Learning to Rank
from heuristics to theoretic approaches

Hongning Wang
Congratulations

• Job Offer from Bing Core Ranking team
 – Design the ranking module for Bing.com
How should I rank documents?

Answer: Rank by relevance!
Relevance ?!
The Notion of Relevance

Relevance

\(\Delta(\text{Rep}(q), \text{Rep}(d)) \)

Similarity

\(P(r=1|q,d) \enspace r \in \{0,1\} \)

Probability of Relevance

Relevance constraints

[Fang et al. 04]

Div. from Randomness

(Amati & Rijsbergen 02)

\(P(d \rightarrow q) \) or \(P(q \rightarrow d) \)

Probabilistic inference

Different inference system

Prob. concept space model

(Wong & Yao, 95)

Inference network model

(Turtle & Croft, 91)

Vector space model

(Salton et al., 75)

Prob. distr. model

(Wong & Yao, 89)

Regression Model (Fuhr 89)

Learn. To Rank

(Joachims 02, Berges et al. 05)

Generative Model

Doc generation

Query generation

Classical prob. Model

(Robertson & Sparck Jones, 76)

LM approach

(Ponte & Croft, 98)

(Lafferty & Zhai, 01a)

Different rep & similarity

...
Relevance Estimation

• Query matching
 – Language model
 – BM25
 – Vector space cosine similarity

• Document importance
 – PageRank
 – HITS
Did I do a good job of ranking documents?

Documents as geometric objects: how to rank documents for full-text...
www.michaelnielsen.org/.../documents-as-geometric-objects-how-to-...
Jul 7, 2011 – In this post I explain the basic ideas of how to rank different documents according to their relevance. The ideas used are very beautiful.

[PDF] Information Retrieval: Ranking Documents
ciir.cs.umass.edu/~strohman/slides/IR-Intro-Ranking.pdf
File Format: PDF/Adobe Acrobat - View as HTML
Web features, implicit relevance indicators. • Evaluating ranking quality. • Test collections. • Quality metrics. • Training systems to rank documents better. 10 ...

lucene.net - Lucene: How to rank documents according to the...
stackoverflow.com/.../lucene-how-to-rank-documents-according-to-t...
1 answer - Mar 3
Top answer: This will require some work, but you can achieve this using payloads. See answers to this very similar question: How to get a better Lucene/Solr score ...

The Anatomy of a Search Engine
infolab.stanford.edu/~backrub/google.html
We use font size relative to the rest of the document because when searching, you do not want to rank otherwise identical documents differently just because ...
Did I do a good job of ranking documents?

- IR evaluation metrics
 - Precision@K
 - MAP
 - NDCG
Take advantage of different relevance estimator?

- Ensemble the cues
 - Linear?
 - \(\alpha_1 \times BM25 + \alpha_2 \times LM + \alpha_3 \times PageRank + \alpha_4 \times HITS \)
 - Non-linear?
 - Decision tree-like

\[
\{ \alpha_1 = 0.4, \alpha_2 = 0.2, \alpha_3 = 0.3, \alpha_4 = 0.1 \} \rightarrow \{ BM25 = 0.1, \text{NDCG} = 0.6 \}
\]

\[
\{ \alpha_1 = 0.1, \alpha_2 = 0.1, \alpha_3 = 0.1 \} \rightarrow \{ BM25 = 0.18, \text{NDCG} = 0.7 \}
\]

\[
\{ \alpha_1 = 0.4, \alpha_2 = 0.2, \alpha_3 = 0.1 \} \rightarrow \{ BM25 = 0.0, \text{NDCG} = 0.6 \}
\]
What if we have thousands of features?

- Is there any way I can do better?
 - Optimizing the metrics automatically!

Where to find those tree structures?

