Learning to Rank
from heuristics to theoretic approaches

Hongning Wang
Congratulations

• Job Offer from Bing Core Ranking team
 – Design the ranking module for Bing.com
How should I rank documents?

Answer: Rank by relevance!
Relevance ?!
The Notion of Relevance

Relevance

\[\Delta(\text{Rep}(q), \text{Rep}(d)) \]

Similarity

Different rep & similarity

Vector space model (Salton et al., 75)

Prob. distr. model (Wong & Yao, 89)

Regression Model (Fuhr 89)

Learn. To Rank (Joachims 02, Berges et al. 05)

Generative Model

Doc generation

Query generation

Classical prob. Model (Robertson & Sparck Jones, 76)

LM approach (Ponte & Croft, 98)

(Lafferty & Zhai, 01a)

Relevance constraints

[Fang et al. 04]

Div. from Randomness

(Alam & Rijsbergen 02)

\[P(r=1|q,d) \quad r \in \{0,1\} \]

Probability of Relevance

Probabilistic inference

P(d \rightarrow q) or P(q \rightarrow d)

Different inference system

Prob. concept space model (Wong & Yao, 95)

Inference network model (Turtle & Croft, 91)
Relevance Estimation

• Query matching
 – Language model
 – BM25
 – Vector space cosine similarity

• Document importance
 – PageRank
 – HITS
Did I do a good job of ranking documents?

Documents as geometric objects: how to rank documents for full-text ...
www.michaelnielsen.org/.../documents-as-geometric-objects-how-to-...
Jul 7, 2011 – In this post I explain the basic ideas of how to rank different documents according to their relevance. The ideas used are very beautiful.

Information Retrieval: Ranking Documents
[PDF] ciir.cs.umass.edu/~strohman/slides/IR-Intro-Ranking.pdf
File Format: PDF/Adobe Acrobat - View as HTML
Web features, implicit relevance indicators. • Evaluating ranking quality. • Test collections. • Quality metrics. • Training systems to rank documents better. 10 ...

Lucene net - Lucene: How to rank documents according to the ...
stackoverflow.com/.../lucene-how-to-rank-documents-according-to-t...
1 answer - Mar 3
Top answer: This will require some work, but you can achieve this using payloads. See answers to this very similar question: How to get a better Lucene/Solr score ...

The Anatomy of a Search Engine
infolab.stanford.edu/~backrub/google.html
We use font size relative to the rest of the document because when searching, you do not want to rank otherwise identical documents differently just because ...
Did I do a good job of ranking documents?

• IR evaluation metrics
 – Precision@K
 – MAP
 – NDCG
Take advantage of different relevance estimator?

• Ensemble the cues
 – Linear?
 • $\alpha_1 \times BM25 + \alpha_2 \times LM + \alpha_3 \times PageRank + \alpha_4 \times HITS$

 – Non-linear?
 • Decision tree: $\begin{cases} \{\alpha_1 = 0.4, \alpha_2 = 0.2, \alpha_3 \} : \\ \{\alpha_1 = 0.2, \alpha_2 = 0.2, \alpha_3 \} : \end{cases}$

 $r = 1.0 \Rightarrow \{M@P = 0.12, NDCG = 0.5\}$

 $r = 0.7 \Rightarrow \{M@P = 0.18, NDCG = 0.7\}$

 $r = 0.4 \Rightarrow \{M@P = 0.20, NDCG = 0.6\}$

 $r = 0.1 \Rightarrow \{M@P = 0.4, NDCG = 0.5\}$
What if we have thousands of features?

• Is there any way I can do better?
 – Optimize the metrics automatically!

Where to find those tree structures?

How to determine those αs?
Rethink the task

• Given: (query, document) pairs represented by a set of relevance estimators, a.k.a., features

\[f(q, \{d\}^D_{i=1}) \rightarrow \text{ordered } \{d\}^D_{i=1} \]

• Needed: a way of combining the estimators

• Criterion: optimize IR metrics
 – P@k, MAP, NDCG, etc.

