
Multileave Gradient
Descent for Fast Online

Learning to Rank
Fred Stoney, Jagroop Sarkaria, Ben Barrett, Shuche Wang

Problem

The learning rate for current ranking systems is too slow

- Leads to needing large amounts of data to improve ranking

- Slow to adjust to a single user’s preferences

- Offline ranking requires lots of labels and data entries which is costly

- Slow interleaving methods (comparison model for different rankers) that worked linearly and had

complexity N(N-1)

Evaluation Methods/Previous work

Offline Learning:

● Offline Learning models- labelled datasets are expensive, large, and inaccurate.
● User Studies - not repeatable and do not scale.

Online Learning:

● A/B testing - are less sensitive so they take longer to train
● Balanced Interleave - can result in preference for a ranker regardless of user’s choices and are highly

sensetive
● Probabilistic Interleave - runs risk of showing poor rankings to users

Duel Bandit Gradient Descent model is what used these evaluation methods

Background

Team Draft Interleave - Rankers draft documents -> interleave documents -> user input determines better
ranker. N * (N-1) complexity.

Team Draft Multileave - Same method but able to compare against many rankers at once - better
performance

Dueling bandit gradient descent - current ranking system is compared to a slight variant, and use gradient
descent to adjust parameters in favor of the winner.

Multileave Bandit gradient descent - create n candidate rankers, and use multileave comparison, then adjust
parameters in favor of winner.

Multileave Gradient Descent Algorithm

Extends Dueling Bandit Gradient Descent to use multiple candidate rankers

Multiple rankers = More likely to find better ranker

Should take less time to converge than DBGD

Disadvantage: quality of list presented to user may decrease

Algorithm

1. Receive query from user

2. Generate the current best ranking

3. Generate n candidate rankings

4. Multileave results together

5. Get feedback from user (clicks)

6. If best ranking didn't "win", update

Multileave Gradient Descent

Set of winning rankers based on clicks

If current ranker is in winners, don't update

MGD-W: Move towards random winner

MGD-M: Move toward mean of winners

Experiment

● Static Dataset

9 datasets:

HP2003 NP2003 TD2003 HP2004 NP2004 TD2004 MQ2007 MQ2008 OHSUMED

1. Queries

2. Manual relevance assessments

3. Documents represented as feature vectors

Experiment
● Simulating Clicks Models

Cascade click model (CCM)
1. Perfect: Clicks on all highly relevant and only
on relevant documents.

2. Navigational: Clicks on a single highly
relevant document.

3. Informational: Clicks on several documents,
less dependent on their relevance.

P(click=1|R): users decide whether it warrants a click

P(stop=1|R): whether users’ information be satisfied

Experiment Runs
● Number of candidates n in {1,2,6,9,20}.

● Baseline: DBGD algorithm

● Initialization Parameters:

● Evaluation:

NDCG:

Candidates generation

 Updating rate for DBGD:

 Updating rate for MGD:

RESULTS AND ANALYSIS
Learning Speed:

● Offline performance of Both MGD-M-n and MGD-W-n improves
monotonically with the increase of the number of candidates n.

● Systems with more candidates learn much faster.

● In perfect feedback, there is less of an effect as there is less to gain
over an already well performing baseline.

● When the noise in user feedback increases, the advantage of MGD
over DBGD becomes stronger.

Learning Speed: Offline Score

● Perfect feedback converged performance does
not change much

● MGD improves more over the baseline with the
more noisy feedback and the more candidates.

Learning Speed: Online Score

Learning Speed: Online Score

● MGD outperforms DBGD more when the noise in the feedback
increases.

● In Perfect feedback: online performance for one dataset actually
decreases compared to the baseline. This implies that while
adding candidates increases offline performance, in the absence
of feedback noise it may harm online performance.

Convergence

● Both MGD algorithms seem to
converge to the same optimum but
DBGD requires many more queries
than MGD to do so.

Comparing outcome interpretations
How MGD-W and MGD-M compare to each other?

Offline Performance Comparison:

● No big difference between MGD-W and MGD-M for the
perfect and navigational click models.

● MGD-M consistently outperforms MGD-W in the
informational click models (noiser feedback).

Comparing outcome interpretations
Online Performance Comparison:

● MGD-M also usually outperforms MGD-W.

● When there is more noise in the feedback this effect
(MGD-M outperforms MGD-W.) is more strong.

● Generally, MGD-M has lower standard deviation than
MGD-W indicating that it is more stable.

Conclusion:

In general both MGD methods outperform DBGD, MGD-M is better at
handling high noise levels, making it more effective than MGD-W
overall. The advantage of MGD-M over MGD-W comes from both the
update direction and a smaller update size.

Number of candidates

● Both offline and online performance increase with
the number of candidates when noise is present.

● This effect appears to be limited by the length of
the result list shown to users.

Learning rate

● DBGD and MGD have different optimal learning rates
and that MGD can greatly outperform DBGD, both
offline and online, when the learning rate is chosen
appropriately.

● be chosen as the learning rate in this paper.

Conclusion

● An extension of DBGD: MGD

● Less user interaction data is required to find good ranker.

● Learning better rankers much faster and more advantages with noisy feedback.

 Thanks !

 Q&A