How to determine those αs?
Rethink the task

• Given: (query, document) pairs represented by a set of relevance estimators, a.k.a., features

<table>
<thead>
<tr>
<th>DocID</th>
<th>BM25</th>
<th>LM</th>
<th>PageRank</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>1.6</td>
<td>1.1</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>0002</td>
<td>2.7</td>
<td>1.9</td>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>

• Needed: a way of combining the estimators
 – $f(q, \{d\}_{i=1}^{D}) \rightarrow \text{ordered} \{d\}_{i=1}^{D}$

• Criterion: optimize IR metrics
 – P@k, MAP, NDCG, etc.

Key!
Machine Learning

• Input: \(\{(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)\}\), where \(X_i \in \mathbb{R}^N\), \(Y_i \in \mathbb{R}^M\)

• Objective function: \(O(Y', Y)\)

• Output: \(f(X) \rightarrow Y\), such that \(f = \text{argmax}_{f' \subset F} O(f'(X), Y)\)

Classification
\[
O(Y', Y) = \delta(Y' = Y)
\]

[Classification](http://en.wikipedia.org/wiki/Statistical_classification)

Regression
\[
O(Y', Y) = -||Y' - Y||
\]

[Regression](http://en.wikipedia.org/wiki/Regression_analysis)

NOTE: We will only talk about supervised learning.
Learning to Rank

- General solution in optimization framework
 - Input: \(((q_i, d_1), y_1), ((q_i, d_2), y_2), \ldots, ((q_i, d_n), y_n)\), where \(d_n \in \mathbb{R}^N\), \(y_i \in \{0, \ldots, L\}\)
 - Objective: \(O = \{\text{P@k, MAP, NDCG}\}\)
 - Output: \(f(q, d) \rightarrow Y\), s.t., \(f = \arg\max_{f' \in F} O(f'(q, d), Y)\)

<table>
<thead>
<tr>
<th>DocID</th>
<th>BM25</th>
<th>LM</th>
<th>PageRank</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>1.6</td>
<td>1.1</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>0002</td>
<td>2.7</td>
<td>1.9</td>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>
Challenge: how to optimize?

• Evaluation metric recap
 – Average Precision
 • \(\text{AveP} = \frac{\sum_{k=1}^{n} (P(k) \times \text{rel}(k))}{\text{number of relevant documents}} \)
 – DCG
 • \(\text{DCG}_p = \text{rel}_1 + \sum_{i=2}^{p} \frac{\text{rel}_i}{\log_2 i} \)
 – Order is essential!
 – \(f \rightarrow \text{order} \rightarrow \text{metric} \)

Not continuous with respect to \(f(X) \)!
Approximate the objective function!

• Pointwise
 – Fit the relevance labels individually
• Pairwise
 – Fit the relative orders
• Listwise
 – Fit the whole order
Pointwise Learning to Rank

• Ideally perfect relevance prediction leads to perfect ranking
 – $f \rightarrow \textbf{score} \rightarrow \text{order} \rightarrow \text{metric}$

• Reducing ranking problem to
 – Regression
 • $O(f(Q,D), Y) = -\sum_i \| f(q_i, d_i) - y_i \|$
 • Subset Ranking using Regression, D.Cossock and T.Zhang, COLT 2006

 – (multi-)Classification
 • $O(f(Q,D), Y) = \sum_i \delta(f(q_i, d_i) = y_i)$
 • Ranking with Large Margin Principles, A. Shashua and A. Levin, NIPS 2002
Subset Ranking using Regression
D. Cossock and T. Zhang, COLT 2006

• Fit relevance labels via regression
 \[\hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{m} (f(x_{i,j}, S_i) - y_{i,j})^2 \right] \]
 – Emphasize more on relevant documents
 \[\sum_{j=1}^{m} w(x_j, S)(f(x_j, S) - y_j)^2 + u \sup_{j} w'(x_j, S)(f(x_j, S) - \delta(x_j, S))^2 \]

Weights on each document

Most positive document

http://en.wikipedia.org/wiki/Regression_analysis
Ranking with Large Margin Principles
A. Shashua and A. Levin, NIPS 2002

