Latent Semantic Analysis

Hongning Wang
CS@UVa
Recap: vector space model

• Represent both doc and query by concept vectors
 – Each concept defines one dimension
 – \(K \) concepts define a high-dimensional space
 – Element of vector corresponds to concept weight
 • E.g., \(d=(x_1,\ldots,x_K) \), \(x_i \) is “importance” of concept \(i \)

• Measure relevance
 – Distance between the query vector and document vector in this concept space
Recap: what is a good “basic concept”?

• Orthogonal
 – Linearly independent basis vectors
 • “Non-overlapping” in meaning
 • No ambiguity

• Weights can be assigned automatically and accurately

• Existing solutions
 – Terms or N-grams, i.e., bag-of-words
 – Topics, i.e., topic model

We will come back to this later
Recap: TF weighting

• Two views of document length
 – A doc is long because it is verbose
 – A doc is long because it has more content

• Raw TF is inaccurate
 – Document length variation
 – “Repeated occurrences” are less informative than the “first occurrence”
 – Relevance does not increase proportionally with number of term occurrence

• Generally penalize long doc, but avoid over-penalizing
 – Pivoted length normalization
Recap: IDF weighting

• Solution
 – Assign higher weights to the rare terms
 – Formula
 • \(IDDF(t) = 1 + \log\left(\frac{N}{df(t)}\right) \)
 – A corpus-specific property
 • Independent of a single document
Recap: TF-IDF weighting

• Combining TF and IDF
 – Common in doc \rightarrow high tf \rightarrow high weight
 – Rare in collection \rightarrow high idf \rightarrow high weight
 – $w(t, d) = TF(t, d) \times IDF(t)$

• Most well-known document representation schema in IR! (G Salton et al. 1983)

“Salton was perhaps the leading computer scientist working in the field of information retrieval during his time.” - wikipedia

Gerard Salton Award – highest achievement award in IR
Recap: cosine similarity

- Angle between two vectors

\[\text{cosine}(V_q, V_d) = \frac{V_q \times V_d}{|V_q|_2 \times |V_d|_2} = \frac{V_q}{|V_q|_2} \times \frac{V_d}{|V_d|_2} \]

- Document length normalized
Recap: disadvantages of VS Model

• Assume term independence
• Assume query and document to be the same
• Lack of “predictive adequacy”
 – Arbitrary term weighting
 – Arbitrary similarity measure
• Lots of parameter tuning!
VS model in practice

• Document and query are represented by term vectors
 – Terms are not necessarily orthogonal to each other
 • Synonymy: car v.s. automobile
 • Polysemy: fly (action v.s. insect)

<table>
<thead>
<tr>
<th>Access</th>
<th>Document</th>
<th>Retrieval</th>
<th>Information</th>
<th>Theory</th>
<th>Database</th>
<th>Indexing</th>
<th>Computer</th>
<th>REL</th>
<th>MATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doc 1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Doc 2</td>
<td></td>
<td></td>
<td>x*</td>
<td>x</td>
<td></td>
<td>x*</td>
<td>x*</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Doc 3</td>
<td>x</td>
<td>x*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>M</td>
</tr>
</tbody>
</table>

*Query: “IDF in computer-based information look-up”
Choosing basis for VS model

- A concept space is preferred
 - Semantic gap will be bridged
How to build such a space

• Automatic term expansion
 – Construction of thesaurus
 • WordNet
 – Clustering of words

• Word sense disambiguation
 – Dictionary-based
 • Relation between a pair of words should be similar as in text and dictionary’s description
 – Explore word usage context
How to build such a space

• Latent Semantic Analysis
 – Assumption: there is some underlying latent semantic structure in the data that is partially obscured by the randomness of word choice with respect to retrieval
 – It means: the observed term-document association data is contaminated by random noise
How to build such a space

• Solution
 – Low rank matrix approximation

Imagine this is *true* concept-document matrix

Imagine this is our observed term-document matrix

Random noise over the word selection in each document
Latent Semantic Analysis (LSA)

• Low rank approximation of term-document matrix $C_{M \times N}$
 – Goal: remove noise in the observed term-document association data
 – Solution: find a matrix with rank k which is closest to the original matrix in terms of Frobenius norm

$$\hat{Z} = \arg\min_{Z | \text{rank}(Z) = k} \| C - Z \|_F$$

$$= \arg\min_{Z | \text{rank}(Z) = k} \sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} (C_{ij} - Z_{ij})^2}$$
Basic concepts in linear algebra

• Symmetric matrix
 – $C = C^T$

• Rank of a matrix
 – Number of linearly independent rows (columns) in a matrix $C_{M \times N}$
 – $\text{rank}(C_{M \times N}) \leq \min(M, N)$
Basic concepts in linear algebra

• Eigen system
 – For a square matrix $C_{M \times M}$
 – If $Cx = \lambda x$, x is called the right eigenvector of C and λ is the corresponding eigenvalue

• For a symmetric full-rank matrix $C_{M \times M}$
 – We have its eigen-decomposition as
 • $C = Q\Lambda Q^T$
 • where the columns of Q are the orthogonal and normalized eigenvectors of C and Λ is a diagonal matrix whose entries are the eigenvalues of C
Basic concepts in linear algebra