<table>
<thead>
<tr>
<th>DocID</th>
<th>BM25</th>
<th>LM</th>
<th>PageRank</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>1.6</td>
<td>1.1</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>0002</td>
<td>2.7</td>
<td>1.9</td>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>
Machine Learning

- Input: \(\{(X_1, Y_1), (X_2, Y_2), \ldots, (X_n, Y_n)\} \), where \(X_i \in R^N, Y_i \in R^M \)
- Objective function: \(O(Y', Y) \)
- Output: \(f(X) \rightarrow Y \), such that \(f = \arg\max_{f' \subseteq F} O(f'(X), Y) \)

Classification
\(O(Y', Y) = \delta(Y' = Y) \)

Regression
\(O(Y', Y) = -||Y' - Y|| \)

http://en.wikipedia.org/wiki/Regression_analysis

NOTE: We will only talk about supervised learning.
Learning to Rank

• General solution in optimization framework
 – Input: \{((q_i, d_1), y_1), ((q_i, d_2), y_2), \ldots, ((q_i, d_n), y_n)\},
 where \(d_n \in R^N, y_i \in \{0, \ldots, L\}\)
 – Objective: \(O = \{P@k, MAP, NDCG\}\)
 – Output: \(f(q, d) \rightarrow Y, \text{s.t., } f = \arg\max_{f' \in F} O(f'(q, d), Y)\)

<table>
<thead>
<tr>
<th>DocID</th>
<th>BM25</th>
<th>LM</th>
<th>PageRank</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>1.6</td>
<td>1.1</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>0002</td>
<td>2.7</td>
<td>1.9</td>
<td>0.2</td>
<td>1</td>
</tr>
</tbody>
</table>
Challenge: how to optimize?

• Evaluation metric recap
 – Average Precision
 • \(\text{AveP} = \frac{\sum_{k=1}^{n} (P(k) \times rel(k))}{\text{number of relevant documents}} \)
 – DCG
 • \(\text{DCG}_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i} \)

• Order is essential!
 – \(f \rightarrow \text{order} \rightarrow \text{metric} \)

Not continuous with respect to \(f(X) \)!
Approximate the objective function!

- **Pointwise**
 - Fit the relevance labels individually
- **Pairwise**
 - Fit the relative orders
- **Listwise**
 - Fit the whole order
Pointwise Learning to Rank

• Ideally perfect relevance prediction leads to perfect ranking
 – \(f \rightarrow \text{score} \rightarrow \text{order} \rightarrow \text{metric} \)

• Reducing ranking problem to
 – Regression
 • \(O(f(Q, D), Y) = -\sum_i \| f(q_i, d_i) - y_i \| \)
 • Subset Ranking using Regression, D.Cossock and T.Zhang, COLT 2006
 – (multi-)Classification
 • \(O(f(Q, D), Y) = \sum_i \delta(f(q_i, d_i) = y_i) \)
 • Ranking with Large Margin Principles, A. Shashua and A. Levin, NIPS 2002
Subset Ranking using Regression
D. Cossock and T. Zhang, COLT 2006

• Fit relevance labels via regression

\[
\hat{f} = \arg \min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{m} (f(x_{i,j}, S_i) - y_{i,j})^2 \right]
\]

– Emphasize more on relevant documents

\[
\sum_{j=1}^{m} w(x_j, S) (f(x_j, S) - y_j)^2 + u \sup_{j} w'(x_j, S) (f(x_j, S) - \delta(x_j, S))^2_{+}
\]

Weights on each document

Most positive document
Goal: correctly placing the documents in the corresponding category and maximize the margin.

\[w \cdot x_i^j - b_j \leq -1 + \epsilon_i^j, \]
\[w \cdot x_i^{j+1} - b_j \geq 1 - \epsilon_i^{j+1}, \]
\[\epsilon_i^j \geq 0, \epsilon_i^{j+1} \geq 0 \]