• Goal: correctly placing the documents in the corresponding category and maximize the margin

$\frac{2}{|w|}$

maximize the margin

$w \cdot x^j_i - b_j \leq -1 + \epsilon^j_i,$

$w \cdot x^{j+1}_i - b_j \geq 1 - \epsilon^{*j+1}_i,$

$\epsilon^j_i \geq 0, \epsilon^{*j}_i \geq 0$

Reduce the violations
Ranking with Large Margin Principles
A. Shashua and A. Levin, NIPS 2002

- Ranking lost is consistently decreasing with more training data
What did we learn

• Machine learning helps!
 – Derive something optimizable
 – More efficient and guided
Deficiency

• Cannot directly optimize IR metrics
 – \((0 \rightarrow 1, 2 \rightarrow 0)\) \((0 \rightarrow -2, 2 \rightarrow 4)\)
• Position of documents are ignored
 – Penalty on documents at higher positions should be larger
• Favor the queries with more documents
Pairwise Learning to Rank

• Ideally perfect partial order leads to perfect ranking
 – $f \rightarrow \text{partial order} \rightarrow \text{order} \rightarrow \text{metric}$

• Ordinal regression
 – $O(f(Q,D), Y) = \sum_{i \neq j} \delta(y_i > y_j)\delta(f(q_i, d_i) < f(q_i, d_i))$
 • Relative ordering between different documents is significant
 • E.g., $(0 \rightarrow -2, 2 \rightarrow 4)$ is better than $(0 \rightarrow 1, 2 \rightarrow 0)$

• Large body of research
Minimizing the number of mis-ordered pairs

\[y_1 > y_2, y_2 > y_3, y_1 > y_4 \]

\[
V(\vec{w}, \xi) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum \xi_{i,j,k} \\
\text{subject to:} \\
\forall (d_i, d_j) \in r_1^*: \vec{w} \Phi(q_1, d_i) \geq \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1} \\
\vdots \\
\forall (d_i, d_j) \in r_n^*: \vec{w} \Phi(q_n, d_i) \geq \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,1} \\
\forall i \forall j \forall k: \xi_{i,j,k} \geq 0
\]

Keep the relative orders

\[
f(q, d) = w^T X_{q,d}
\]

RankSVM
Optimizing Search Engines using Clickthrough Data
Thorsten Joachims, KDD’02

• How to use it?
 \(f \rightarrow \text{score} \rightarrow \text{order} \)
Optimizing Search Engines using Clickthrough Data
Thorsten Joachims, KDD’02

- What did it learn from the data?
 - Linear correlations

<table>
<thead>
<tr>
<th>weight</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>query_abstract_cosine</td>
</tr>
<tr>
<td>0.48</td>
<td>top10_google</td>
</tr>
<tr>
<td>0.24</td>
<td>query_url_cosine</td>
</tr>
<tr>
<td>0.24</td>
<td>top1count_1</td>
</tr>
<tr>
<td>0.24</td>
<td>top10_msnsearch</td>
</tr>
<tr>
<td>0.22</td>
<td>host_citeseer</td>
</tr>
<tr>
<td>0.21</td>
<td>domain_nec</td>
</tr>
<tr>
<td>0.19</td>
<td>top10count_3</td>
</tr>
<tr>
<td>0.17</td>
<td>top1_google</td>
</tr>
<tr>
<td>0.17</td>
<td>country_de</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>abstractcontains_home</td>
</tr>
<tr>
<td>0.16</td>
<td>top1_hotbot</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>domain_name_in_query</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-0.13</td>
<td>domain_tu-bs</td>
</tr>
<tr>
<td>-0.15</td>
<td>country fi</td>
</tr>
<tr>
<td>-0.16</td>
<td>top50count_4</td>
</tr>
<tr>
<td>-0.17</td>
<td>url_length</td>
</tr>
<tr>
<td>-0.32</td>
<td></td>
</tr>
<tr>
<td>-0.38</td>
<td>top10count_0</td>
</tr>
</tbody>
</table>

Positive correlated features: query_abstract_cosine, top10_google, query_url_cosine, top1count_1, top10_msnsearch, host_citeseer, domain_nec, top10count_3, top1_google, country_de.

