
 1

Extending the Security Assertion Markup Language to Support
Delegation for Web Services and Grid Services

Jun Wang
C&C Research Laboratories

NEC Europe Ltd.
D-53757 Sankt Augustin Germany

David Del Vecchio
Marty Humphrey

Department of Computer Science
University of Virginia

Charlottesville, VA 22904

Abstract

Users of Web and Grid Services often must temporarily
delegate some or all of their rights to a software entity to
perform actions on their behalf. The problem with the
typical Grid Services approach (X.509 proxy certificates)
is that commercial Web Services tooling fails to recognize
these certificates or process them properly. The Security
Assertion Markup Language (SAML) is a standardized
XML-based framework for exchanging authentication,
authorization and attribute information. SAML has
broadening commercial support but lacks delegation
capabilities. To address this shortcoming, we exploit
SAML's inherent extensibility to create a delegation
framework for Web and Grid Services that supports both
direct and indirect delegation. We develop a set of
verification rules for delegation tokens that rely on WS-
Security X.509 signatures, but do not force any trust
relationship between the delegatee and the target service.
We have implemented the framework on two common
Web Service hosting environments: Java/Tomcat
and .NET. By leveraging existing Web Services standards,
we make it easier for Grid practitioners to build and
consume Web and Grid Services without resorting to
Grid-specific protocols.

1. Introduction∗

With the convergence of Web Services and Grid
computing [1][2][3], XML and Web Services standards
[10][11][12][13][14] are emerging as a common approach
to construct Grids [4][8][9]. In order to support the
dynamic and inter-domain environment in Grids, we
require a dynamic delegation [5] mechanism between
entities across organizational boundaries. The delegation
requirement in Grids is a kind of constrained delegation
by proxy [6]. The delegatee does not receive his own
privilege, but can act on behalf of the delegater with some

∗This work was performed while Jun Wang was a
graduate student at the University of Virginia.

constraints. In general, there are two categories of
delegation requirements. One is direct delegation in which
a grid user needs to delegate some subset of his or her
privileges to another entity in one step. For example, a
user who needs to manage his or her job through a grid
portal may want to grant this grid portal the necessary
rights to start control and remove jobs on the user’s behalf.
The other form of delegation is indirect delegation in
which a grid user delegates a subset of his or her
privileges to another entity through an agent. For example,
suppose a grid user, Alice, wants to submit jobs to a
super-scheduler that will schedule the jobs onto different
machines on the user’s behalf. Alice will first delegate her
privileges to the super-scheduler and the super-scheduler
will in turn delegate Alice’s privileges to a local user
accounts on the remote machines that actually runs jobs.

The problem with the conventional Grid approach to
delegation – X.509 proxy certificates [5] – is that
commercial tooling for Web Services does not necessarily
recognize and properly process these certificates
(typically either the form of the certificate’s Distinguished
Name or path validation causes problems). Even with the
recent introduction of proxy certificates in the IETF, it is
not clear when (or even if) this commercial support will
ever occur. The alternative approach we pursue in this
work is to leverage and extend existing Web Services
standards, without breaking the existing tooling, to
facilitate building and consuming web and grid services
across without requiring Grid-specific protocols.

The Security Assertion Markup Language (SAML)
[13] is a XML-encoded framework for exchanging
authentication, subject attribute and authorization
information. Unfortunately, SAML lacks delegation
capabilities. Fortunately, we are able to exploit SAML's
inherent extensibility to create a delegation framework for
Web Services and Grid Services that supports both direct
and indirect delegation. An important contribution of this
work is the enumeration of the rules by which an entity
can validate a SAML token that purports to contain a
direct or indirect delegation. Our design and
implementation is based on SAML 1.1, which was the
most recent OASIS standard for SAML at the time of

In: 2005 IEEE International Conference on Web Services (ICWS 2005), Orlando, FL, July 12-15, 2005.

