Graph neural networks for social recommendation

Author: Wenqi Fan, Yao Ma el al.

Presenter: Jingyuan Chou, Wenbo Pang, Zhiming Fan

Outline

- 1. Introduction
- 2. Motivation and Challenge
- 3. Problem Formulation
- 4. Methodology
- 5. Experiments and Results
- 6. Model Analysis
- 7. Summary

Introduction

- 1. Graph serves as a common form of interactions between users or items.
 - a. Social Network is the typical graph in real-world activities
 - b. It's common scenario that users acquire or disseminate information through people around them, such as friends, classmates or parents, etc.
 - c. Except for interaction between users, the relationship between item and user can also be viewed as a type of interaction: rating
 - d. Interaction between user's social network can boost the information passing for the corresponding item
 - i. User will recommend item which he think is great to his close friends
- 2. This kind of **message passing** through graph-like network is perfect for **Graph Neural Network.**

Motivation and Challenges

- Motivation: As social connection can boost the message passing through the whole network, it can be naturally formed as a message passing problem on graph
- 2. Challenges:
 - a. How to combine these two graphs?
 - b. how to capture interactions and opinions between users and items jointly ?
 - c. Strong ties and weak ties?

Figure 1: Graph Data in Social Recommendation. It contains two graphs including the user-item graph (left part) and the user-user social graph (right part). Note that the number on the edges of the user-item graph denotes the opinions (or rating score) of users on the items via the interactions.

All lead to representations of users and items!

Problem Formulation

- 1. $U = \{u_1, u_2, ..., u_n\}$ as the set of users, total n users
- 2. $V = \{v_1, v_2, \dots, v_m\}$ as the set of items, total m items
- 3. User item rating graph:
 - a. Rating matrix (user-item graph) is formed as \mathbb{R}^{n^*m}
 - b. $O = \{ \langle u_i, v_j \rangle | r_{ij} \neq 0 \}$ is the set of known ratings
 - C. $T = \{ \langle u_i, v_j \rangle | r_{ij} = 0 \}$ is the set of unknown ratings
 - d. N(i) is the set of users whom u_i directly connected with
 - e. C(i) is the set of items which u_i have interacted with
 - f. B(j) is the set of users who have interacted with item v_i
- 4. User User social graph:
 - a. **n** * **n** matrix **T**, 1 if relationship exist between two users, 0 otherwise
- 5. Given both two graphs, **R** and **T**, we aim to predict missing rating value in **R**.

Methodology Overview

Figure 2: The overall architecture of the proposed model. It contains three major components: user modeling, item modeling, and rating prediction.

Methodology Overview

User Modeling

.

- **Aim**: user latent factors: $h_i \in \mathbb{R}^d$ for user u_i
- Two aggregation: Item Aggregation & Social Aggregation

✓ Item Aggregation

(1) Item Aggregation

- To learn item-space user latent factor $h_i^l \in \mathbb{R}^d$ from the **user-item graph**
- **user-item graph** : interactions & users' opinions (rate score)
- General calculation

$$egin{aligned} \mathbf{h}^I_i &= \sigma(\mathbf{W} \cdot ext{ Aggre}_{ ext{ items}} \left(\{ \mathbf{x}_{ia}, orall a \in C(i) \}
ight) + \mathbf{b}) \ \mathbf{x}_{ia} &= g_v([\mathbf{q}_a \oplus \mathbf{e}_r]) \end{aligned}$$

Mean Aggregation

$$\mathbf{h}_i^I = \sigma igg(\mathbf{W} \cdot igg\{ \sum_{a \in C(i)} lpha_i \mathbf{x}_{ia} igg\} + \mathbf{b} igg) ext{ where } lpha_i ext{ is fixed to } rac{1}{|C(i)|}$$

Attention mechanism

$$lpha_{ia}^* = \mathbf{w}_2^T \cdot \sigma(\mathbf{W}_1 \cdot [\mathbf{x}_{ia} \oplus \mathbf{p}_i] + \mathbf{b}_1) + b_2$$

$$lpha_{ia} = rac{\exp(lpha_{ia}^*)}{\sum_{a \in C(i)} \exp(lpha_{ia}^*)}$$

User Modeling

.