Negative correlated features: abstractcontains_home, top1_hotbot, domain_name_in_query, domain_tu-bs, country.fi, top50count_4, url_length.
How good is it?

– Test on real system
An Efficient Boosting Algorithm for Combining Preferences

- Smooth the loss on mis-ordered pairs

\[-\sum_{y_i>y_j} Pr(d_i, d_j) \exp[f(q, d_j) - f(q, d_i)]\]

from Pattern Recognition and Machine Learning, P337
An Efficient Boosting Algorithm for Combining Preferences

• RankBoost: optimize via boosting
 – Vote by a committee

\[Y_M(x) = \text{sign} \left(\sum_{m} \alpha_my_m(x) \right) \]

BM25 \(\{w_n^{(1)}\} \)
PageRank \(\{w_n^{(2)}\} \)
Cosine \(\{w_n^{(M)}\} \)

Updating \(\Pr(d_i, d_j) \)
Credibility of each committee member (ranking feature)
An Efficient Boosting Algorithm for Combining Preferences

• How good is it?
A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments
Zheng et al. SIRIG’07

• Non-linear ensemble of features
 – Object: \[\sum_{y_i > y_j} \left(\max \{ 0, f(q, d_j) - f(q, d_i) \} \right)^2 \]
 – Gradient descent boosting tree
 • Boosting tree
 – Using regression tree to minimize the residuals
 – \[r^t(q, d, y) = O^t(q, d, y) - f^{(t-1)}(q, d, y) \]
A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments
Zheng et al. SIRIG’07

• Non-linear v.s. linear
 – Comparing with RankSVM
Where do we get the relative orders

- Human annotations
 - Small scale, expensive to acquire
- Clickthroughs
 - Large amount, easy to acquire
What did we learn

• Predicting relative order
 – Getting closer to the nature of ranking

• Promising performance in practice
 – Pairwise preferences from click-throughs
Listwise Learning to Rank

• Can we directly optimize the ranking?
 – $f \rightarrow \text{order} \rightarrow \text{metric}$

• Tackle the challenge
 – Optimization without gradient
From RankNet to LambdaRank to LambdaMART: An Overview
Christopher J.C. Burges, 2010

• Minimizing mis-ordered pair => maximizing IR metrics?

Mis-ordered pairs: 6
AP: $\frac{5}{8}$
DCG: 1.333

Mis-ordered pairs: 4
AP: $\frac{5}{12}$
DCG: 0.931

Position is crucial!
Weight the mis-ordered pairs?

- Some pairs are more important to be placed in the right order
- Inject into object function
 \[\sum_{y_i > y_j} \Omega d_i, d_j \exp^{-w \Delta \Phi q_n}, d_i, d_j \]
- Inject into gradient
 \[\lambda_{ij} = \frac{\partial O_{\text{approx}}}{\partial \Delta O} \]

Gradient with respect to approximated objective, i.e., exponential loss on mis-ordered pairs
Change in original object, e.g., NDCG, if we switch the documents i and j, leaving the other documents unchanged
Depend on the ranking of document i, j in the whole list
Lambda functions

 – Gradient?
 • Yes, it meets the sufficient and necessary condition of being partial derivative

 – Lead to optimal solution of original problem?
 • Empirically
Evolution

<table>
<thead>
<tr>
<th>Objective</th>
<th>RankNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross entropy over the pairs</td>
<td>Cross entropy over the pairs</td>
</tr>
<tr>
<td>Gradient ((\lambda) function)</td>
<td>Gradient of cross entropy</td>
</tr>
<tr>
<td>Optimization method</td>
<td>neural network</td>
</tr>
</tbody>
</table>

