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Introduction

e Personal recommendation has sparked a lot of interest in rich structured

information in the form of knowledge graphs
e Most existing approaches only focus on using knowledge graphs for more
accurate recommendation
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Introduction

e This paper performs explicit reasoning with knowledge for decision making so
that the recommendations are supported by an interpretable causal inference
procedure.

e They propose a method called Policy-Guided Path Reasoning, which uses
both recommendation and interpretability by providing actual paths in a
knowledge path.



Introduction

4 main contributions

Highlight the significance of incorporating knowledge graphs into
recommendation to formally define and interpret the reasoning process
Propose a reinforcement learning (RL) approach featuring an innovative soft
reward strategy, user-conditional action pruning and a multi-hop scoring
function

Design a policy-guided graph search algorithm to efficiently and effectively
sample reasoning paths for recommendation

Extensively evaluate our method on several large-scale real-world benchmark
datasets, obtaining favorable results compared with state-of-the-art methods



Methodology: Problem Formulation 1

KGRE-Rec Problem

Definition 3.2. (KGRE-Rec Problem) Given a knowledge graph
Gr, user u € U and integers K and N, the goal is to find a recom-
mendation set of items {in},e;n) € I such that each pair (u, ip) is
associated with one reasoning path pp.(u.in) (2 < k < K),and N is

the number of recommendations.

Inputs: knowledge graph, user
Outputs: set of recommended items such that each pair of user
and set of items is associated with one reasoning path



Example
Inputs: KG, u=“user A”, K=3, N=3.

(Assume “item A” is potential recommendation.)
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Algorithm would output one of the following paths:

e ‘“user A->“purchase” -> “item B” -> “purchase” -> “user B” -> “purchase” -> “item A”
e ‘userA’->"mention” -> “feature A” -> “described_by” -> “item A”



Methodology: Problem Formulation 2

Goal: Simultaneously conduct item recommendation and path finding

Challenges:

e Do not have pre-defined targeted items for any user
e Not applicable to use a binary reward indicating whether the user interacts with the item or not

e Out-degrees of some entities may be very large, degrading efficiency of finding paths

Important Aspects

e Incorporate the uncertainty of how an item is relevant to a user based on the rich heterogeneous

information given by the knowledge graph (KG)
e Effectively perform edge pruning and efficiently search relevant paths towards potential items using

the reward as a heuristic
e Diversity of reasoning paths for recommended items should be guaranteed for every user



Overall Solution

Policy-Guided Path Reasoning (PGPR) method for explainable recommendation over knowledge graphs

e Solves the problem through reinforcement learning (RL)
o making recommendations while simultaneously searching paths in the context of rich
heterogeneous information in the knowledge graph

e Train an RL agent that learns to navigate to potentially “good” items conditioned on the starting user
in the KG environment

e Agentis then exploited to efficiently sample reasoning paths for each user leading to the
recommended items

e Sampled paths serves as the explanations for the recommended items



RL-based Approach

User-Conditional Action Pruning Strategy

e Keeps the promising edges conditioned on the starting user based on a
scoring function.
e Scoring function maps any edge to a real-valued score conditioned on a user

Soft Reward Strategy

e Unfeasible to consider binary rewards indicating whether the agent has
reached a target or not

e Instead agent is encouraged to explore as many “good” paths as possible. A
“‘good path” is one that leads to an item that a user will interact with.



Methodology: Beam Search-Based Algorithm

e Most search methods will return similar reasoning paths from a user to candidate items

e Solution: use beam search to return a wide variety of recommended items, ranked
based on their path reward

e In the case that multiple sequences result in the same item i , choose the path with the
highest generative probability



Methodology: Beam Search-Based Algorithm

Beam search is a greedy breadth-first search algorithm that chooses the k tokens with the highest
conditional probability at each time step. k is a predetermined parameter called the “beam size”. At each
time step, the current sequence is returned as a possible output sequence
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Experimentation: Data Description

e Data from 4 categories on Amazon:
CDs and Vinyl, Clothing, Cell
Phones, and Beauty

e [Each category was treated
separately during the experiment

e Data was preprocessed using a
frequency metric that removed
irrelevant words

e /0% of data was used for training,
30% for testing

Entities Description
User User in recommender system
Item Product to be recommended to users
Feature A product feature word from reviews
Brand Brand or manufacturer of the product
Category Category of the product
Relations Description
purchase
Purchase User ———— Item
Mention User ——% Feature

Described by
Belong to
Produced by
Also_bought
Also_viewed

Bought_together

described by

Item ——  Feature
belong to

Item ————— Category
produced_by

Item ——— > Brand

also_bought
Item ———— Item
also_viewed
Item ———————— another Item

bought together
Item ————————— another Item



Experiment Setup: Other Models

e Models used for comparison:

o o0 O O O O O

BPR - Bayesian personalized ranking model
BPR-HFT - Hidden Factors and Topics model
VBPR - Visual Bayesian Personalized Ranking
TransRec

DeepCoNN - Deep Cooperative Neural Networks
CKE - Collaborative Knowledge base Embedding
JRL