 2

development (see Section 5 for a discussion of the impact
of SAML 2.0). Its core specification [17] includes both a
format for expressing assertions and a request/response
protocol for exchanging these assertions. Most simply, an
assertion is a declaration of facts about a subject made by
an issuer. SAML defines three types of assertions:

• Authentication – the subject has been authenticated
by some means at a given time

• Attribute – the subject is associated with the given
attributes and values

• AuthorizationDecision – response to an access
request, whether the access has been granted or
denied

Our SAML delegation framework is based on the
Attribute statement. The SAML binding specification [16]
defines protocol bindings for the use of request-response
messages; our implementation uses the SOAP [15]
binding.

All of the key-related information in SAML conforms
to the XML Signature [14] specification, which represents
traditional key data like RSA as standard XML-encoded
elements. For our discussion of SAML delegation, we are
mainly interested in the KeyInfo and Signature elements.
As their names suggest, KeyInfo elements can be used to
express public key information while Signature elements
document signature-related information (for example,
digestvalue, transform algorithm and signaturevalue).

For our SAML-based dynamic delegation framework,
we also leverage the Web Services Security (WS-Security)
standard [11], an oft-used way to secure SOAP messages
[8][9] in both Web and Grid Services. WS-Security
defines profiles for several token types including
Username, X.509, Kerberos and SAML [18]. We
primarily describe our implementation in the
Microsoft .NET environment but note that we have also
implemented this framework in Java/Tomcat.

The rest of this paper is organized as follows. Section
2 shows the architecture of our SAML delegation
framework, including custom assertion formats and
request/response messages for direct and indirect
delegations. Section 3 describes how SAML delegation
assertions can be used in Web Services and details the
verification procedures for direct and indirect delegation.
Section 4 analyzes some of the design decisions made
and technologies used in implementing our framework.
Section 5 discusses several notable technologies
important for this effort, Section 6 describes some related
delegation research and Section 7 concludes.

2. SAML Delegation

Our SAML delegation framework primarily consists
of three XML-based components: delegation assertions,
protocol requests and protocol responses. All of these are
derived from (and conform to) the corresponding SAML

schemas [22][23]. We will see that in direct delegation,
the delegatee and delegater only need to exchange a
single delegation assertion, whereas for indirect
delegation, the total number of delegation assertions
exchanged is equal to the length of the delegation chain.

2.1 Overview

A generic scenario for SAML delegation is illustrated
in Figure 1, in which a client Bob delegates his right to a
Web Portal, S1, and S1 delegates Bob’s right to another
Web Service, S2, and so on (ending with Sn-1 delegating to
Sn). Suppose Bob submits his job to S1 and then goes
offline. After that, any entity Si (1≤ i ≤ n) can access the
Web Service W and act on Bob’s behalf by presenting the
delegated SAML assertion chain. The delegation from
Bob to S1 constitutes direct delegation while any
delegation from Si to Si+1 (1≤ i ≤ n) is considered indirect.

2.2 Delegation Assertion

Any delegation includes 3 roles: delegater R, delegatee
E and issuer I. For direct delegation, the issuer and the
delegater are the same user. For indirect delegation, the
issuer is different from the delegater. So, our delegation
assertions can be expressed as: I issues an assertion
declaring that R’s rights are delegated to E, subject to
some constraints. In Figure 2, we can see that delegation
assertions consist mainly of AttributeStatement elements
(a complete sample delegation assertion can be found at
http://www.cs.virginia.edu/~jw4fr/PortalAssertion.xml).
These AttributeStatements consist of a Subject element to
indicate the delegatee, E, in addition to the following:
• Issuer: the issuer of the assertion.
• Conditions: NotBefore and NotOnOrAfter attributes

for the lifetime of the assertion.
• NameIdentifier: In our implementation, this is the

subject name of the delegatee’s X509 Certificate.
• ConfirmationMethod: the verification method for

establishing proof-of-possession for the subject. Two

Figure 1: SAML delegation framework

S1

 Si-1

Si

2≤i≤n

W

Bob

Delegation Request as a SAML Request

Delegation Response as a SAML Response

R
e
q
u
e
s
t

R
e
s
p
o
n
s
e

SAML Assertion(s)

SAML Assertions

 3

methods are supported in SAML 1.1: holder-of-key
and sender-vouches (with the WS-Security SAML
Token Profile [18] supplying the recommended
processing rules for each). For holder-of-key, the
attesting entity should include an XML Signature that
can be verified with the KeyInfo included as part of
the SubjectConfirmation element of the assertion’s
subject statements. For sender-vouches, the attesting
entity, vouches for the verification of the subject
(assumes these are two different entities). The
receiver must have an existing trust relationship with
the attesting entity. Since we do not require a trust
relationship between a delegatee and web service
(Figure 1), we rely on the holder-of-key method.

