FA*IR: A Fair Top-k Ranking Algorithm

Zehlike, Meike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, and Ricardo Baeza-Yates.

Presented By: Jiajia Liang, Linyang Du, Jie Fan

<u>Outline</u>

- Part 1: Motivation
- Part 2: Fair Top-k Ranking Problem
- Part 3: Algorithm
- Part 4: Experiments & Results
- Part 5: Contributions & Limitations

If you are a hiring manager, you need to select a smaller group that will be interviewed for a position from a large pool of candidates.

1: Motivation

WVA ENGINEERING

Desired properties:

- Fairness: representation of the protected group does not fall below a minimum proportion at any point in the ranking.
- Maximize utility: interview the most qualified candidates

Part 2: The Fair Top-k Ranking Problem

Fairness top-k ranking criteria:

A ranking selection should include candidates with following characteristics.

- 1. Ranked group fairness: represent protected group.
- 2. Selection utility: contain most qualified candidates.
- 3. Ordering utility: ordered by decreasing qualification.

Definition 1: Set of candidates must have protected candidates **fairly represent the protected group with minimal proportion p and significance a**.

Definition 2: Every candidate within top-k ranking needs to satisfy the **fairness** representation condition with proportion p and adjusted significance a.

Definition 3: Ranked utility. Maximum ranked individual utility must be at the top of the ranking list.

Definition 4: Selection utility. Prefer rankings in which the more qualified candidates are included and the less qualified excluded.

Definition 5: Ordering utility. Prefer top-k lists in which more qualified candidates are ranked above less qualified ones.

Definition 6: In group monotonicity. Both protected and non-protected candidates must be sorted by decreasing qualifications.

Part 3: Algorithm

1 $P_0, P_1 \leftarrow$ empty priority queues with bounded capacity k 2 for $i \leftarrow 1$ to n do insert *i* with value q_i in priority queue P_{q_i} 3 4 end 5 for $i \leftarrow 1$ to k do $m[i] \leftarrow F^{-1}(\alpha_c; i, p)$ 7 end $s (t_p, t_n) \leftarrow (0, 0)$ 9 while $t_p + t_n < k$ do if $t_p < m[t_p + t_n + 1]$ then 10 // add a protected candidate $t_p \leftarrow t_p + 1$ 11 $\tau[t_p + t_n] \leftarrow \text{dequeue}(P_1)$ 12 else 13 // add the best candidate available if $q(\text{peek}(P_1)) \ge q(\text{peek}(P_0))$ then 14 $t_p \leftarrow t_p + 1$ 15 $\tau[t_p + t_n] \leftarrow \text{dequeue}(P_1)$ 16 else 17 $t_n \leftarrow t_n + 1$ 18 $\tau[t_p + t_n] \leftarrow \text{dequeue}(P_0)$ 19 end 20 end 21 22 end 23 return τ

- 1. Create two lists P_{protected} and P_{notProtected} contain top k candidates from *protected* group and *not protected* group
- 2. Compute ranked group fairness table m with p, k, α
 - k 8 9 10 11 12 6 3 p 0.1 0.2 0 0 0 0 0 2 0.3 0 0 0 0 0 (1)(1)2 2 0.4 0 0 0.5 0 0.6 0.7

 $m_{p,k}$ = the minimum number of candidates in the protected group that must appear

while number of picked < k:

If m demands a protected candidate at the current position: add the best candidate from $P_{protected}$

Otherwise, add the best from $\mathsf{P}_{_{\text{protected}}}\mathsf{U}\,\mathsf{P}_{_{\text{notProtected}}}$

MUVA ENGINEERING

FAIR algorithm satisfies all following:

(i) Satisfies in-group monotonicity(ii) Satisfies ranked group fairness(iii) Achieve optimal selection utility(iv) Maximizes ordering utility

Runtime: $O(n + k \log k)$

- 1. Create two lists P_{protected} and P_{notProtected} contain top k candidates from *protected* group and *not protected* group
- 2. Compute ranked group fairness table m with p, k, α

m_{p k} = the minimum number of candidates in the protected group that must appear

while number of picked < k:

If m demands a protected candidate at the current position: add the best candidate from $\mathsf{P}_{_{\text{protected}}}$

Otherwise, add the best from $\mathsf{P}_{_{\text{protected}}}\mathsf{U}\;\mathsf{P}_{_{\text{notProtected}}}$

