheduling heuristics in general attempt to allocate resources to a set of tasks in a 

way that minimizes the imbalance among the branches. However in many cases, the scheduler 

fails to produce the balanced schedule due to limited resource availability and /or coarse 

granularity of individual tasks.  For example, if T4 takes twice as long as T5, and the available 

resources are all homogeneous, the scheduler has no choice but to let the imbalance occur. Our 

data throttling capability plays an important role in helping to reduce load imbalance. For 

example, assume all tasks in Figure 1 are scheduled on different resources and take the same 

execution time on the scheduled resources. As soon as T1 produces the output, T2 and T3 fetch 

the output from T1 and the two simultaneous transfers occur on the shared link at the resource T1. 

We further assume that all the resources have the same physical bandwidth without congestion. 

Without our data throttling mechanism, which task receives T1’s output first will depends on the 

TCP congestion control algorithm at T1 – it is likely that T2 and T3 will receive the data at 

roughly the same time because many TCP congestion control algorithms utilize a fairness metric 

[17]. By using our data throttling mechanism in our modified GridFTP, we are able to allocate a 

higher bandwidth for the transfer to T3, and the makespan can be reduced by as much time that is 

saved by transferring data to T3. 
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Data throttling is also productive when multiple workflows are run on a shared resource. For 

example, many scientific collaborations have a relatively small number of data servers for storing 

the raw and output data, and many instances of workflow are simultaneously executed, 

continuously fetching raw data from the server and storing the output data to the server. For 

instance, in Figure 1, T6 if often a task that synthesizes data from many workflow branches into a 

single file and stores it into a data server. Assume that the two instances of T6, called T61 and T62, 

run on the data server for the different instances of the workflow. Furthermore assume that data 

between T21 and T61 is transferred at a low bandwidth (e.g., due to congestion on the resource 

running T21) compared to T41- T61 and T51- T61. Even if the high bandwidth between the two 

latter paths allows faster data movement, there is no advantage of moving the data quickly 

because T61 can start only after data from T21 is received. This workflow will be delayed anyway 

– from the point of global optimization, it is better to concede the unnecessarily high bandwidth at 

T41- T61 and T51- T61 to another workflow instance. In other words, we need to throttle down the 

unnecessarily high bandwidth to benefit the concurrently executing workflow instance.  

One may notice that the explanations above are based on the contradictory assumption about 

the property of underlying network (no congestion vs. congestion). However, the assumptions 

about network are only for the easier explanation and do not contradict the argument. In fact the 

motivation for throttling down can be found in the case of load imbalance. As an illustration, we 

begin by throttling up T1-T3 (and throttling down T1-T2 to give a room to throttle up) for hiding 

the load imbalance. If we later find congestion on T1-T3 causes the low bandwidth than the point 

we set to throttle up, we throttle down the T1-T2 further in order not to waste the bandwidth. In 

summary, if the network link has unlimited bandwidth (theoretically), data throttling moves data 

to the tasks that needs the data more urgently than the other. On the contrary if the congestion 

limit the bandwidth for some transfers, data throttling reduces the unnecessarily wasted 

bandwidth that may otherwise be used by the other applications. 

IV. DATA THROTTLING FRAMEWORK 

The Data Throttling Framework consists of two components: the Workflow Engine and the Rate 

Throttler. Our workflow engine is unique in that it considers a new attribute that we refer to as 

the Relative Transfer Time Finished (RTTF). RTTF is a tuple in which the values correspond to 

edges and represent the desirable time at which data transfer is finished. There are two types of 

RTTF per task, one for the group of incoming edges and the other for the outgoing edges. More 

formally RTTF is defined as follows. 

 

For a given Directly Acyclic Graph G = {V, E} where V is the set of nodes (tasks) and E is the 

set of edges (data dependencies), 

RTTFI(v) = {f(e1), f(e2), …, f(en) | ei,=(vi, v)∈E for all vi ∈ V} 

RTTFO(v) = {f(e1), f(e2), …, f(en) | ei,=(v, vi)∈E for all vi ∈ V} 

We define T(ei) as a time that the file transfer is finished from vi to vj for ei=(vi, vj). 

 

The function f is defined such that f(ex)/f(ey)=T(ex)/T(ey). RTTF value for an edge is relative to the 

other edges only within the same group of incoming and outgoing edges.  