• KeyInfo: the X509 certificate information for the
delegatee including key name and public key info.

• Delegation: the identity of delegater.
• Right: the constraints of delegation. Set to Full (no

constraints) if the delegater trusts the grid portal
completely. Can also be set to EndEntity, meaning
that the rights in this delegation assertion cannot be
delegated further (no indirect delegation). Currently
these are the only two constraints our delgation
verficiation mechanisms (Section 3.2) handle, but
support for more nuanced delegation constraints
could certainly be added.

• Signature: the signature of the issuer for the assertion.

 < >
 Element Attribute

Figure 2: Delegation assertion structure

2.3 Delegation Request & Response

The delegation request and response messages
conform to the SAML request and response protocol. In
Figure 3, the delegatee signs a delegation request to the
delegater. The delegater uses the included Signature
element to authenticate the request. If accepted, the
delegater returns a signed delegation response (Figure 4)
to the delegatee (also subject to verification). The
message authentication and verification procedure used
by both delegater and delegatee is illustrated in Figure 5.
The Assertion element included the response message
(Figure 4) is a SAML delegation assertion as just
described in Section 2.2.

 < >
 Element Attribute

Figure 3: Delegation Request structure

 < >

 < >
 Element Attribute optional

Figure 4: Delegation Response structure

In this way, the delegation assertion can be transmitted
with confidence from the delegater to the delegatee. For
direct delegation, the response containts a single
delegation assertion; for indirect delegation, a delegation
assertion is included for each delegater in the chain.
Looking at Figure 1, if S2 sends a delegation request to S1
and wants to act on Bob's behalf, S1's response will

Signature

Assertion
<MajorVersion> <MinorVersion> <AssertionID>
<Issuer> <IssueInstant>

Conditions
<NotBefore> <NotOnOrAfter>

AttributeStatement

Subject

NameIdentifier

SubjectConfirmation

Attribute
<Delegation>

Attribute
<Right>

ConfirmationMethod

KeyInfo

Request
<MajorVersion> <MinorVersion> <ReqeustID>
<IssueInstant>

Signature

AttributeQuery

Subject

NameIdentifier

Response

Signature

Status

Assertion Assertion

 4

contain two delegation assertions: one for S1 issued by
Bob, the other for S2 issued by S1. In both assertions, the
Delegation attribute would be set to Bob to indicate that
Bob’s rights are being delegated. In Section 3, we will see
that an indirect delegatee (like S2) must present the entire
assertion chain for a web service W to successfully verify
that the delegate can act as Bob. Finally, note that
responses to rejected delegation requests will not include
any assertions, but will instead contain a Status element
with the reason for the failed request. Complete sample
request and response messages can be found at
http://www.cs.virginia.edu/~jw4fr/request.xml and
http://www.cs.virginia.edu/~jw4fr/response.xml.

 1
 4
 2
 3

Figure 5: Request & Response authentication

3. Using SAML Delegation in Web Services

Our delegation approach is applicable to both Web
Services and Grid Services. Since Grid Services can be
viewed as an application and extension of standard Web
Services, we are comfortable restricting our discussion in
this section to the use of SAML for delegation in Web
Services only. In our approach, each SAML delegation
assertion is inserted as a SAML token [18] into the WS-
Security SOAP header when invoking a web service
method with delegation. The invoked web service method
will verify the validity of the delegation using the
included SAML token(s) and X509v3 signature
information.