Reduce the violations.
Ranking with Large Margin Principles
A. Shashua and A. Levin, NIPS 2002

• Ranking lost is consistently decreasing with more training data
What did we learn

• Machine learning helps!
 – Derive something optimizable
 – More efficient and guided
Deficiency

• Cannot directly optimize IR metrics
 – \((0 \rightarrow 1, 2 \rightarrow 0)\) \((0 \rightarrow -2, 2 \rightarrow 4)\)

• Position of documents are ignored
 – Penalty on documents at higher positions should be larger

• Favor the queries with more documents
Pairwise Learning to Rank

• Ideally perfect partial order leads to perfect ranking
 – $f \rightarrow$ partial order \rightarrow order \rightarrow metric

• Ordinal regression
 – $O(f(Q, D), Y) = \sum_{i \neq j} \delta(y_i > y_j)\delta(f(q_i, d_i) < f(q_i, d_i))$
 • Relative ordering between different documents is significant
 • E.g., $(0 \rightarrow -2, 2 \rightarrow 4)$ is better than $(0 \rightarrow 1, 2 \rightarrow 0)$

• Large body of research
Optimizing Search Engines using Clickthrough Data
Thorsten Joachims, KDD’02

• Minimizing the number of mis-ordered pairs

\[y_1 > y_2, y_2 > y_3, y_1 > y_4 \]

\[
\begin{align*}
\text{minimize:} & \quad V(\vec{w}, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum \xi_{i,j,k} \\
\text{subject to:} & \quad \forall (d_i, d_j) \in r_1^* \colon \vec{w} \Phi(q_1, d_i) \geq \vec{w} \Phi(q_1, d_j) + 1 - \xi_{i,j,1} \\
& \quad \vdots \\
& \quad \forall (d_i, d_j) \in r_n^* \colon \vec{w} \Phi(q_n, d_i) \geq \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,1} \\
& \quad \forall i \forall j \forall k \colon \xi_{i,j,k} \geq 0
\end{align*}
\]

Keep the relative orders

Linear combination of features
\[f(q, d) = w^T X_{q,d} \]
Optimizing Search Engines using Clickthrough Data
Thorsten Joachims, KDD’02

• How to use it?
 – $f \rightarrow \text{score} \rightarrow \text{order}$

\[y_1 > y_2 > y_3 > y_4 \]
What did it learn from the data?

- Linear correlations

<table>
<thead>
<tr>
<th>weight</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>query_abstract_cosine</td>
</tr>
<tr>
<td>0.48</td>
<td>top10_google</td>
</tr>
<tr>
<td>0.24</td>
<td>query_url_cosine</td>
</tr>
<tr>
<td>0.24</td>
<td>top1count_1</td>
</tr>
<tr>
<td>0.24</td>
<td>top10_msnsearch</td>
</tr>
<tr>
<td>0.22</td>
<td>host_citeseer</td>
</tr>
<tr>
<td>0.21</td>
<td>domain_nec</td>
</tr>
<tr>
<td>0.19</td>
<td>top10count_3</td>
</tr>
<tr>
<td>0.17</td>
<td>top1_google</td>
</tr>
<tr>
<td>0.17</td>
<td>country_de</td>
</tr>
<tr>
<td>...</td>
<td>abstract_contains_home</td>
</tr>
<tr>
<td>0.16</td>
<td>top1_hotbot</td>
</tr>
<tr>
<td>...</td>
<td>domain_name_in_query</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-0.13</td>
<td>domain_tu-bs</td>
</tr>
<tr>
<td>-0.15</td>
<td>country.fi</td>
</tr>
<tr>
<td>-0.16</td>
<td>top50count_4</td>
</tr>
<tr>
<td>-0.17</td>
<td>url_length</td>
</tr>
<tr>
<td>-0.38</td>
<td>top1count_0</td>
</tr>
</tbody>
</table>
Optimizing Search Engines using Clickthrough Data
Thorsten Joachims, KDD’02