As we discussed in RankBoost, to optimize solely by gradient, a non-linear combination is used.
From RankNet to LambdaRank to LambdaMART: An Overview
Christopher J.C. Burges, 2010

• A Lambda tree

```
<tree id="8" weight="0.1">
  <split>
    <feature> 811 </feature>
    <threshold> 5.0 </threshold>
  </split>
  <split pos="left">
    <feature> 33 </feature>
    <threshold> 20.0 </threshold>
  </split>
  <split pos="left">
    <feature> 589 </feature>
    <threshold> 43493.125 </threshold>
  </split>
  <split pos="left">
    <feature> 1094 </feature>
    <threshold> 302.73438 </threshold>
  </split>
  <split pos="left">
    <feature> 108 </feature>
    <threshold> 9881.824 </threshold>
  </split>
  <split pos="left">
    <output> -0.66917753 </output>
  </split>
</tree>
```
A Support Vector Machine for Optimizing Average Precision

Yisong Yue, et al., SIGIR’07

RankSVM
- Minimizing the pairwise loss

\[
\text{minimize: } V(\vec{w}, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum \xi_{i,j,k} \\
\text{subject to:} \\
\forall (d_i, d_j) \in r^*_1: \vec{w} \Phi(q_1, d_i) \geq \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1} \\
\ldots \\
\forall (d_i, d_j) \in r^*_n: \vec{w} \Phi(q_n, d_i) \geq \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n} \\
\forall i \forall j \forall k: \xi_{i,j,k} \geq 0
\]

Loss defined on the number of mis-ordered document pairs

SVM-MAP
- Minimizing the structural loss

\[
\min \frac{1}{2} ||\vec{w}||^2 + \frac{C}{n} \sum \xi_i \\
\text{s.t. } \forall i, \forall y \in \mathcal{Y} \setminus y_i: \\
\vec{w}^T \Psi(x_i, y_i) \geq \vec{w}^T \Psi(x_i, y) + \Delta(y_i, y) - \xi_i
\]

Loss defined on the quality of the whole list of ordered documents

MAP difference
A Support Vector Machine for Optimizing Average Precision
Yisong Yue, et al., SIGIR’07

• Max margin principle
 – Push the ground-truth far away from any mistake one might make
 – Finding the most likely violated constraints
A Support Vector Machine for Optimizing Average Precision
Yisong Yue, et al., SIGIR’07

• Finding the most violated constraints
 – MAP is invariant to permutation of (ir)relevant documents
 – Maximize MAP over a series of swaps between relevant and irrelevant documents

\[\arg\max_{y \in \mathcal{Y}} \Delta(y_i, y) + \mathbf{w}^T \Psi(x_i, y) \]

Right-hand side of constraints
Greedy solution
Start from the reverse order of ideal ranking
A Support Vector Machine for Optimizing Average Precision
Yisong Yue, et al., SIGIR’07

• Experiment results

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC 9 MAP</th>
<th>W/L</th>
<th>TREC 10 MAP</th>
<th>W/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM$^\Delta_{map}$</td>
<td>0.290</td>
<td>–</td>
<td>0.287</td>
<td>–</td>
</tr>
<tr>
<td>SVM$^\Delta_{roc}$</td>
<td>0.282</td>
<td>29/21</td>
<td>0.278</td>
<td>35/15 **</td>
</tr>
<tr>
<td>SVM$_{acc}$</td>
<td>0.213</td>
<td>49/1 **</td>
<td>0.222</td>
<td>49/1 **</td>
</tr>
<tr>
<td>SVM$_{acc2}$</td>
<td>0.270</td>
<td>34/16 **</td>
<td>0.261</td>
<td>42/8 **</td>
</tr>
<tr>
<td>SVM$_{acc3}$</td>
<td>0.133</td>
<td>50/0 **</td>
<td>0.182</td>
<td>46/4 **</td>
</tr>
<tr>
<td>SVM$_{acc4}$</td>
<td>0.233</td>
<td>47/3 **</td>
<td>0.238</td>
<td>46/4 **</td>
</tr>
</tbody>
</table>
Other listwise solutions