3.1 SAML Delegation with Web Service Security

The WS-Security SAML token profile [18] details
how SAML assertions can be included in security
headers. Since the confirmation method for delegation
assertions is holder-of-key, a signature is needed to prove
the authenticity of SAML tokens. Figure 6 (direct
delegation) and Figure 7 (indirect delegation) illustrate
the invocation of a web service method with delegation.

3.2 SAML Delegation Verification

One of the important challenges in effectively using
SAML for delegation involves checking the validity of

the expressed delegation. Our verification procedure is
based the following observation: if a delegatee E wants to
access a web service W on the behalf of the delegater R,
then the validity of the delegation depends only on the
trust relationship between W and R. Therefore, a trust
relationship between W and E is not required. Below are
verification processing rules for direct (Figure 6) and
indirect delegation (Figure 7):

Verification Rule 1: Direct Delegation
1. The SOAP header includes a single SAML token, T.
2. The lifetime of T as expressed by the Conditions

element must be valid.
3. To verify the delegater Bob’s signature: The invoked

Web Service, W extracts the key name (which is
Bob) from the XML signature element in T. Next, W
obtains Bob’s public key (perhaps from a local store,
W and Bob do have an established trust relationship).
Finally, W will use Bob’s key to verify the signature.

4. To verify S1’s valid possession of T: First, the
invoked web service W extracts S1’s public key from
T; then W uses this key to verify the message’s
X509 token profile-conformant signature.

5. No key involved in this verification can have been
revoked by a Certificate Revocation List (CRL).

Only if all five conditions are satisfied can W authorize S1
to act as Bob in a constrained way. (Specific constraints
can be extracted from the assertion’s Right attribute).
Verification Rule 2: Single Indirect Delegation
1. There are exactly two SAML tokens in the SOAP

header. We call them T1 and T2.
2. The lifetime of each SAML token as expressed by the

Conditions element must be valid.
3. To verify the delegater Bob’s signature: First, the

invoked web service W extracts the key name (which
is Bob) from the XML signature element in T.
Second, W obtains Bob’s public key (perhaps from a
local store), then in the third step, W verifies the
signature. This matches Step 3 for direct delegation.

4. The values of Delegation attribute of both T1 and T2
must be the same.

5. The value of T2’s Right element must be Full. Our
current implementation only distinguishes between
two constraints: Full and End Entity. Full implies no
constraints (i.e. the delegatee is free to further
delegate the original delegater’s privileges to others).
End Entity means that only the original delegatee can
act on the user’s behalf; the delegatee cannot extend
this right to others.

6. To verify S1’s signature in T1: W extracts S1’s public
key from token T2, using it to check the XML
signature.

7. To verify S2’s valid possession of token T1: W
extracts S2’s public key from T1, then uses this key to
verify the message signature (X.509 Token Profile).

Delegation
Request/Response

XML Signature Element

Certificate

Key Name

Key Store

 5

8. All keys involved here can pass the Certificate
Revocation List (CRL) check.

Rules 6 and 7 verify a delegation chain and can be easily
extended to support more than 2 levels of delegation.

Figure 6: S1 invokes a web service W as Bob

Figure 7: S2 invokes a web service W as Bob

4. Implementation

We have implemented the SAML delegation
framework on both the Microsoft .NET platform and on
Java/Tomcat. Due to lack of space, we only discuss the
.NET implementation here. The .NET platform includes
class libraries to support XML, XML Signatures and Web
Services. Microsoft also provides the Web Service
Enhancements (WSE) toolkit [19] to support advanced
web service features such as WS-Security, SOAP
messaging and user defined XML tokens. Our
implementation has components: SAMLGenerator,
Delegatee, Delegater and SAMLToken. Figure 8 shows
how assertions are created and consumed through
protocol requests and responses between the components:
1. The Delegatee uses the SAMLGenerator to create a

delegation request.
2. The Delegatee sends the request to the Delegater as a

SOAP message (over HTTP or TCP).
3. The Delegater uses the SAMLGenerator to create a

delegation assertion and SAML response.
4. The Delegater sends the response to the Delegatee

(over HTTP or TCP).
5. The Delegatee creates SAML token(s) from the

returned SAML assertions.
6. The delegatee invokes a web service method and

inserts the SAML token(s) into the SOAP header.
7. The invoked web service method extracts the token as

SAML token(s) from the incoming SOAP header.