 

As the above definition implies, the RTTF captures the relative order of time by which the 

transfers are finished. Using the RTTF, the workflow programmer or workflow engine can set a 
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requirement about the data transfer delay. If the task does not have RTTF annotated to it, there is 

no such requirement for the flow from/to that task. The RTTF is set in order to prevent a load 

imbalance or an otherwise overly-aggressive consumption of bandwidth. For example, in Figure 1, 

the RTTF of T1 and T6 can be set to RTTFO(T1)={2, 1} and RTTFI(T6)={1, 1, 1}. T1’s RTTF for 

outgoing edges tries to compensate the structural load imbalance by describing that T3 should 

receive its output in half the time as compared to T2. T6’s RTTF specifies that all of the incoming 

transfers should arrive at the same time (in order to keep from unnecessary surge of bandwidth 

use). 

It is possible that a workflow programmer annotates the DAG with RTTF values by 

himself/herself, but it is more likely that the workflow engine performs that task for the following 

reasons: 

• The abstract workflow written by a programmer can be restructured by the workflow planner, 

and thus the RTTF may not be correct when the restructuring is done.  

• Data throttling is used for hiding the load imbalance and the expected amount of load 

imbalance can be known after the scheduler allocates tasks to resources. 

Note that RTTF does not specify the bandwidth requirements for transfers, but rather specifies the 

requirements in terms of time. Specifying bandwidth requirements is an alternate approach, which 

was not chosen due to implementation complexity and ease of use. The file size must be known 

before the bandwidth can be derived from time requirement (i.e., Bandwidth=DataSize / Time). 

From RTTF, the workflow engine generates the Relative Transfer Bandwidth (RTB) as follows: 

 

RTTF(v) = {r1, r2, …, rn} 

�������� 	

��� � �1�� ,
1
�� , … , 1��� 

	������� 
������� ����������� � � !�"#$# ,  !�"%$# , … ,  !�"&$& ' where fs(ei) refers to the size of 

file transferred from vi to vj and ei = (vi, vj) 

 

When the workflow engine (enactor) is ready to submit a task to a scheduled resource, it presents 

the RTB of the task to the Rate Throttler that runs on the scheduled resource. Upon receiving the 

RTB, Rate Throttler translates it to the concrete bandwidth allocation for each transfer and 

enforces the allocated bandwidth. The concrete bandwidth allocation from RTB depends on the 

particular technology implementing the Rate Throttler functionality. Although we implement the 

Rate Throttler using a token bucket rate limiting in an application level, RTB is appropriate for a 

range of implementation approaches – for example by setting up the connection-oriented virtual 

circuits between the resources [19]. The functionalities the Rate Throttler should be capable of are:  

• The Rate Throttler must implement the interface that accepts RTB,  and a translation routine 

must exist to converts the RTB to a concrete bandwidth allocation 

• It must enforce the bandwidth while keeping the meaning of values in RTB satisfied 

• It should adapt to the changes of the network state (e.g., over-congestion) such that the 

dynamic state change does not result in violation of relative bandwidth  

We have found that this design decision – separating the roles of Workflow Engine and Rate 

Throttler and defining a clean interface between them using RTB – has many benefits. The engine 

does not need to care about the working mechanisms of Rate Throttler, but it only describes the 

requirements in terms of relative time which is of relevant to it. Since the bandwidth requirements 

delivered to Rate Throttler is in terms of relative bandwidth, Rate Throttler can determine how 
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much share of its capacity to allocate to the group of edges and assign bandwidths within that 

share. It is robust since workflow engine can continue to use resources where there is no Rate 

Throttling support or Rate Throttler is broken. The engine can ignore the RTTF of a task and 

continue to run the workflow. It may not benefit from the service provided by the data throttling 

framework, but still the workflow can be executed on resources with perhaps more overhead. 

Allocating concrete bandwidth from the relative bandwidth requirements is easy to implement if 

the underlying network QoS service supports bandwidth provisioning. The framework does not 

require significant changes to the existing workflow engine; only few additional annotations on 

DAG grammar and its interpretations are sufficient. 

V. DATA THROTTLING FRAMEWORK – IMPLEMENTATION 

In this section, we describe the implementation of the Data Throttling Framework.  The 

Workflow Engine is written in Java and accepts the workflow (DAG) in XML. Our 

implementation allows the programmer or engine to add RTTF annotations to the nodes of DAG. 

The RTTF is translated to RTB and delivered to the resources at run-time (note that not all nodes 

have an RTTF annotation). In this section, we give an overview of the entire system with an 

emphasis on how the annotations are created and used.  

