Self-attentive Sequential Recommendation

Sung Joon Park, Michael Chang, Henry Carscadden

Problem Background

- Goal of any sequential recommendation system: capture the 'context' of users' activities on the basis of actions they have performed recently
 - Challenge: How to capture useful patterns from a user's action history?
- Traditional methods:
 - Markov Chains (MCs)
 - Recurrent Neural Networks (RNNs)
- Inspiration: *Transformer*
 - A new sequential model for machine translation tasks
 - Introduced a proposed attention mechanism called 'self-attention'

Self-attentive Sequential Recommendation Model (SASRec)

- Application of the self-attention mechanism to sequential recommendation systems
- Goal: Fix the problems found in Markov Chains and Recurrent Neural Networks
 - SASRec can adapt depending on the dataset sparsity
- Self-attention mechanism is suitable for parallel acceleration
 - Allows SASRec model to be faster than CNN/RNN-based alternatives

Related Work

General Recommendations

- Matrix Factorization (ex: NeuMF)
- Item Similarity Models (ISM)

Temporal Recommendation

- Timestamps on users' activities Sequential Recommendation
 - FPMC (MF + item-item transitions)
 - RNNs (Ex: GRU4Rec)

Attention Mechanisms

Dataset

4 datasets

- Amazon (Beauty, Games): sparse
- Steam: dense
- MovieLens: very dense

Data Usage:

- Usage of review/rating & timestamp
- Data Partitioning

Table II: Dataset statistics (after preprocessing)

Dataset	#users	#items	avg. actions /user	avg. actions /item	#actions	
Amazon Beauty	52,024	57,289	7.6	6.9	0.4M	
Amazon Games	31,013	23,715	9.3	12.1	0.3M	
Steam	334,730	13,047	11.0	282.5	3.7M	
MovieLens-1M	6,040	3,416	163.5	289.1	1.0M	

Comparison Methods

General Recommendations

- PopRec
- Bayesian Personalized Ranking (BPR)

Sequential Recommendation (1st order: only last visited item)

- Factorized Markov Chains (FMC)
- Factorized Personalized Markov Chains (FMC)
- Translation-based Recommendation (TransRec)

Deep-learning based sequential recommender systems (multiple previous items)

- GRU4Rec / GRU4Rec+
- Convolutional Sequence Embeddings

Overview of Model

- 1. Passes inputs through embedding layer
 - a. Item and position embedding added
- 2. *b* blocks applied
 - a. Embeddings passed to attention layer
 - b. Output is processed
 - i. Layer Normalization applied
 - ii. Dropout applied
 - iii. Residual connections applied
 - c. Two feed-forward layers applied
- 3. Outputs decoded and highest probability item chosen

Input Embedding

- Embedding finds latent features describes inputs
 - Learns lower-dimensional representation that reproduces original input well
- Input embedding matrix (E) is the sum of two embeddings
 - Item embedding encodes item similarity
 - Positional embedding encodes the sequential nature of user's interactions
- Row *i* embeds item *i* to capture its relation to other items and its position

$$\widehat{\mathbf{E}} = \begin{bmatrix} \mathbf{M}_{s_1} + \mathbf{P}_1 \\ \mathbf{M}_{s_2} + \mathbf{P}_2 \\ \\ \cdots \\ \mathbf{M}_{s_n} + \mathbf{P}_n \end{bmatrix}$$

SA (Self-Attention) Mechanism

- Three learned projections (W^K, W^Q, W^V) map input matrices to K (keys), Q (queries), and V (values)
- Each entry in the output of a SA layer is the dot product of a query vector and key vector scaled by a value vector
 - \circ Recall for vectors a, b, a·b represents similarity of vectors
 - Each entry represents interaction between a key and query
 - \circ Interactions forbidden between vector K_i and Q_i where j > i
 - Allowing such interactions outside of time horizon

Attention(Q, K, V) = softmax
$$\left(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d}}\right)$$
 V, (2)

$$\mathbf{S} = \mathbf{S}\mathbf{A}(\widehat{\mathbf{E}}) = \mathbf{A} \text{ttention}(\widehat{\mathbf{E}}\mathbf{W}^{Q}, \widehat{\mathbf{E}}\mathbf{W}^{K}, \widehat{\mathbf{E}}\mathbf{W}^{V}), \quad (3)$$

