CS4780: Information Retrieval
Course Policy

Hongning Wang
CS@Uva

http://www.cs.virginia.edu/~hw5x/Course/IR2020-Spring/_site/
Instructor

- Hongning Wang
 - Graduated from University of Illinois at Urbana-Champaign in 2014
Instructor

• Hongning Wang
 – Research area
 • Information retrieval
 • Data mining
 • Machine learning
 – Industry experience
 • Yahoo Labs
 • Microsoft Research
 • Snap
Goal of this course

- Discuss fundamental problems in information retrieval
 - Building blocks of search engine systems
 - Wide coverage of important IR techniques
 - Personalized recommendation
 - Online advertising
- Get hands-on experience by developing practical systems/components
- Prepare students for doing cutting-edge research in information retrieval and related fields
 - Open the door to the amazing job opportunities in IT industry
Outcomes

• Letters from former students

Dear professor,
Thank you so much for teaching me Information Retrieval which has been the most beneficial class this semester. I have got an internship position in Walmart Labs search team all because of the knowledge I learnt from your class. Although you are strict on the grade, but after all I think it's fair and still encourage me to learn better on IR.

Hi Professor Wang,
My name is XXX Zhang, and I just graduated from UVA in May. I will start working full-time at Google starting next Monday and I just got my team assignment today. I will be working at Google's search ranking team. I still remember the Information Retrieval class I took with you. That still remains one of my favorite CS classes at UVA!
I'm sending this email just to let you know that you have a former student working on search engines.

Hi Professor Wang,
I hope you are doing well! I am an alum of your Information Retrieval course and would like to say that you stood out as one of the best teachers I've had during my time at UVA.
I graduated in December of 2017 and since then I have been working as a Data Scientist here in Charlottesville. I've found a real passion in machine learning and plan on pursuing a career as a researcher in this field.
Character of this course

• Discussion oriented
 – This is how great ideas are created!
 – You are encouraged to express your thoughts, confusions, and suggestions
 – Focusing on why, rather than how
Prerequisites

• Programming skills – Important!
 – Basic data structures: CS 2150 or equivalent
 – **Java** is required for machine problems
 • Most open source packages are written in Java
 – Any language you choose for the rest of this course

• Math background
 – Probability
 • Discrete/continuous distributions, expectation, moments
 – Linear algebra
 • Vector, matrix, dot product
 – Optimization
 • Gradient-based methods
Pop-up quiz

1. Let $\mathbf{a}=(1,2,3)$ and $\mathbf{b}=(2,3,-2)$, the inner product between \mathbf{a} and \mathbf{b} is
 (a) 0 (b) 1 (c) 2 (d) 3

2. Let $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, what is \mathbf{A}^{-1},
 (a) $\begin{pmatrix} -1 & -2 \\ -2 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$
Pop-up quiz

3. What is the expectation of random variables drawn from Gaussian distribution N(0, 1),
 (a) 0 (b) 0.5 (c) 1 (d) 2

4. Complexity of merge sort,
 (a) $O(n)$ (b) $O(n^2)$ (c) $O(\log n)$ (d) $O(n \log n)$
Pop-up quiz

1. Let \(\mathbf{a} = (1, 2, 3) \) and \(\mathbf{b} = (2, 3, -2) \), the inner product between \(\mathbf{a} \) and \(\mathbf{b} \) is \(\text{ (c) } \)
 (a) 0 (b) 1 (c) 2 (d) 3

2. Let \(\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \), what is \(\mathbf{A}^{-1} \), \(\text{ (b) } \)
 (a) \(\begin{pmatrix} -1 & -2 \\ -2 & -1 \end{pmatrix} \)
 (b) \(\begin{pmatrix} -1 & 2 \\ 2 & 3 \end{pmatrix} \)
 (c) \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
 (d) \(\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \)
3. What is the expectation of random variables drawn from Gaussian distribution $N(0, 1)$, (a) 0 (b) 0.5 (c) 1 (d) 2

4. Complexity of merge sort, (c) (d)
(a) $O(n)$ (b) $O(n^2)$ (c) $O(\log n)$ (d) $O(n \log n)$
Structure of this course

• Six major topics will be covered by lectures
 – E.g., Search engine architecture, retrieval models, search evaluation, relevance feedback, and link analysis

• Latest development will be covered by paper reading assignments and presentations
 – E.g., mobile search, recommendation, personalization, you name it!
Grading policy

• Reading assignments (10%)
 – Peer evaluation, after each chapter

• Homework (35%)
 – Machine problems (~3)

• Midterm Exam (20%)
 – Check points of key concepts (in class, 75 minutes)

• Course project (35%)
 – In the exam week

No curving will be applied!
Grading policy

- Reading assignments (10%)
 - Peer evaluation, after each chapter
- Homework (35%)
 - Machine problems (~3)
- Midterm Exam (20%)
 - Check points of key concepts (in class, 75 minutes)
- Course project (35%)
 - In the exam week
- Paper presentation (10%)
 - For graduate students only

No curving will be applied!

fairness will be guaranteed by the instructor
Reading assignments

• Read the instructor selected papers after each chapter
• Open-ended essay questions
• Peer evaluation on course forum
Paper presentation

• Choose to present the most recent works in the area of information retrieval
• Peer evaluation
• Choose from the instructor’s selected papers, which are beyond our course content, so as to increase our topic coverage
Midterm exam

• In the second half of semester
 – ~after spring break
• Covers all material we would have learnt by then
• In-class, 75 minutes
• Format
 – True/False question
 – Short answer questions
 – Short essay questions

Fact-based questions
Research-like open discussions
You design your midterm?

• After each chapter, based on your understanding, post one question related to the most important concept in that chapter on our course forum

• Read the others’ posted questions and vote on them

• The top voted questions will be included in the midterm

• The authors of those top voted questions should provide the answer, and will get bonus points
Course project

• Topics
 – Implement algorithms in assigned research papers
 – Self-selected topics with permission from the instructor

• Team work
 – 3-4 students per group

• Evaluation
 – Two-page proposal (25%)
 – 15-minutes in-class presentation (40%)
 – Written report (35%)
Late policy

• Homework
 – Submit via Collab (no extension)
 – Late penalty: 15%, two weeks after the due date; 30%, afterwards

• Course project
 – Final report is due before presentation (no extension)
Classroom participation

• HIGHLY APPRECIATED!
 – Helps me quickly remember your names
 – Reminds me what is still confusing
 – You can drive the lecture/discussion in this class!
Contact information

• Lecture
 – Instructor: Hongning Wang
 – Time: Tu/Th 2:00pm to 3:15pm
 – Location: Olsson Hall 011
 – Office hours
 • Time: Tu/Th 3:30pm to 4:30pm
 • Location: Rice Hall 408
 • Additional office hour can be requested by email
Contact information

• TA
 – Nan Wang (nw6a@virginia.edu)
 – Office hour
 • Time: Monday/Wednesday 10:30am to 11:30am
 • Location: Rice Hall 442
 • Additional office hour can be request by email
Thank you!

QUESTIONS?