• How good is it?
 – Test on real system

![Graph showing prediction error (%) vs number of training queries]

<table>
<thead>
<tr>
<th>Prediction Error (%)</th>
<th>Number of Training Queries</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

Legend:
- MSNSearch
- Google
- Learning
An Efficient Boosting Algorithm for Combining Preferences

• Smooth the loss on mis-ordered pairs

\[- \sum_{y_i > y_j} Pr(d_i, d_j) \exp[f(q, d_j) - f(q, d_i)]\]

- Smooth the loss on mis-ordered pairs

- Smooth the loss on mis-ordered pairs
An Efficient Boosting Algorithm for Combining Preferences

- **RankBoost**: optimize via boosting
 - Vote by a committee

\[Y_M(x) = \text{sign} \left(\sum_{m} \alpha_m y_m(x) \right) \]

Credibility of each committee member (ranking feature)

Updating \(\Pr(d_i, d_j) \)
An Efficient Boosting Algorithm for Combining Preferences

• How good is it?
A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments
Zheng et al. SIRIG’07

• Non-linear ensemble of features
 – Object: $\sum_{y_i > y_j} \left(\max\{0, f(q, d_j) - f(q, d_i)\} \right)^2$
 – Gradient descent boosting tree
 • Boosting tree
 – Using regression tree to minimize the residuals
 – $r^t(q, d, y) = O^t(q, d, y) - f^{(t-1)}(q, d, y)$
A Regression Framework for Learning Ranking Functions Using Relative Relevance Judgments
Zheng et al. SIRIG’07

• Non-linear v.s. linear
 – Comparing with RankSVM
Where do we get the relative orders

• Human annotations
 – Small scale, expensive to acquire

• Clickthroughs
 – Large amount, easy to acquire
What did we learn

• Predicting relative order
 – Getting closer to the nature of ranking
• Promising performance in practice
 – Pairwise preferences from click-throughs
Listwise Learning to Rank

• Can we directly optimize the ranking?
 – $f \rightarrow \text{order} \rightarrow \text{metric}$

• Tackle the challenge
 – Optimization without gradient

YES, WE CAN.
From RankNet to LambdaRank to LambdaMART: An Overview
Christopher J.C. Burges, 2010

• Minimizing mis-ordered pair => maximizing IR metrics?

Mis-ordered pairs: 6
AP: $\frac{5}{8}$
DCG: 1.333

Mis-ordered pairs: 4
AP: $\frac{5}{12}$
DCG: 0.931

Position is crucial!
From RankNet to LambdaRank to LambdaMART: An Overview
Christopher J.C. Burges, 2010

• Weight the mis-ordered pairs?
 – Some pairs are more important to be placed in the right order
 – Inject into object function

\[
\sigma_y_i > y_j \Omega d_i, d_j \exp^{-w \Delta \Phi q_n, d_i, d_j}
\]

• Inject into gradient

\[
\lambda_{ij} = \frac{\partial O_{\text{approx}}}{\partial w \Delta O}
\]

Gradient with respect to approximated objective, i.e., exponential loss on mis-ordered pairs

Change in original object, e.g., NDCG, if we switch the documents i and j, leaving the other documents unchanged

Depend on the ranking of document i, j in the whole list
From RankNet to LambdaRank to LambdaMART: An Overview
Christopher J.C. Burges, 2010

• Lambda functions
 – Gradient?
 • Yes, it meets the sufficient and necessary condition of being partial derivative
 – Lead to optimal solution of original problem?
 • Empirically
From RankNet to LambdaRank to LambdaMART: An Overview
Christopher J.C. Burges, 2010