MUVA ENGINEERING

â UVA ENGINEERING

Part 4: Experiments & Results

4: Experiments & Results

Datasets

- 1. COMPAS
- 2. German Credits
- 3. SAT
- 4. XING

				Quality	Protected	Protected
	Dataset	n	k	criterion	group	%
D1	COMPAS [1]	18K	1K	¬recidivism	AfrAm.	51.2%
D2	"	"	"	"	male	80.7%
D3	"	"	"	"	female	19.3%
D4	Ger. credit [27]	1K	100	credit rating	female	69.0%
D5	"	**	"	"	< 25 yr.	14.9%
D6	"	"	"	"	< 35 yr.	54.8%
D7	SAT [34]	1.6 M	1.5K	test score	female	53.1%
D8	XING [ours]	40	40	ad-hoc score f/m/f		27/43/27%

-

-

	Method	% Prot.	NDCC	Ordering	Rank	Selection
	Wiethou	output	NDCO	utility 1055	utop	utility loss
D1 (51.2%)	Color-blind	25%	1.0000	0.0000	0	0.0000
COMPAS,	FA*IR p=0.5	46%	0.9858	0.2026	319	0.1087
race=AfrAm.	Feldman et al.	51%	0.9779	0.2281	393	0.1301
D2 (80.7%)	Color-blind	73%	1.0000	0.0000	0	0.0000
COMPAS,	FA*IR p=0.8	77%	1.0000	0.1194	161	0.0320
gender=male	Feldman et al.	81%	0.9973	0.2090	294	0.0533
D3 (19.3%)	Color-blind	28%	1.0000	0.0000	0	0.0000
COMPAS,	FA*IR p=0.2	28%	0.9999	0.2239	1	0.0000
gender=female	Feldman et al.	19%	0.9972	0.3028	278	0.0533
D4 (69.0%)	Color-blind	74%	1.0000	0.0000	0	0.0000
Ger. cred,	FA*IR p=0.7	74%	1.0000	0.0000	0	0.0000
gender=female	Feldman et al.	69%	0.9988	0.1197	8	0.0224
D5 (14.9%)	Color-blind	9%	1.0000	0.0000	0	0.0000
Ger. cred,	FA*IR p=0.2	15%	0.9983	0.0436	7	0.0462
age < 25	Feldman et al.	15%	0.9952	0.1656	8	0.0462
D6 (54.8%)	Color-blind	24%	1.0000	0.0000	0	0.0000
Ger. cred,	FA*IR p=0.6	50%	0.9913	0.1137	30	0.0593
age < 35	Feldman et al.	55%	0.9853	0.2123	36	0.0633
D7 (53.1%)	Color-blind	49%	1.0000	0.0000	0	0.0000
SAT,	FA*IR p=0.6	57%	0.9996	0.0167	365	0.0083
gender=female	Feldman et al.	56%	0.9996	0.0167	241	0.0042
D8a (27.5%)	Color-blind	28%	1.0000	0.0000	0	0.0000
Economist,	FA*IR p=0.3	28%	1.0000	0.0000	0	0.0000
gender=female	Feldman et al.	28%	0.9935	0.6109	5	0.0000
D8b (42.5%)	Color-blind	43%	1.0000	0.0000	0	0.0000
Mkt. Analyst,	FA*IR p=0.4	43%	1.0000	0.0000	0	0.0000
gender=male	Feldman et al.	43%	0.9422	1.0000	5	0.0000
D8c (29.7%)	Color-blind	30%	1.0000	0.0000	0	0.0000
Copywriter,	FA*IR p=0.3	30%	1.0000	0.0000	0	0.0000
gender=female	Feldman et al.	30%	0.9782	0.4468	10	0.0000

4: Experiments & Results

Baseline

Color-blind ranking

-Without considering group fairness

Ranking method by Feldman et al

- -Align the probability distribution of the protected candidates with the non-protected ones.
- -Candidate i in the protected group, $qi \leftarrow qj$ by choosing a candidate j in the non-protected group having Fn(j) = Fp(i)
- -Fp(\cdot) quantile of candidates in protected group
- -Fn(\cdot) quantile of candidates in non-protected group

Part 5: Contributions & Limitations

5: Contributions & Limitations

Contributions definition of ranked group fairness algorithm consider group fairness rankings for different portion of protected group)

Limitation

of considering multiple protected groups or combinations of protected attributes

-Principled -Effective (create

-Lack

Zehlike, Meike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, and Ricardo Baeza-Yates. "FA*IR: A Fair Top-k Ranking Algorithm." In *Proceedings of the 2017 ACM on Conference on Information and Knowledge Management*, 1569–78. CIKM '17. New York, NY, USA: Association for Computing Machinery, 2017. <u>https://doi.org/10.1145/3132847.3132938</u>.

Questions?