 1

 message flows

 object creation relationship

Figure 8: Component relationship

4.1 Using WSE for SAML delegation

Microsoft’s WSE [19] 2.0 toolkit includes support for
several evolving web services specifications including
WS-Security, WS-Trust, WS-Policy and WS-Addressing.

SOAP Header

Assertion

S1’s key

Delegation: Bob

Right: Full

Bob’s signature

S1’s signature

SAML Token
Profile

X509 Token
Profile

SOAP Header

Assertion

S2’s key

Delegation: Bob

Right: End Entity

S1’s signature

SAML Token
Profile

Assertion

S1’s key

Delegation: Bob

Right: Full

Bob’s signature

S2’s signature

SAML Token
Profile

X509 Token
Profile

SAMLToken

Delegatee Delegater Invoked Web
Service

SAMLGenerator

2

3

4

5

6

7

 6

It also supports two new features of relevance here:
SOAP messaging and user defined XML token types. The
SOAP messaging mechanism allows for SOAP messages
to be constructed independently of the underlying
transport protocol and in Section 4.2 we will show the
delegatee and delegater exchanging request and response
messages over TCP instead of HTTP.

WSE provides little support for WS-Security SAML
tokens [18]; in fact, its support extends only to the names
of elements in the SAML 1.1 assertion specification (and
contains no implementations behind them). This was
merely designed as an extensibility point, the idea being
that users would define custom XML tokens to add the
support they need. This is exactly what we have done for
our SAML delegation assertions.

4.2 SAMLGenerator

The SAMLGenerator component includes classes for

creating SAML Assertions, Requests and Responses.
Additionally a number of utility methods are included for:
verifying XML signatures, schema verification of SAML
messages, delegation verification and loading/storing
X.509 certificates and keys from the Windows certificate
store.

4.3 Delegatee & Delegater

We developed two versions of the delegatee and
delegater sender/receiver functionality. One adopts the
typical web service approach (i.e. SOAP over HTTP), and
the second is implemented as SOAP over TCP. The latter
uses WSE's SOAP messaging mechanism (SoapSender
and SoapReceiver) for message delivery. Figure 9
illustrates the message sequence between delegatee and
the delegater.

Figure 9: Communications of Delegatee and Delegater

4.4 SAML Delegation Token

As mentioned, our SAML Delegation Token Type is
based on the user-defined XML token type capability of
WSE. Figure 10 illustrates the processing model for user-
defined XML tokens.
1. The SAML delegation token is read from the WS-

Security SOAP header (SoapContext) into a run-time
object.

2. The SOAP message is processed by the target web
service.

3. WSE’s security filter verifies every token in the
SoapContext. For token types it doesn’t understand
(i.e. user-defined like our SAML delegation tokens)
the filter will try look for custom token managers
configured in the service’s Web.Config file.

4. If the filter finds a matching token manager for the
SAML token type, it will rely on this manager to
verify the delegation assertions (the Delegation
Token Manager does this according to Section 3.2).

Figure 10: Processing model for user defined XML token type

Class derivation relationship Invocation relationship Communication relationship

SAML Delegation
Token Type

SecurityToken

<wsse:
BinarySecurityToken …>

X509 token profile

<saml:Assertion …>

SAML delegation token profile

Web.Config file

Web
Service

SAML Delegation
Token Manager

Soap Context

3

4

Delegatee

SoapReceiver SoapReceiver

Delegater

 SoapSender. Send

SOAP Delegation Request

SOAP Delegation Response

SoapSender. Send

2
1

 7

A key benefit to this approach to securing Web Services
is that no code changes are necessary. A change to the
service’s configuration file is all that is necessary for it to
start processing SAML delegation tokens.

5. Discussion

There are also some other candidate standards and
technologies related to our SAML delegation framework.
We discuss them here briefly.

• SAML 2.0: should be stable and become a standard
very soon. Compared with SAML 1.1, it adds more
protocols to support some specific applications
such as single sign-on. For the delegation part, the
statements and attributes we use in our work do not
have to change very much from SAML 1.1 to
SAML 2.0. Our framework could also be (quite
straightforwardly) based on SAML 2.0 once it
becomes a standard.