- **Aim**: user latent factors: $h_i \in \mathbb{R}^d$ for user u_i
- **Two aggregation**: Item Aggregation & Social Aggregation

[✓] Social Aggregation

(2) Social Aggregation

- To learn social-space user latent factor $h_i^S \in \mathbb{R}^d$ from the **social graph**
- > To aggregate the item-space user latent factors of u_i 's neighbor users

$$\mathbf{h}_{i}^{S} = \sigmaig(\mathbf{W} \cdot ext{ Aggre }_{ ext{neighbors}}ig(ig\{\mathbf{h}_{o}^{I}, orall o \in N(i)ig\}ig) + \mathbf{b}ig)$$

Mean Aggregation

$$\mathbf{h}_i^S = \sigma \left(\mathbf{W} \cdot \left\{ \sum_{o \in N(i)} eta_i \mathbf{h}_o^I
ight\} + \mathbf{b}
ight) ext{ where } eta_i ext{ is fixed to } rac{1}{|N(i)|}$$

Attention mechanism

$$egin{aligned} \mathbf{h}^S_i &= \sigma \Big(\mathbf{W} \cdot \left\{ \sum_{o \in N(i)} eta_{io} \mathbf{h}^I_o
ight\} + \mathbf{b} \Big) \ eta^*_{io} &= \mathbf{w}^T_2 \cdot \sigma ig(\mathbf{W}_1 \cdot ig[\mathbf{h}^I_o \oplus \mathbf{p}_i ig] + \mathbf{b}_1 ig) + b_2 \ eta_{io} &= rac{\exp(eta^*_{io})}{\sum_{o \in N(i)} \exp(eta^*_{io})} \end{aligned}$$

User Modeling

.

Aim: user latent factors: $h_i \in \mathbb{R}^d$ for user u_i

Learning User Latent Factor

- Combine two factors *h*^I_i and *h*^S_i to the final user latent factor via a standard MLP
- Calculation

$$egin{aligned} \mathbf{c}_1 &= \left[\mathbf{h}_i^I \oplus \mathbf{h}_i^S
ight] \ \mathbf{c}_2 &= \sigma(\mathbf{W}_2 \cdot \mathbf{c}_1 + \mathbf{b}_2) \ & \dots \ \mathbf{h}_i &= \sigma(\mathbf{W}_l \cdot \mathbf{c}_{l-1} + \mathbf{b}_l) \end{aligned}$$

where l is the index of a hidden layer.

Methodology Overview

Item Modeling

.

- **Aim**: item latent factors: $\mathbf{z}_i \in \mathbb{R}^d$ for item v_i
- Aggregation: User Aggregation

User Aggregation

- For each item v_j, we need to aggregate information from the set of users who have interacted with v_j, , denoted as B(j)
- > Denote: opinion-aware interaction user representation \mathbf{f}_{jt} basic user embedding \mathbf{p}_t opinion embedding \mathbf{e}_r via a MLP \boldsymbol{g}_u

 $\mathbf{f}_{jt} = g_u([\mathbf{p}_t \oplus \mathbf{e}_r])$

> To learn item latent factor z_i

$$\mathbf{z}_j = \sigma(\mathbf{W} \cdot ext{ Aggre }_{ ext{users}} \left(\{ \mathbf{f}_{jt}, orall t \in B(j) \}
ight) + \mathbf{b})$$

Attention mechanism to differentiate users

$$egin{aligned} \mathbf{z}_j &= \sigma \Bigg(\mathbf{W} \cdot \Bigg\{ \sum_{t \in B(j)} \mu_{jt} \mathbf{f}_{jt} \Bigg\} + \mathbf{b} \Bigg) \ \mu_{jt}^* &= \mathbf{w}_2^T \cdot \sigma ig(\mathbf{W}_1 \cdot ig[\mathbf{f}_{jt} \oplus \mathbf{q}_j ig] + \mathbf{b}_1 ig) + b_2 \ \mu_{jt} &= \cfrac{\expig(\mu_{jt}^*ig)}{\sum_{t \in B_{(j)}} \expig(\mu_{jt}^*ig)} \end{aligned}$$

Methodology Overview

Rating Prediction & Model Training

Rating Prediction

- Predict with the two latent factors: h_i and z_i
- Concatenation & MLP

$$egin{aligned} \mathbf{g}_1 &= [\mathbf{h}_i \oplus \mathbf{z}_j] \ \mathbf{g}_2 &= \sigma(\mathbf{W}_2 \cdot \mathbf{g}_1 + \mathbf{b}_2) \ \dots \ \mathbf{g}_{l-1} &= \sigma(\mathbf{W}_l \cdot \mathbf{g}_{l-1} + \mathbf{b}_l) \ r_{ij}' &= \mathbf{w}^T \cdot \mathbf{g}_{l-1} \end{aligned}$$