Evolution

<table>
<thead>
<tr>
<th></th>
<th>RankNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
<td>Cross entropy over the pairs</td>
</tr>
<tr>
<td>Gradient</td>
<td>Gradient of cross entropy</td>
</tr>
<tr>
<td>Optimization method</td>
<td>neural network</td>
</tr>
</tbody>
</table>

As we discussed in RankBoost
Optimize solely by gradient
Non-linear combination
From RankNet to LambdaRank to LambdaMART: An Overview

Christopher J.C. Burges, 2010

• A Lambda tree

```
<tree id="8" weight="0.1">
  <split>
    <feature> 811 </feature>
    <threshold> 5.0 </threshold>
    <split pos="left">
      <feature> 33 </feature>
      <threshold> 20.0 </threshold>
      <split pos="left">
        <feature> 589 </feature>
        <threshold> 43493.125 </threshold>
        <split pos="left">
          <feature> 1094 </feature>
          <threshold> 302.73438 </threshold>
          <split pos="left">
            <feature> 108 </feature>
            <threshold> 9881.824 </threshold>
            <split pos="left">
              <output> -0.66917753 </output>
            </split>
            <split pos="right">
              <feature> 151 </feature>
              <threshold> 90722.769 </threshold>
            </split>
          </split>
        </split>
      </split>
    </split>
  </split>
</tree>
```
A Support Vector Machine for Optimizing Average Precision
Yisong Yue, et al., SIGIR’07

RankSVM

- Minimizing the pairwise loss

\[
\begin{align*}
\text{minimize:} & \quad V(\vec{w}, \xi) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum \xi_{i,j,k} \\
\text{subject to:} & \quad \forall (d_i, d_j) \in r_i^* : \vec{w} \Phi(q_i, d_i) \geq \vec{w} \Phi(q_i, d_j) + 1 - \xi_{i,j,1} \\
& \quad \forall (d_i, d_j) \in r_n^* : \vec{w} \Phi(q_n, d_i) \geq \vec{w} \Phi(q_n, d_j) + 1 - \xi_{i,j,n} \\
& \quad \forall i \forall j \forall k : \xi_{i,j,k} \geq 0
\end{align*}
\]

Loss defined on the number of mis-ordered document pairs

SVM-MAP

- Minimizing the structural loss

\[
\begin{align*}
\min_{w, \xi \geq 0} & \quad \frac{1}{2} \|w\|^2 + \frac{C}{n} \sum_{i=1}^{n} \xi_i \\
\text{s.t.} & \quad \forall i, \forall y \in Y \setminus y_i : \\
& \quad w^T \Psi(x_i, y_i) \geq w^T \Psi(x_i, y) + \Delta(y_i, y) - \xi_i
\end{align*}
\]

Loss defined on the quality of the whole list of ordered documents

MAP difference
A Support Vector Machine for Optimizing Average Precision

Yisong Yue, et al., SIGIR’07

• Max margin principle
 – Push the ground-truth far away from any mistake one might make
 – Finding the most likely violated constraints
A Support Vector Machine for Optimizing Average Precision

Yisong Yue, et al., SIGIR’07

• Finding the most violated constraints
 – MAP is invariant to permutation of (ir)relevant documents
 – Maximize MAP over a series of swaps between relevant and irrelevant documents

\[
\text{argmax}_{y \in \mathcal{Y}} \Delta(y_i, y) + w^T \Psi(x_i, y)
\]

Right-hand side of constraints

Greedy solution

Start from the reverse order of ideal ranking
A Support Vector Machine for Optimizing Average Precision
Yisong Yue, et al., SIGIR’07