Intermediate Layers

- SA is passed to a two feedforward layers
 - Latent dimensionality *d* is maintained
 - Adds non-linearity to the network architecture
- Layer connection and regularization
 - Residual Connections
 - Passes connections between layers
 - Allows different levels of structure to interact
 - Dropout
 - Neurons randomly have activation set to 0
 - Reduces overfitting in deep networks
 - Normalization
 - Ensures layer output is Gaussian (0, 1)
 - Stabilizes training

$$\mathbf{F}_i = \text{FFN}(\mathbf{S}_i) = \text{ReLU}(\mathbf{S}_i \mathbf{W}^{(1)} + \mathbf{b}^{(1)}) \mathbf{W}^{(2)} + \mathbf{b}^{(2)},$$

Results

- 3 groups of recommendation baselines used:
 - a. General recommendation methods
 - Pop Rec
 - Bayesian Personalized Ranking (BPR)
 - b. Sequential recommendation methods
 - Factorized Markov Chains (FMC)
 - Factorized Personalized Markov Chains (FPMC)
 - Translation-based Recommendation (TransRec)
 - c. Deep-learning based sequential recommendation systems
 - GRU4Rec
 - GRU4Rec⁺
 - Convolutional Sequence Embeddings (Caser)
- 2 evaluation metrics:
 - a. Hit Rate@10: counts the fraction of times that the ground-truth next item is among the top 10 items
 - b. NDCG@10: a position-aware metric which assigns larger weights on higher positions

Results cont.

Table III: Recommendation performance. The best performing method in each row is boldfaced, and the second best method in each row is underlined. Improvements over non-neural and neural approaches are shown in the last two columns respectively.

Dataset	Metric	(a) PopRec	(b) BPR	(c) FMC	(d) FPMC	(e) TransRec	(f) GRU4Rec	(g) GRU4Rec ⁺	(h) Caser	(i) SASRec	Improve (a)-(e)	ment vs. (f)-(h)
		ropree	DIR	Thie	TIME	munsitee	one mee	one mee	Cuber	bribitee	(4) (0)	(1) (11)
Beauty	Hit@10 NDCG@10	0.4003 0.2277	0.3775 0.2183	0.3771 0.2477	0.4310 0.2891	$\frac{0.4607}{0.3020}$	0.2125 0.1203	0.3949 0.2556	0.4264 0.2547	0.4854 0.3219	5.4% 6.6%	13.8% 25.9%
Games	Hit@10 NDCG@10	0.4724 0.2779	0.4853 0.2875	0.6358 0.4456	0.6802 0.4680	$\frac{0.6838}{0.4557}$	0.2938 0.1837	0.6599 0.4759	0.5282 0.3214	0.7410 0.5360	8.5% 14.5%	12.3% 12.6%
Steam	Hit@10 NDCG@10	0.7172 0.4535	0.7061 0.4436	0.7731 0.5193	0.7710 0.5011	0.7624 0.4852	0.4190 0.2691	$\frac{0.8018}{0.5595}$	0.7874 0.5381	0.8729 0.6306	13.2% 21.4%	8.9% 12.7%
ML-1M	Hit@10 NDCG@10	0.4329 0.2377	0.5781 0.3287	0.6986 0.4676	0.7599 0.5176	0.6413 0.3969	0.5581 0.3381	0.7501 0.5513	0.7886 0.5538	0.8245 0.5905	8.5% 14.1%	4.6% 6.6%

Training Efficiency & Scalability

Table V: Scalability: performance and training time with different maximum length n on ML-1M.

\overline{n}	10	50	100	200	300	400	500	600	
Time(s)	75	101	157	341	613	965	1406	1895	

Future Work

- SASRec model was able to adaptively consider items for prediction
- Empirical results on sparse and dense datasets show that SASRec can outperform many baselines
- Future work:
 - Extending the model using rich context information
 - E.g. dwell time, action types, locations, devices, etc.
 - Handle much longer sequences
 - E.g. clicks

References

- Kang, W., & McAuley, J. (2018, August 20). Self-Attentive sequential Recommendation. Retrieved March 20, 2021, from https://arxiv.org/abs/1808.09781
- Le, J. (2020, June 28). Recommendation system series Part 4: The 7 variants of MF for collaborative filtering. Retrieved March 25, 2021, from https://towardsdatascience.com/recsys-series-part-4-the-7-variants-of-matrix-f actorization-for-collaborative-filtering-368754e4fab5