CS4780: Information Retrieval
Course Policy

Hongning Wang
CS@UVa

http://www.cs.virginia.edu/~hw5x/Course/IR2021-Spring/_site/
Instructor

- Hongning Wang
 - Graduated from University of Illinois at Urbana-Champaign in 2014
Instructor

• Hongning Wang
 – Research area
 • Information retrieval
 • Data mining
 • Machine learning
 – Industry experience
 • Yahoo Labs
 • Microsoft Research
 • Snap
 • Google Research
Goal of this course

• Discuss fundamental problems in information retrieval
 – Building blocks of search engine systems
 – Wide coverage of important IR techniques
 • Personalized recommendation
 • Online advertising
• Get hands-on experience by developing practical systems/components
• Prepare students for doing cutting-edge research in information retrieval and related fields
 – Open the door to the amazing job opportunities in IT industry
Dear professor,

Thank you so much for teaching me Information Retrieval which benefitted the most this semester. I have got an internship position in Walmart Labs search team all because of the knowledge I learnt from your class. Although you are strict on the grade, but after all I think it's fair and still encourage me to learn better on IR.

Hi Professor Wang,

My name is XXX Zhang, and I just graduated from UVA in May. I will start working full-time at Google starting next Monday and I just got my team assignment today. I will be working at Google's search ranking team. I still remembered the Information Retrieval class I took with you. That still remain one of my favorite CS classes at UVA!

I'm sending this email just to let you know that you have a former student working on search engines.

Hi Professor Wang,

I took your Info Retrieval class in Spring 2018 (almost exactly 3 years ago now...!) and I have saved the amazing powerpoints that you made to explain basic search architecture to us. Before I took the class, I hoped it was going to be a fun challenge and some of my other friends were taking it too. After taking the class I realized how lucky we all were to have you teaching us! So many things I learned in your class made me comfortable with the big words being thrown around and I had a second moment of feeling lucky that I decided to take your class back then.
Character of this course

• Discussion oriented
 – This is how great ideas are created!
 – You are encouraged to express your thoughts, confusions, and suggestions
 – Focusing on why, rather than how
Prerequisites

• Programming skills – Important!
 – Basic data structures: CS 2150 or equivalent
 – Java is required for machine problems
 • Most open source packages are written in Java
 – Any language you choose for the rest of this course

• Math background
 – Probability
 • Discrete/continuous distributions, expectation, moments
 – Linear algebra
 • Vector, matrix, dot product
 – Optimization
 • Gradient-based methods
Pop-up quiz

1. Let \(a = (1, 2, 3) \) and \(b = (2, 3, -2) \), the inner product between \(a \) and \(b \) is
 (a) 0 (b) 1 (c) 2 (d) 3

2. Let \(A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \), what is \(A^{-1} \),
 (a) \(\begin{pmatrix} -1 & -2 \\ -2 & -1 \end{pmatrix} \) (b) \(\begin{pmatrix} -1 & 2 \\ 2 & 3 \\ 3 & 1 \end{pmatrix} \) (c) \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) (d) \(\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \)
Pop-up quiz

3. What is the expectation of random variables drawn from Gaussian distribution $N(0, 1)$,
 (a) 0 (b) 0.5 (c) 1 (d) 2

4. Complexity of merge sort,
 (a) $O(n)$ (b) $O(n^2)$ (c) $O(\log n)$ (d) $O(n \log n)$
Pop-up quiz

1. Let \(\mathbf{a}=(1,2,3) \) and \(\mathbf{b}=(2,3,-2) \), the inner product between \(\mathbf{a} \) and \(\mathbf{b} \) is \(\text{(c)} \)

 (a) 0 \hspace{1cm} (b) 1 \hspace{1cm} (c) 2 \hspace{1cm} (d) 3

2. Let \(\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \), what is \(\mathbf{A}^{-1} \), \(\text{(b)} \)

 (a) \begin{pmatrix} -1 & -2 \\ -2 & -1 \end{pmatrix} \hspace{1cm} (b) \begin{pmatrix} -1/3 & 2/3 \\ 2/3 & -1/3 \end{pmatrix} \hspace{1cm} (c) \begin{pmatrix} 1/0 & 0 \\ 0 & 1 \end{pmatrix} \hspace{1cm} (d) \begin{pmatrix} 2/1 & 1/2 \\ 1 & 1 \end{pmatrix} \)
Pop-up quiz

3. What is the expectation of random variables drawn from Gaussian distribution \(N(0, 1) \),
 (a) 0 (b) 0.5 (c) 1 (d) 2
 (a) 0 (b) 0.5 (c) 1 (d) 2

4. Time complexity of merge sort,
 (a) \(O(n) \) (b) \(O(n^2) \) (c) \(O(\log n) \) (d) \(O(n \log n) \)
 (c) \(O(\log n) \) (d) \(O(n \log n) \)
Structure of this course

• Six major topics will be covered by lectures
 – E.g., Search engine architecture, retrieval models, search evaluation, relevance feedback, and link analysis

• Latest development will be covered by paper reading assignments and presentations
 – E.g., mobile search, recommendation, personalization, online learning, you name it!
Grading policy

- Reading assignments (10%)
 - Peer evaluation, after each chapter
- Homework (35%)
 - Machine problems (~3)
- Paper presentation (20%)
 - In class, performed in groups
- Course project (35%)
 - In the exam week

No curving will be applied!
Reading assignments

• Read the instructor selected papers after each chapter
• Open-ended essay questions
• Peer evaluation on course forum
Paper presentation

• Choose to present the most recent works in the area of information retrieval
• Peer evaluation
• Choose from the instructor’s selected papers, which are beyond our course content, so as to increase our topic coverage
Course project

• Topics
 – Implement algorithms in assigned research papers
 – Self-selected topics with permission from the instructor

• Team work
 – 3-4 students per group

• Evaluation
 – Two-page proposal (25%)
 – 15-minutes in-class presentation (40%)
 – Written report (35%)
In-class quiz

- After each chapter, the instructor will prepare a quiz to cover the most important concept in that chapter.
- Its sole purpose is to help you review the learnt materials, and it is **not** part of our grading.
Late policy

• Homework
 – Submit via Collab (no extension)
 – Late penalty: 15%, two weeks after the due date; 30%, afterwards

• Course project
 – Final report is due right after presentation (no extension)
Classroom participation

• HIGHLY APPRECIATED!
 – Helps me quickly remember your names
 – Reminds me what is still confusing
 – You can drive the lecture/discussion in this class!
Contact information

• Lecture
 – Instructor: Hongning Wang
 – Time: Tu/Th 2:00pm to 3:15pm
 – All via zoom, and recordings will be uploaded to collab right after
 – Office hours
 • Time: Tu/Th 3:30pm to 4:30pm
 • All via zoom, make appointments beforehand
 • Additional office hour can be requested by email
Contact information

• TA
 – Nan Wang (nw6a@virginia.edu)
 – Office hour
 • Time: Monday/Wednesday 10:30am to 11:30am
 • All via zoom, make appointments beforehand
 • Additional office hour can be request by email
Thank you!

QUESTIONS?