• OpenSAML: an open source library for
constructing SAML 1.1 conformant assertions and
messages. It has two versions: C++ and Java. In
our current implementation in Java/Tomcat, we use
an HttpServlet to accept SAML requests, create
assertions and send SAML responses.

• WSS4J: An open source implementation of WS-
Security for Java from Apache. Recent
developments include an early implementation of
the SAML Token profile. On the service side,
WSS4J provides the capability to process different
SAML tokens type by defining Axis handlers for
each type. This, combined with X509 message
signature processing (X509 token profile) make
WSS4J another important component of our Java
implementation.

We have touched on a variety of security concerns
related to our SAML delegation framework, but there are
a few more worth considering. In general, our framework
builds on existing security technologies (PKI-
cryptography, XML signatures, WS-Security, etc.), and as
a consequence, it inherits many of the strengths and
weaknesses of those technologies.

Although no prior trust relationship is required
between the delegatee and target service, trust between
the delegater and the target service is required. We
assumed that these two entities would have certificates
from a common certificate authority, other ways to
establish this trust do exist, but we unfortunately don’t
have space to discuss them here.

XML signatures are used for message integrity and
WS-Security timestamp headers are assumed to help
prevent replay attacks. For message confidentiality, either
XML encryption or secure sockets (SSL) are the obvious
choices. The latter sports better performance while the
former can protect messages through intermediaries.

A final point of note is that no mechanism exists to
revoke a delegation. However, the Conditions portion of
delegation assertions should specify an assertion lifetime.
So, we assume that delegation assertions are relatively
short-lived, and are renewed or re-issued as needed.
Delegation revocation and renewal are possible avenues
for future research.

6. Related Work

[7] sketches a SAML assertion for constrained
delegation. But the approach is different from ours. In
order to support delegation, this paper extends
SubjectStatement to SubjectDelegationStatment which is
not supported by the SAML 1.1 or 2.0 assertion
specifications. In other words, we believe that our
approach is much more in line with the extensibility
elements of the SAML design and can thus be supported
by commercial tooling. Our approach is based on
AttributeStatement which is supported by SAML 1.1 or
2.0 assertion specification. Our paper also presents the use
of SAML delegation in Web Services and a delegation
verification algorithm which combines the assertion and
X509 certificate information. [7] does not discuss these
issues.

Other approaches for handling delegation do exist. In
V. Welch’s paper [5], they define a proxy X.509
certificate format which is an extension to X.509
certificates to support delegation. This approach is
currently used in the Globus project [9]. These proxy
certificates are extremely valuable, but as previously
mentioned, commercial tooling for Web Services does not
necessarily recognize and properly process these
certificates.

SAML is beginning to be deployed in other
information security fields. SAML is already used in the
implementation of the GT3 [9] Community Authorization
Service (CAS) [21]. CAS uses AuthorizationStatements to
represent authorization decisions. SAML is also used
widely in e-commerce, especially for identity
management including single sign-on. Liberty [20] is a
leading identity federation and management project and
makes significant use of SAML. Sun One Identity Server
6.0 [24] which implemented the Liberty protocol also
supports delegation. But considering the delegation
requirements of web and grid services, it makes more
sense to develop an open, independent and lightweight
SAML delegation solution.

7. Conclusion

Delegation is an extremely important and challenging
aspect of web services security and grid services in
particular. This paper presents a SAML 1.1 conformant
delegation framework. Through its use in web services,

 8

we showed the soundness of our SAML assertions in both
direct and indirect delegations. We were able to build
general support on both the .NET framework and in Java.
With the convergence of web services and grid computing,
the framework we present here can easily be integrated
into any grid services built upon XML and web services
standards. To our knowledge, this paper presents the first
lightweight SAML-conformant delegation framework and
implementation.