We implemented the Rate Throttler component as an application-level rate limiter. Rate 

Throttling requires that one can dynamically determine and allocate the available bandwidth on a 

per-file-transfer basis. Rate limiting is a foundation for providing rate-based QoS because we 

need to limit the rate of non-QoS client’s transfers in order to provide the constant bandwidth to a 

QoS client. In order to “throttle up” the bandwidth of some transfers, we need a mechanism that 

“throttles down” the other transfers sharing the link. Traditionally, network QoS has been 

provided as a link- and network-layer protocol, and the bandwidth provisioning is implemented in 

routers. However, while in-network QoS provisioning such as DiffServ [19]  is widely 

implemented, the end users still have no control over the bandwidth allocation. Recently 

connection-oriented circuit switching has emerged as a novel way of constructing QoS network 

that allows end-users to control the bandwidth allocation [18]. While circuit-switched networking 

and/or optical networks have the potential to provide a solution to this problem in future networks, 

this doesn’t solve the problem for today’s Internet. 

Building QoS at the application level generally assumes that the backbone and intra-network is 

free of congestions and the only point that congestion occurs is on the end-host. Although this 

claim cannot hold true always, it is surprisingly true in many circumstances. Especially the e-

science community has relied on the academic/research backbone which has tens of gigabit/s 

capacity (e.g., NSF TeraGrid network link at 40Gb/s and Internet 2 at 10 Gb/s). The rapid 

increase in the backbone and slow upgrade of local network has increasingly pushed up the 

bandwidth pressure on end-hosts especially on the hosts running popular service (e.g., Web and 

GridFTP). We repeatedly confirmed this phenomenon (no congestion on backbone and 

congestions at end host) while we tested the rate limiter for the transfers over Internet 2 backbone. 

We implemented the application-level rate limiter using the well-known token-bucket rate 

limiting. The token-bucket or similar algorithms such as leaky bucket is implemented in routers 

for rate-limiting purposes. In the token bucket model, when packets of n bytes arrive to the router, 

they are forwarded to the next hop only if there are n or more number of tokens in the bucket. The 

n tokens are removed while the packet is forwarded. If there are less than n tokens, the router 

waits for the tokens to be filled while queuing or discarding the packets.  The bucket has height H 

and the token is added to the bucket at rate R, only if the number of tokens in the bucket does not 
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exceed the bucket height. Thus, H is the parameter that determines peak burst rate, and R 

determines the average rate. The target transport service that we apply the token bucket rate 

limiting is GridFTP, one of the most widely used transport protocol and software for high 

performance data transfer. Many existing workflow engines use the GridFTP as a data movement 

tool. We implemented an XIO driver that replaces the default TCP XIO driver of GridFTP server 

[21]. The XIO driver receives the token from the rate limiter and transfers a block of data as long 

as the token remains in the bucket. If no token is available, the XIO driver stalls until enough 

tokens are received from the rate limiter. Note that we only replace the XIO driver on server side, 

and the GridFTP client needs no modification. Figure 2 illustrates the overview of the Rate 

Throttler. 

 
 

In Figure 2, the compensator component complements the rate limiter in meeting the bandwidth 

target. With only the rate limiter, the flow’s bandwidth become less than the rate limit target since 

TCP exhibits a frequent bandwidth drop on a congested path (as a result of TCP’s reduced 

window size for a packet drop event). Even though the long term average bandwidth along the 

paths (without rate limit) is above the rate limit target, setting the limit on target x may result in 

average bandwidth less than x because the flow’s rate drops at some instants. Setting the rate limit 

target higher than the allocated bandwidth may overcome this problem, but can result in higher 

average bandwidth than necessary. The compensator copes with this problem by monitoring the 

rate of existing transfers and issuing extra tokens to the transfer that suffers from sudden 

bandwidth drops. The compensator does this until the average bandwidth of the transfer is 

recovered to a rate limit target. The Rate Throttler assigns portions of capacity (e.g., 10%) to the 

compensator for allowing an extra space to overcome bandwidth drop. 