• Soften the metrics to make them differentiable
 – Michael Taylor et al., SoftRank: optimizing non-smooth rank metrics, WSDM'08

• Minimize a loss function defined on permutations
 – Zhe Cao et al., Learning to rank: from pairwise approach to listwise approach, ICML'07
What did we learn

• Taking a list of documents as a whole
 – Positions are visible for the learning algorithm
 – Directly optimizing the target metric

• Limitation
 – The search space is huge!
Summary

• Learning to rank
 – Automatic combination of ranking features for optimizing IR evaluation metrics

• Approaches
 – Pointwise
 • Fit the relevance labels individually
 – Pairwise
 • Fit the relative orders
 – Listwise
 • Fit the whole order
Experimental Comparisons

• My experiments
 – 1.2k queries, 45.5K documents with 1890 features
 – 800 queries for training, 400 queries for testing

<table>
<thead>
<tr>
<th>Model</th>
<th>MAP</th>
<th>P@1</th>
<th>ERR</th>
<th>MRR</th>
<th>NDCG@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListNET</td>
<td>0.2863</td>
<td>0.2074</td>
<td>0.1661</td>
<td>0.3714</td>
<td>0.2949</td>
</tr>
<tr>
<td>LambdaMART</td>
<td>0.4644</td>
<td>0.4630</td>
<td>0.2654</td>
<td>0.6105</td>
<td>0.5236</td>
</tr>
<tr>
<td>RankNET</td>
<td>0.3005</td>
<td>0.2222</td>
<td>0.1873</td>
<td>0.3816</td>
<td>0.3386</td>
</tr>
<tr>
<td>RankBoost</td>
<td>0.4548</td>
<td>0.4370</td>
<td>0.2463</td>
<td>0.5829</td>
<td>0.4866</td>
</tr>
<tr>
<td>RankSVM</td>
<td>0.3507</td>
<td>0.2370</td>
<td>0.1895</td>
<td>0.4154</td>
<td>0.3585</td>
</tr>
<tr>
<td>AdaRank</td>
<td>0.4321</td>
<td>0.4111</td>
<td>0.2307</td>
<td>0.5482</td>
<td>0.4421</td>
</tr>
<tr>
<td>pLogistic</td>
<td>0.4519</td>
<td>0.3926</td>
<td>0.2489</td>
<td>0.5535</td>
<td>0.4945</td>
</tr>
<tr>
<td>Logistic</td>
<td>0.4348</td>
<td>0.3778</td>
<td>0.2410</td>
<td>0.5526</td>
<td>0.4762</td>
</tr>
</tbody>
</table>
Connection with Traditional IR

• People have foreseen this topic long time ago
 – Recall: probabilistic ranking principle
Conditional models for $P(R=1 | Q, D)$

• Basic idea: relevance depends on how well a query matches a document

 – $P(R=1 | Q, D) = g(\text{Rep}(Q, D) | \theta)$ ← a functional form

 • $\text{Rep}(Q, D)$: feature representation of query-doc pair

 – E.g., #matched terms, highest IDF of a matched term, docLen

 – Using training data (with known relevance judgments) to estimate parameter θ

 – Apply the model to rank new documents

• Special case: logistic regression
Analysis of the Approaches

• What are they really optimizing?
 – Relation with IR metrics
Broader Notion of Relevance

- Social network
- Query relation
- Language Model
 - Cosine
 - BM25
- Documents
 - Click/View
- Linkage structure
 - Visual Structure
 - Linkage structure
 - likes
Future

- Tighter bounds
- Faster solution
- Larger scale
- Wider application scenario
Resources