• Experiment results

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC 9</th>
<th>TREC 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAP</td>
<td>W/L</td>
</tr>
<tr>
<td>SVM_{map}^Δ</td>
<td>0.290</td>
<td>–</td>
</tr>
<tr>
<td>SVM_{roc}^Δ</td>
<td>0.282</td>
<td>29/21</td>
</tr>
<tr>
<td>SVM_{acc}</td>
<td>0.213</td>
<td>49/1 **</td>
</tr>
<tr>
<td>SVM_{acc2}</td>
<td>0.270</td>
<td>34/16 **</td>
</tr>
<tr>
<td>SVM_{acc3}</td>
<td>0.133</td>
<td>50/0 **</td>
</tr>
<tr>
<td>SVM_{acc4}</td>
<td>0.233</td>
<td>47/3 **</td>
</tr>
</tbody>
</table>
Other listwise solutions

• Soften the metrics to make them differentiable
 – Michael Taylor et al., SoftRank: optimizing non-smooth rank metrics, WSDM'08

• Minimize a loss function defined on permutations
 – Zhe Cao et al., Learning to rank: from pairwise approach to listwise approach, ICML'07
What did we learn

• Taking a list of documents as a whole
 – Positions are visible for the learning algorithm
 – Directly optimizing the target metric

• Limitation
 – The search space is huge!
Summary

• Learning to rank
 – Automatic combination of ranking features for optimizing IR evaluation metrics

• Approaches
 – Pointwise
 • Fit the relevance labels individually
 – Pairwise
 • Fit the relative orders
 – Listwise
 • Fit the whole order
Experimental Comparisons

• My experiments
 – 1.2k queries, 45.5K documents with 1890 features
 – 800 queries for training, 400 queries for testing

<table>
<thead>
<tr>
<th>Method</th>
<th>MAP</th>
<th>P@1</th>
<th>ERR</th>
<th>MRR</th>
<th>NDCG@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ListNET</td>
<td>0.2863</td>
<td>0.2074</td>
<td>0.1661</td>
<td>0.3714</td>
<td>0.2949</td>
</tr>
<tr>
<td>LambdaMART</td>
<td>0.4644</td>
<td>0.4630</td>
<td>0.2654</td>
<td>0.6105</td>
<td>0.5236</td>
</tr>
<tr>
<td>RankNET</td>
<td>0.3005</td>
<td>0.2222</td>
<td>0.1873</td>
<td>0.3816</td>
<td>0.3386</td>
</tr>
<tr>
<td>RankBoost</td>
<td>0.4548</td>
<td>0.4370</td>
<td>0.2463</td>
<td>0.5829</td>
<td>0.4866</td>
</tr>
<tr>
<td>RankSVM</td>
<td>0.3507</td>
<td>0.2370</td>
<td>0.1895</td>
<td>0.4154</td>
<td>0.3585</td>
</tr>
<tr>
<td>AdaRank</td>
<td>0.4321</td>
<td>0.4111</td>
<td>0.2307</td>
<td>0.5482</td>
<td>0.4421</td>
</tr>
<tr>
<td>pLogistic</td>
<td>0.4519</td>
<td>0.3926</td>
<td>0.2489</td>
<td>0.5535</td>
<td>0.4945</td>
</tr>
<tr>
<td>Logistic</td>
<td>0.4348</td>
<td>0.3778</td>
<td>0.2410</td>
<td>0.5526</td>
<td>0.4762</td>
</tr>
</tbody>
</table>
Connection with Traditional IR

- People have foreseen this topic long time ago
 - Recall: probabilistic ranking principle
Conditional models for $P(R=1|Q,D)$

- Basic idea: relevance depends on how well a query matches a document
 - $P(R=1|Q,D)=g(\text{Rep}(Q,D)|\theta)$
 - $\text{Rep}(Q,D)$: feature representation of query-doc pair
 - E.g., #matched terms, highest IDF of a matched term, docLen
 - Using training data (with known relevance judgments) to estimate parameter θ
 - Apply the model to rank new documents
 - Special case: logistic regression
Analysis of the Approaches

• What are they really optimizing?
 – Relation with IR metrics
Broader Notion of Relevance