Model Training

Objective function

$$\mathrm{Loss}~=rac{1}{2|O|}\sum_{i,j\in O}\left(r_{ij}^{\prime}-r_{ij}
ight)^{2}$$

- Optimizer: RMSprop
- Randomly Initialization
- Dropout strategy

Experiment Settings

Datasets

- Social Network Websites: Ciao, Epinions.
- Both allow users to rate items, browse/write reviews and add friends.
 Table 2: Statistics of the datasets

Dataset	Ciao	Epinions	
# of Users	7,317	18,088	
# of Items	10,4975	261,649	
# of Ratings	283,319	764,352	
# of Density (Ratings)	0.0368%	0.0161%	
# of Social Connections	111,781	355,813	
# of Density (Social Relations)	0.2087%	0.1087%	

- Evaluation Metrics
 - MAE(Mean Absolute Error):

$$loss = \sum_{i=1}^{n} |y_i - \tilde{y}_i|$$

RMSE(Root Mean Square Error)

$$loss = \sum_{i=1}^n \sqrt{y_i^2 - \tilde{y}_i^2}$$

- Comparison Baselines
 - Group1: Traditional RS w/o Social Network
 - Group2: Traditional RS with Social Network
 - Group3: Deep Neural Network RS w/o Social Network
 - Group4: Deep Neural Network RS with Social Network

	Group 1	Group 2	Group 3	Group 4	
Models	PMF	SoRec	NeuMF	DeepSoR	
		SoReg		GCMC+SN	
		Social MF		GraphRec (Proposed)	
		Trust MF			

Comparison Results

Observation 1: Group 2 always outperform Group 1 to verify the effectiveness of social network info.

Observation 2: Group 3 > Group 1 && Group 4 > Group2 to verify the power of deep neural network

Observation 3: Among the baseline, GCMC+SN shows strong perf., which implies the power of GNN

Observation 4: Proposed GraphRec is the best because of the intro. of interactions and opinions in user-item graph

Training	Metrics	Algorithms								
		PMF	SoRec	SoReg	SocialMF	TrustMF	NeuMF	DeepSoR	GCMC+SN	GraphRec
Ciao	MAE	0.952	0.8489	0.8987	0.8353	0.7681	0.8251	0.7813	0.7697	0.7540
(60%)	RMSE	1.1967	1.0738	1.0947	1.0592	1.0543	1.0824	1.0437	1.0221	1.0093
Ciao	MAE	0.9021	0.8410	0.8611	0.8270	0.7690	0.8062	0.7739	0.7526	0.7387
(80%)	RMSE	1.1238	1.0652	1.0848	1.0501	1.0479	1.0617	1.0316	0.9931	0.9794
Epinions	MAE	1.0211	0.9086	0.9412	0.8965	0.8550	0.9097	0.8520	0.8602	0.8441
(60%)	RMSE	1.2739	1.1563	1.1936	1.1410	1.1505	1.1645	1.1135	1.1004	1.0878
Epinions	MAE	0.9952	0.8961	0.9119	0.8837	0.8410	0.9072	0.8383	0.8590	0.8168
(80%)	RMSE	1.2128	1.1437	1.1703	1.1328	1.1395	1.1476	1.0972	1.0711	1.0631

Table 3: Performance comparison of different recommender systems

60%: 60% data in training set 80%: 80% data in training set

Model Analysis

Several A/B tests to verify the impact of different model components and hyper-parameters Methodology: Remove the test components to observe the change of performance.

Analysis 1 : Effect of Social Network and User Opinior

- only remove social network info: GraphRec-SN
- only remove interaction opinions: GraphRec-Opinion

Model Analysis

Analysis 2 : Effect of Attention Mechanisms

- Only remove item attention: GraphRec-α
- Only remove social attention: GraphRec-β
- Both remove α&β: GraphRec- α&β
- only remove user attention: GraphRec-µ

Model Analysis

Analysis 3 : Effect of Embedding Size

- Test the performance change with various embedding size {8, 16, 32, 64, 128, 256}
- Larger embedding size(8->64) will decrease the loss but increase the computation complexity.

Summary

Strength:

- Leverage the graph topological info and GNN
- Integrated user-item info, social info, rating info in the neural network
- Introduction of attention mechanism to obtain the various contribution weights
- Elaborative comparison experiments and A/B tests for model components

Weakness:

- Lack of some theatrical proof and derivative
- Model Computation Complexity ?
- Evaluation Metric is good enough ?

Q & A