The RTB received from the workflow engine is translated to a concrete bandwidth allocation 

for each transfer. An administrator specifies the capacity of the link on which the Throttler runs 

(e.g., 100 mb/s), and the RTB Interface monitors and maintains the RTB requests it has received 

from the external workflow engines. The concrete bandwidth allocated to a RTB is the link 

Figure 2: Rate Throttler 

GridFTP

process

GridFTP

process

GridFTP

process

Rate Limiter

Compensator

RTB Interface

Relative Transfer 

Bandwidth

G={1.0, 1.5, 3.0, …}

Concrete Bandwidth

{1.0, 2.0, 8.0, …} mb/s



 9

capacity divided by the number of RTBs. The simple formula to derive the concrete bandwidth 

from RTB is as follows: 

 

{c.b1, c.b2, …, c.bn} = BWRTBi*{r.b1, r.b2, …,r.bn} where r.bi and c.b.i denotes the relative and 

concrete bandwidth of edge i, and BWRTBi refers to the bandwidth allocated for RTB i. 

VI. EVALUATION AND DISCUSSION 

In this section, we evaluate the developed Data Throttling Framework in two ways. First, we 

assess the range of applications that will benefit from the framework by performing simulation 

studies involving workflows with varying ratios of computation to communication. Second, in 

part to validate the simulation results, we apply the Data Throttling Framework to a real 

astronomic workflow application, Montage [1].  

A. Effective Computation-Communication Ratio 

Not every workflow application will benefit from the Data Throttling Framework. If the amount 

of data flowing between tasks is too small relative to the duration of a computation, adjusting the 

data-transfer rate will have no effect on the makespan. Conversely, if the execution time of tasks 

is too short compared to a large communication delay, it will not be beneficial to throttle the data 

rate since the task imbalance is negligible. Thus, there is a range of application’s Computation-

to-Communication Ratio (CCR) that will benefit from data throttling. We identify the range via 

simulation. We implemented the functions of workflow engine and Rate Throttler on top of 

GridSim [22], a Java-based, discrete event simulation package for Grid applications. The 

network package in GridSim provides a packet-level flow modeling and modeling of DiffServ 

[23] routers in which routers enforce stream’s flow rate with packet’s type of service field. We 

utilize this capability to implement the Rate Throttler. The Rate-QoS is able to be set in the 

routers,  and the Rate Throttler configures them at runtime. The simulated workflow engine and 

rate throttler works in the way we presented previously. In the simulated engine, RTTF is 

determined using simple heuristics; the workflow engine estimates the task’s expected execution 

time on the resources and derives a relative time that is the inverse of the estimated execution 

time. 

We run the simple workflow depicted in Figure 3 to gain insight on the effect of CCR to data 

throttling. We chose to study the relatively simple workflow of Figure 3 to better understand and 

quantify our system’s behavior, noting that such a pattern is likely to occur in larger, more 

complex workflows. We do not claim the data throttling would work for every parts of large 

workflow; Simulation results in this subsection will help identifying the parts.  

In our simulation studies, the head node (H) distributes one output file to n parallel nodes (P), 

and the output files of parallel nodes are merged at the tail node (T). We define the CCR of this 

workflow as 
()(*+,-./ ,-0( .1 23 

*.00+/-*4,-./ ,-0( .1  23  and the communication time of Pi is determined by the 

factors including H’s output file, the bandwidth between H-P and P-T, the number of P nodes, 

and the output of Pi. A CCR of Pi equaling one indicates that the time to move data through H – 

Pi – T is the same as Pi’s execution time. In order to study and quantify a load imbalance 

between parallel nodes, we vary the execution time of Pi and assume all Pi run on homogeneous 

resources. The execution time of Pi is randomly generated within the range of {base, 

base5(variance)*base} where base is equivalent to the given CCR. As the variance becomes 

large, the load imbalance grows. We run simulations with varying degree of CCR and for 

different variances on load imbalance. We arbitrarily fixed the execution time of H and T at 1/10 
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of Pi’s average execution time. The output size of Pi is assumed to be very small (compared to 

input to Pi). We run the simulation with baseline where there’s no Rate Throttler running on 

resources, and with Rate Throttler. Figure 4 presents simulation result, measuring the Speedup, 

defined as 
046(724/ .1 847(9-/(

046(724/ :-,; <4,4 =;>.,,9(> . Each number in the result is average of 5 runs. The 

simulation result shown in Figure 5 is bell-shaped, indicating that as the computation and 

communication ratio is between 0.5 and 1, the data throttling is most effective. The variance of 

load imbalance makes a large impact on speedup in the range {CCR < 1}, but does a little impact 

on the range {CCR>=1} 

.