• Singular value decomposition (SVD)

\[C_k = U \Sigma_k V^T \]

\[-\] We define \(C_{M \times N}^k = U_{M \times k} \Sigma_{k \times k} V_{N \times k}^T \)

\[-\] where we place \(\Sigma_{ii} \) in a descending order and set \(\Sigma_{ii} = \sqrt{\lambda_i} \) for \(i \leq k \), and \(\Sigma_{ii} = 0 \) for \(i > k \)
Latent Semantic Analysis (LSA)

• Solve LSA by SVD

\[C_k = \begin{bmatrix} \Sigma_k & 0 \\ 0 & \end{bmatrix} = \begin{bmatrix} U & \end{bmatrix} \begin{bmatrix} \Sigma_k \\ \end{bmatrix} V^T \]

1. Perform SVD on document-term adjacency matrix
2. Construct \(C_{M \times N}^k \) by only keeping the largest \(k \) singular values in \(\Sigma \) non-zero
Latent Semantic Analysis (LSA)

- Another interpretation
 - $C_{M \times N}$ is the term-document adjacency matrix

- $D_{M \times M} = C_{M \times N} \times C_{M \times N}^T$
 - D_{ij}: document-document similarity by counting how many terms co-occur in d_i and d_j
 - $D = (U\Sigma V^T) \times (U\Sigma V^T)^T = U\Sigma^2 U^T$
 - Eigen-decomposition of document-document similarity matrix
 - d'_i's new representation is then $(U\Sigma^{1/2})_i$ in this system (space)
 - In the lower dimensional space, we will only use the first k elements in $(U\Sigma^{1/2})_i$ to represent d_i

- The same analysis applies to $T_{N \times N} = C_{M \times N}^T \times C_{M \times N}$
Geometric interpretation of LSA

• $C_{MN}^k(i, j)$ measures the relatedness between d_i and w_j in the k-dimensional space.

• Therefore

 – As $C_{MN}^k = U_{M \times k} \Sigma_{k \times k} V_{N \times k}^T$

 – d_i is represented as $\left(U_{M \times k} \Sigma_{k \times k} \frac{1}{\Sigma_{k \times k}}\right)_i$

 – w_j is represented as $\left(V_{N \times k} \Sigma_{k \times k} \frac{1}{\Sigma_{k \times k}}\right)_j$
Latent Semantic Analysis (LSA)

• Visualization

Graph theory

HCI

Graph minors IV: Widths of trees and well-quasi-ordering

Graph minors: A survey

Human machine interface for Lab ABC computer applications
A survey of user opinion of computer system response time
The EPS user interface management system
System and human system engineering testing of EPS
Relation of user-perceived response time to error measurement
The generation of random, binary, unordered trees
The intersection graph of paths in trees

CS@UVa

CS4501: Information Retrieval
What are those dimensions in LSA

- Principle component analysis
Latent Semantic Analysis (LSA)

• What we have achieved via LSA
 – Terms/documents that are closely associated are placed near one another in this new space
 – Terms that do not occur in a document may still close to it, if that is consistent with the major patterns of association in the data
 – A good choice of concept space for VS model!
LSA for retrieval

• Project queries into the new document space

\[\tilde{q} = qV_{N \times k} \Sigma_{k \times k}^{-1} \]

 • Treat query as a pseudo document of term vector
 • Cosine similarity between query and documents in this lower-dimensional space
LSA for retrieval

q: "human computer interaction"

Graph theory

HCl

Titles
- c1: Human machine interface for Lab ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user-perceived response time to error measurement

m1: The generation of random, binary, unordered trees
m2: The intersection graph of paths in trees
m3: Graph minors IV: Widths of trees and well-quasi-ordering
m4: Graph minors: A survey
Discussions

• Computationally expensive
 – Time complexity $O(MN^2)$
• Empirically helpful for recall but not for precision
 – Recall increases as k decreases
• Optimal choice of k
• Difficult to handle dynamic corpus
• Difficult to interpret the decomposition results

We will come back to this later!
LSA beyond text

- Collaborative filtering
 - User item matrix stores for each user the rating for the items

<table>
<thead>
<tr>
<th></th>
<th>i_1</th>
<th>i_2</th>
<th>i_3</th>
<th>i_4</th>
<th>i_5</th>
<th>...</th>
<th>i_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>u_2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>5</td>
</tr>
<tr>
<td>u_3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>4</td>
</tr>
<tr>
<td>u_4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>...</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>u_n</td>
<td>2</td>
<td>...</td>
<td>4</td>
<td>...</td>
<td>4</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>

Predicting unknown ratings
LSA beyond text

• Eigen face
LSA beyond text

• Cat from deep neuron network

One of the neurons in the artificial neural network, trained from still frames from unlabeled YouTube videos, learned to detect cats.
What you should know

• Assumption in LSA
• Interpretation of LSA
 – Low rank matrix approximation
 – Eigen-decomposition of co-occurrence matrix for documents and terms
• LSA for IR
Today’s reading

• Chapter 13: Matrix decompositions and latent semantic indexing
 – All the chapters!