8. Acknowledgements

We are thankful to Von Welch of Argonne National
Lab and Steven Newhouse, Deputy Director of the Open
Middleware Infrastructure Institute (OMII) for helping us
to clarify the presentation of several concepts in this work.
The University of Virginia authors are supported in part
by the US National Science Foundation under grants ACI-
0203960, SCI-0438263, SCI-0426972, the Department of
Energy Early Career program (to Humphrey), and the San
Diego Supercomputing Center.

References

[1] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D.

Ferguson, F. Leymann, M. Nally, T. Stoery and S.
Weerawarana. Modeling Stateful Resources with Web
Services. 2004. Available at http://www.ibm.com/
developerworks/library/ws-resource/ws-
modelingresources.pdf

[2] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham,
I. Sedukhin, D. Snelling, S. Tuecke and W. Vambenepe.
The WS-Resource Framework. 2004. Available at
http://www-106.ibm.com/developerworks/library/ws-
resource/ws-wsrf.pdf

[3] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham,
T. Maguire, D. Snelling and S. Tuecke. From Open Grid
Services Infrastructure to WS-Resource Framework:
Refactoring & Evolution. 2004. Available at http://www-
106.ibm.com/developerworks/library/ws-
resource/ogsi_to_wsrf_1.0.pdf

[4] I. Foster, C. Kesselman, J. Nick and S. Tuecke. The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration. 2002.
Available at http://www.globus.org/research/papers/
ogsa.pdf

[5] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L.
Pearlman, S. Tuecke, J. Gawor, S. Meder and F. Siebenlist.
X.509 Proxy Certificates for Dynamic Delegation. In 3rd
Annual PKI R&D Workshop, 2004.

[6] O. Bandmann, M. Dam, and B. S. Firozabadi. Constrained
Delegation. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 131-140, May 2002.

[7] G. Navarro, B.S. Firozabadi, E. Rissanen and J. Borrell.
Constrained delegation in XML-based Access Control and
Digital Rights Management Standards. 2003. Available at
http://ccd.uab.es/~guille/var/ny2003.pdf

[8] WRSF.NET, http://www.ws-rf.net
[9] Globus, http://www.globus.org
[10] Web Services, http://www.w3.org/2002/ws/
[11] Web Service Security Specification. Available at

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soap-message-security-1.0.pdf

[12] Web Service Trust Language. Available at http://www-
106.ibm.com/developerworks/library/specification/ws-trust

[13] Security Assertion Markup Language. Available at
http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=security

[14] XML Signature. Available at http://www.w3.org/TR/
xmldsig-core

[15] SOAP. Available at http://www.w3.org/TR/Soap/
[16] Bindings and Profiles for the OASIS SAML 1.1. 2003.

Available at http://www.oasis-open.org/committees/
download.php/3405/oasis-%20sstc-saml-bindings-1.1.pdf

[17] Assertions and Protocol for the OSAIS SAML 1.1. 2003.
Available at http://www.oasis-open.org/committees/
download.php/3406/oasis-%20sstc-saml-core-1.1.pdf

[18] Web Services Security: SAML Token Profile. 2004.
Available at http://www.oasis-open.org/committees/
download.php/6271/WSS-SAML-10.pdf

[19] Microsoft Web Services Enhancements,
http://msdn.microsoft.com/webservices/building/wse/defaul
t.aspx

[20] Liberty Alliance Project, http://www.projectliberty.org/
resources/index.php

[21] V. Welch. Use of SAML in the Community Authorization
Service 2003. Available at http://www.globus.org/Security/
as/Papers/SAML%20Feedback-aug19.pdf

[22] SAML 1.1 Asertion Schema. Available at
http://www.oasis-open.org/committees/download.php/
3406/oasis-%20sstc-saml-core-1.1.pdf

[23] SAML1.1 Protocol Schema. Available at http://www.oasis-
open.org/committees/download.php/3407/oasis-%20sstc-
saml-schema-protocol-1.1.xsd

[24] Sun One Identity Server, http://wwws.sun.com/
oftware/products/dentity_srvr/home_identity.html

[25] OpenSAML Project, http://www.opensaml.org
[26] Apache WSS4J Project, http://ws.apache.org/ws-

fx/wss4j/