• Books

• Helpful pages

• Packages

• Data sets
References

References

Maximizing the sum of margins

\[
\min_{w, a_j, b_j} \sum_{j=1}^{k-1} (a_j - b_j) + C \sum_i \sum_j \left(\epsilon_i^j + \epsilon_i^{*j+1} \right)
\]
subject to
\[
a_j \leq b_j,
\]
\[
b_j \leq a_{j+1}, \quad j = 1, \ldots, k - 2
\]
\[
w \cdot x_i^j \leq a_j + \epsilon_i^j, \quad b_j - \epsilon_i^{*j+1} \leq w \cdot x_i^{j+1}
\]
\[
w \cdot w \leq 1, \quad \epsilon_i^j \geq 0, \epsilon_i^{*j+1} \geq 0
\]
AdaRank: a boosting algorithm for information retrieval
Jun Xu & Hang Li, SIGIR’07

- Loss defined by IR metrics
 - $\sum_{q \in Q} Pr(q) \exp[-O(q)]$
- Optimizing by boosting

Target metrics: MAP, NDCG, MRR

Graphical representation:

- BM25
 - $\{w_n^{(1)}\}$
- PageRank
 - $\{w_n^{(2)}\}$
- Cosine
 - $\{w_n^{(M)}\}$

Updating $Pr(q)$

$y_1(x)$ $y_2(x)$ \cdots $y_M(x)$

Credibility of each committee member (ranking feature)

$$Y_M(x) = \text{Sig} \left(\sum_{m=1}^{M} \alpha_m \beta_m(x) \right)$$

from Pattern Recognition and Machine Learning, P658
Pointwise Approaches

• Regression based

\[1 - NDCG(f) \leq \frac{1}{Z_m} \left(\frac{2 \sum_{j=1}^{m} \eta_j^e}{\left(\sum_{j=1}^{m} (f(x_j) - y_j) \right)^\beta} \right)^{1/\alpha} \]

Discount coefficients in DCG
Regression loss

• Classification based

\[1 - NDCG(f) \leq \frac{15}{Z_m} \sqrt{2 \left(\sum_{j=1}^{m} \eta_j^2 - m \prod_{j=1}^{m} \eta_j^2 \right) \cdot \sum_{j=1}^{m} I_{\{y_j \neq f(x_j)\}}} \]

Discount coefficients in DCG
Classification loss
Pointwise Approach

- Although it seems the loss functions can bound (1-NDCG), the constants before the losses seem too large.

\[
\begin{align*}
 x_i, y_i & \quad \quad \quad \quad \quad Z_m \approx 21.4 \\
 \begin{pmatrix}
 x_1, 4 \\
 x_2, 3 \\
 x_3, 2 \\
 x_4, 1
 \end{pmatrix} & \quad \quad \quad \quad \quad DCG(f) \approx 21.4 \\
 |1 - NDCG(f)| &= 0 \\
 \frac{15}{Z_m} \sqrt{2 \left(\sum_{j=1}^{m} \left(\frac{1}{\log(j+1)} \right)^2 - m \sum_{j=1}^{m} \left(\frac{1}{\log(j+1)} \right)^2 \right)^{\frac{2}{m}}} \cdot \sum_{j=1}^{m} I_{\{y_j \neq f(x_j)\}} & \approx 1.15 > 1
\end{align*}
\]

From Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank
Pairwise Approach

- Unified loss vs. (1-NDCG)
 - When $\beta_t = \frac{G(t)\eta(t)}{Z_m}$, $\hat{L}(f)$ is a tight bound of (1-NDCG).

- Surrogate function of Unified loss
 - After introducing weights β_t, loss functions in Ranking SVM, RankBoost, RankNet are Cost-sensitive Pairwise Comparison surrogate functions, and thus are consistent with and are upper bounds of the unified loss.
 - Consequently, they also upper bound (1-NDCG).
Listwise Approaches

• No general analysis
 – Method dependent
 – Directness and consistency