Documents
Query
BM25
Language Model
Cosine

Click/View
Linkage structure
Visual Structure
likes

Social network
Query relation

Query
Language Model
Cosine
BM25

Documents
Future

- Tighter bounds
- Faster solution
- Larger scale
- Wider application scenario
Resources

• Books

• Helpful pages

• Packages

• Data sets
References

References

Maximizing the sum of margins

\[
\sum_{j=1}^{k-1} (a_j - b_j) + C \sum_i \sum_j \left(\epsilon_i^j + \epsilon_i^{j+1} \right)
\]

subject to

\[a_j \leq b_j,\]

\[b_j \leq a_{j+1}, \quad j = 1, \ldots, k - 2\]

\[\mathbf{w} \cdot \mathbf{x}_i^j \leq a_j + \epsilon_i^j, \quad b_j - \epsilon_i^{j+1} \leq \mathbf{w} \cdot \mathbf{x}_i^{j+1}\]

\[\mathbf{w} \cdot \mathbf{w} \leq 1, \quad \epsilon_i^j \geq 0, \epsilon_i^{j+1} \geq 0\]
AdaRank: a boosting algorithm for information retrieval
Jun Xu & Hang Li, SIGIR’07

• Loss defined by IR metrics
 – \(\sum_{q \in Q} Pr(q) \exp[-O(q)] \)
 – Optimizing by boosting

Target metrics: MAP, NDCG, MRR

CS@UVa

CS 4501: Information Retrieval

\[Y_M(x) = \text{sign} \left(\sum_{m=1}^{M} \alpha_{m} y_{m}(x) \right) \]

from Pattern Recognition and Machine Learning, P658
Pointwise Approaches

- **Regression based**

\[
1 - NDCG(f) \leq \frac{1}{Z_m} \left(\frac{2}{\sum_{j=1}^{m} \eta_j^e} \left(\sum_{j=1}^{m} (f(x_j) - y_j)^\beta \right) \right)^{1/\beta}
\]

Discount coefficients in DCG
Regression loss

- **Classification based**

\[
1 - NDCG(f) \leq \frac{15}{Z_m} \sqrt{2 \left(\sum_{j=1}^{m} \eta_j^2 - m \prod_{j=1}^{m} \eta_j^2 \right) \cdot \sum_{j=1}^{m} I_{\{y_j \neq f(x_j)\}}}
\]

Discount coefficients in DCG
Classification loss
Pointwise Approach

- Although it seems the loss functions can bound (1-NDCG), the constants before the losses seem too large.

\[
\begin{align*}
 x_i, y_i &\quad Z_m \approx 21.4 & x_i, f(x_i) \\
 (x_1, 4) &\rightarrow DCG(f) \approx 21.4 & (x_1, 3) \\
 x_2, 3 &\quad |1 - NDCG(f)| = 0 & x_2, 2 \\
 x_3, 2 &\quad \frac{15}{Z_m} \sqrt{2 \left(\sum_{j=1}^{m} \left(\frac{1}{\log(j+1)} \right)^2 - m \sum_{j=1}^{m} \left(\frac{1}{\log(j+1)} \right)^2 \right)} \cdot \sum_{j=1}^{m} I_{\{y_j \neq f(x_j)\}} \approx 1.15 > 1 \\
 x_4, 1 &\quad & x_3, 1 \\
 & & x_4, 0
\end{align*}
\]
Pairwise Approach

• Unified loss vs. (1-NDCG)

 When $\beta_t = \frac{G(t)\eta(t)}{Z_m}$, $\tilde{L}(f)$ is a tight bound of (1-NDCG).

• Surrogate function of Unified loss

 After introducing weights β_t, loss functions in Ranking SVM, RankBoost, RankNet are Cost-sensitive Pairwise Comparison surrogate functions, and thus are consistent with and are upper bounds of the unified loss.

 Consequently, they also upper bound (1-NDCG).
Listwise Approaches

• No general analysis
 – Method dependent
 – Directness and consistency