Experiment Setup: Evaluation Methods

e Each model was applied to each category and evaluated using:

o NDCG
o Recall
o HR

o Precision
e Metrics were based on top 10 predictions



Experiment Results

e Results were compelling: PGPR outperformed all other methods in every
metric across the 4 categories

e Success rate for finding valid paths: 50%

e PGPR was able to find multiple lines of reasoning for some recommendations

e Performance improved with smaller action space — good scoring function

Dataset CDs & Vinyl Clothing Cell Phones Beauty
Measures (%) | NDCG Recall HR Prec. | NDCG Recall HR Prec. | NDCG Recall HR Prec. | NDCG Recall HR Prec.
BPR 2.009 2679 8554 1.085 | 0.601 1.046 1767 0.185 1998 3258 5273 0.595 | 2.753 4.241 8.241 1.143
BPR-HFT 2,661 3570 9926 1.268 | 1.067 1.819 2872 0297 | 3.151 5307 8125 0.860 | 2934 4459 8268 1.132
VBPR 0.631 0.845 2930 0328 | 0.560 0.968 1.557 0.166 | 1.797 3.489 5002 0507 | 1.901 2786 5961 0.902

TransRec 3372 5283 11956 1.837 | 1.245 2.078 3.116 0312 | 3361 6.279 8.725 0962 | 3.218 4.853 0.867 1.285
DeepCoNN | 4.218 6.001  13.857 1.681 | 1.310 2332 3.286 0.229 | 3.636 6.353 9913 0.999 | 3.359 5429 9.807 1.200

CKE 4620 6.483 14541 1.779 | 1.502 2509 4275 0388 | 3.995 7.005 10809 1.070 | 3.717 5938 11.043 1.371
JRL 5.378" 7.545% 16.774" 2.085" | 1.735" 2.989" 4.634" 0.442" | 4364 7.510° 10.940" 1.096" | 4.396" 6.949" 12.776" 1.546"
PGPR (Ours) | 5.590 7.569 16.886 2.157 | 2.858 4.834 7.020 0.728 | 5.042 8.416 11.904 1.274 | 5.449 8.324 14.401 1.707

Table 2: Overall recommendation effectiveness of our method compared to other baselines on four Amazon datasets. The

results are reported in percentage (%) and are calculated based on the top-10 predictions in the test set. The best results are
highlighted in bold and the best baseline results are marked with a star ().




Experiment: Multi-Hop Scoring Function

Determine whether multi-hop scoring functions can improve recommendation performance
as opposed to the default 1-hop
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Figure 3: Recommendation effectiveness of our model under different sizes of pruned action spaces on the Clothing dataset.
The results using multi-hop scoring function are also reported.
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Figure 4: Recommendation effectiveness of our model under different sizes of pruned action spaces on the Beauty dataset. The
results using multi-hop scoring function are also reported.



Experiment: Sampling Size in Path Reasoning

Determine how the sampling size for path reasoning influences recommendation
performance

Dataset Clothing Beauty

Sizes NDCG Recall HR Prec. | NDCG Recall HR Prec.
25, 5; 1 2.858 4.834 7.020 0.728 | 5.449 8.324 14401 1.707
20, 6, 1 2918 4943 7.217 0.749 | 5.555 8.470 14.611 1.749
20, 3, 2 2.538 4.230 6.177 0.636 | 4.596 6.773 12.130 1.381
15,8, 1 2.988 5.074 7.352 0.767 | 5.749 8.882 15.268 1.848
15,4,2 | 2.605 4348 6.354 0.654 | 4.829 7.138 12.687 1.458
12,10, 1| 3.051 5.207 7.591 0.791 | 5.863 9.108 15.599 1.905
12; 5, 2 2.700 4.525 6.575 0.679 | 4968 7.365 13.168 1.519
10, 12,1 | 3.081 5.271 7.673 0.797| 5.926 9.166 15.667 1.920
10,6,2 | 2.728 4.583 6.733 0.693 | 5.067 7.554 13.423 1.559

Table 4: Influence of sampling sizes at each level on the rec-
ommendation quality. The best results are highlighted in
bold and the results under the default setting are underlined.
All numbers in the table are given in percentage (%).




Experiment: History Representations

Determine how different representations of state history influence the method

Dataset Clothing Beauty

History | NDCG Recall HR Prec. | NDCG Recall HR Prec.
0-step 1.972 3.117 4492 0462 | 3.236 4.407 8.026 0.888
1-step 2.858 4.834 7.020 0.728 | 5.449 8.324 14.401 1.707
2-step 2.786 4702 6.865 0.710 | 5.342 8.181 14.168 1.669

Table 5: Results for different history representations of state.
All numbers in the table are given in percentage (%).




Conclusions and Future Work

e Future models should have the ability to perform explicit reasoning over
knowledge for decision making

e For future work, PGPR can be used for many other graph based tasks
including product search and social recommendation.

e PGPR can also be used to model time-evolving graphs for dynamic decision

support.
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