 

B. Montage Workflow 

 

Montage [1] is an astronomical application by which multiple image sets containing the 

photometric observation of celestial objects in various spectrum located at overlapping regions of 

sky (i.e., mosaics) are integrated into a single image file. Montage is both compute- and data-

intensive and exhibits a CCR within the range that was shown to be effective in simulation 

studies. It executes in several steps, and the compute-intensive steps can be run in parallel 

without communication between independent tasks. For this reason Grid workflow systems such 

as Pegasus [6]  have been used to run the parallelized version of Montage on large scale Grid 

resources.  We program Montage as a workflow using our DAG language introduced in Section 

4. The workflow engine runs the tasks in the order programmed in Montage’s DAG. Figure 5 

illustrates the Montage workflow. The circle in the figure represents a parallel task that runs on 

distributed resources and the rectangle illustrates the synchronizing tasks that gathers output 

from previous level’s tasks and prepares for the input for the next level parallel tasks.  While the 

solid line represents the movement of large image files, the dotted line represents the movement 

of metadata which are typically in few kilobytes. In Table 1 we present the more detailed 

characteristics of Montage by showing the size of example data movement and execution times 

Figure 3: Simple Workflow Figure 4: Speedup vs. CCR 
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when it runs on single node or in parallel. A speedup of about 3.2 can be expected when it runs 

on four local nodes. 

 
In our experiment, the resources to run Montage are located at University of Virginia (UVa) 

and NCSA [24]. The data server running at UVa stores the “Two Micron All Sky Survey (2MASS)” 

images acquired from NASA/IPAC Infrared Science Archive [25]. Tasks are statically scheduled 

onto resources since resources are predetermined and available for all times in this experimental 

setup. The synchronizing tasks (rectangle) except for “mADD” are executed on UVa data server 

and the parallel tasks (circle) are executed on four nodes at NCSA. We run the synchronizing 

tasks at the data server since the data server’s CPU is idle and the input to the synchronizing 

tasks is very small.  However, the large input (i.e., corrected images) of “mADD” prevents us 

from running it on data server. The movement of two sets of large data, overlapping images and 

corrected images, can be done relatively quickly since data is exchanged through gigabit LAN in 

NCSA. The only data that takes substantial amount of time to deliver is raw images from UVa to 

NCSA, and this is the part data throttling engages in. The two sites UVa and NCSA are 

connected via Internet 2 backbone with a 10 Gb/s capacity.  More detailed specifications of 

resources are summarized in Table 2. 

Figure 5: Montage Workflow 

Table 1: Example Montage Execution 

 

Component Exec. Time or Data 
Size to Move 

 1 node 4 nodes 

Raw Images 0 180 MB 
Overlapping 
Images (total) 

0 720 MB 

Corrected 
Images (total) 

0 720 MB 

mImgTbl 5 5 
mProjExec 280 70 
mOverlaps 1 1 
mDiffExec 80 20 
mBgModel 5 5 
mBgExec 32 8 
mAdd 20 20 
Total task 
execution time 

423 sec 129 sec 
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The Rate Throttler runs on the data server at UVa, adjusting the rate of raw image transfer to 

the nodes at NCSA according to the RTB (Relative Time Bandwidth) values dynamically 

received from the workflow engine. In this experiment workflow engine runs on a separate 

machine at UVa. 

Note that the four nodes at NCSA are homogeneous. In order to evaluate the framework under 

the presence of a task imbalance situation, we made one of node execute ‘mProjExec’ twice. 

Under this assumption, the workflow programmer requests rate requirements with RTTF values 

{1.0, 2.0, 2.0, 2.0} specifying that the delivery of raw images to the slow node (i.e., node running 

‘mProjExec’ twice) should be done in half the time of the other nodes. This is based on a simple 

assumption that the CCR is one. We run Montage with 10 different sets of mosaic images under 

the baseline and with data throttling. In the baseline, the unmodified GridFTP runs at UVa while 

with data throttling the GridFTP’s data transfer rate is controlled by Rate Throttler. The result of 

this experiment is presented in Table 3. From the table, we can see there are 30-80 seconds of 

difference of makespan between the baseline and the data throttling. All of the 10 runs have 

achieved speedup ranging from 1.11 to 1.31 and average speedup is 1.16. 

 
 

Table 3: Results from Running Montage with 10 Different Images 

2Mass object Baseline (sec.) Rate Throttled (sec.) 
Speedup 

(Baseline/R.Th.) 

M70 253.3 219.5 1.15 

M71 274.3 226.5 1.21 

M72 349.5 266.8 1.31 

M73 307.5 277.5 1.11 

M74 267.6 234.3 1.14 

M75 294.0 256.3 1.15 

M76 299.5 268.6 1.12 

M77 319.7 282.8 1.13 

M78 276.4 242.5 1.14 

M79 296.1 263.6 1.12 

Average 293.8 253.8 1.16 

 

Table 2: Resource Specification 

 UVa NCSA 

Number of Node 1 4 
CPU/RAM/IO Intel Core2 6400 Dual (2.13 GHz) 

2 GB RAM 
PCI-Express 

2 Intel Xeon (3.0 GHz) 
2 GB RAM 

 
Disk 4-way SATA RAID 0 (Striping) Single SATA 

Local Network Fast Ethernet (100 mb/s) Gigabit Ethernet 

TCP Setting 
BIC congestion control 

TCP autotuning (16 MB buffer) 

BIC congestion control 
TCP autotuning (16 MB 

buffer) 
O/S Linux 2.6 kernel Linux 2.6 kernel 
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Under the baseline case, the transfer rate of raw images is governed by uncontrolled 

competition among the multiple TCP streams to NCSA nodes. This results in unpredictable time 

at which raw images are ready to be consumed by parallel tasks. However with data throttling, 

the Rate Throttler adjusts the transfer rate as dictated by RTTF values, providing more 

bandwidth to the tasks with smaller RTTF value (1.0) and suppressing the rate of other transfers 

with the higher RTTF value (2.0). With rate throttling, the raw images are delivered earlier to the 

slow node. The variations of speedup among the 10 runs are due to variations of transfer time in 

the baseline case. In the baseline case, the raw image’s delivery time is not predictable. In some 

executions, the raw images happens to be delivered faster to the slow execution node resulting in 

small speedup, while in other cases it can be delivered later to the slow execution node making 

the speedup bigger. Table 4 presents a more detailed comparison of the timeline of the 

executions’ steps. The table contains the average execution time of 10 image sets at various 

stages during the workflow’s progress. With data throttling, we can see that the raw images are 

delivered to slow execution node 2.4 times faster than the other nodes, and this compensated for 

the slow execution of ‘mProjExec’ resulting in smaller difference of mProjExec’s finish time 

between nodes (67 sec vs. 31 sec). While the faster delivery of raw images to the slow node 

slightly increased the delivery time of raw images to other nodes (5.5 seconds) it does not impact 

to the workflow’s makespan since the makespan is limited by the slow node. 

 

VII. CONCLUSION 

Existing workflow systems attempt to achieve higher performance by intelligently scheduling 

tasks on resources, taking into account the bandwidth into and out of individual compute nodes. 

However, such approaches are limited, in that there is still only limited control available 

regarding the arrival time and rate of data transfer between nodes. 

  In this paper, we designed and implemented new capabilities for higher efficiency and 

balance in Grid workflows by creating a data throttling framework that allows a workflow 

programmer/engine to describe the requirements on the data movement delay. They can utilize 

this tool to balance the execution time of workflow branches and eliminate unnecessary 

bandwidth usage, resulting in more efficient execution. We presented the framework design that 

separates the concerns of the workflow system from the underlying network QoS providers. We 

evaluated the applicability of the data throttling framework in simulation, and reinforced and 

confirmed these results via the actual implementation of the Montage workflow in the wide area, 

obtaining a maximum speedup of 31 % and an average speedup with 16%.  

Table 4: Comparison of Execution Time at Stages of Montage 

Steps 
Baseline 

(sec.) 

Rate Throttled 

(sec.) 

Difference 

(sec.) 

mImgTbl finished 6.31 5.27 1.04 

Raw img. delivered to slow node 56.08 24.77 31.31 

Raw img. delivered to other nodes 54.67 60.17 -5.5 

mProjExec finished at slow node 191.82 161.65 30.17 

mProjExec finished at other nodes 124.27 130.20 -5.93 

mOverlaps finished 203.75 169.10 34.65 

mBgModel finished 265.86 226.54 39.32 

mAdd finished 293.8 253.8 40.0 
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In future work, we plan to further explore the tradeoffs involved in choosing the parameters of 

the data throttling utilized in our system. Specifically, we plan to automatically derive the precise 

data delay requirements from the workflow schedule and experiment with a wider range of actual 

Grid workflows.  
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