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Top-N sequential recommendation captures customers’ 
sequential patterns aside from general behavior

Customers’ General Preferences vs. Sequential Patterns 

● e.g: Buying iPhone accessory after buying an IPhone. 

What Top-N sequential recommendation does: 

● recommends each user N items that maximize his/her future needs, by 

considering both general preferences and sequential patterns. Unlike 

conventional top-N recommendation, top-N sequential recommendation 

models the user behavior as a sequence of items, instead of a set of items.



          

5

Current sequential recommendation systems leave out
union-level and skip patterns

● The current Markov Chain models only point-level sequential patterns. 
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Data exploration reveals common union-level and skip patterns
One Rule:
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New model (Caser) gets the best of both worlds

ConvolutionAl Sequence Embedding Recommendation Model (Caser)

● Caser models both users’ general preferences and sequential patterns, and generalizes several 

existing state-of-the-art methods in a single unified framework. 

● Caser capture sequential patterns at point-level, union-level, and of skip behaviors with horizontal 

and vertical convolutional filters.



Methodology
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How can we build a better model?

Questions to be answered:

● How to model union-level influences?

● How to model point-level influences?

● How to incorporate skip behaviors in 

the model?



          

10

How can we build a better model?
Questions to be answered:

● How to model union-level influences?

● How to model point-level influences?

● How to incorporate skip behaviors in the model?

A basic intuition of union-level influence is that the union 

exerts influence as a whole, which is similar to the localized 

characteristic of an image.

Cat

???

Same pixels but different arrangement
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How can we build a better model?
Questions to be answered:

● How to model union-level influences?

● How to model point-level influences?

● How to incorporate skip behaviors in the model?

Such similarity motivates us to utilize convolutional kernel 

(i.e., filters) to extract such localized union information.
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How can we build a better model?
Questions to be answered:

● How to model union-level influences?

● How to model point-level influences?

● How to incorporate skip behaviors in the model?

Point-level can be modeled using traditional 

weighted-summing.
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How can we build a better model?
Process overview:
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How can we build a better model?
Questions to be answered:

● How to model union-level influences?

● How to model point-level influences?

● How to incorporate skip behaviors in the model?

The solution can be straightforward: directly turn predicting 

the next item into predicting the next item set (including T 

items).

...
 



Experiment Design
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Datasets & Train/Test Split

Datasets: 

MovieLens: user id, movie, rating

Gowalla: user id, check-in time, location

Foursquare (non-public): user id, check-in time, location

Tmall  (non-public): user id, purchase time, item

Selected because of acceptable “sequential intensity” according to the authors

Train/test Split:

70% train, 10% validation (tune), 20% test
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Dataset Characteristics

A measure of the intensity of sequential patterns
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Evaluation Metrics

Rhat: Predicted top N items the user want next

R: Ground truth (actual items the user want next)

Rel(N): 0 or 1, indicates whether the item predicted N 

exists in the ground truth



Results & Other Conclusions
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Performance comparison on data sets

Caser 
performs 
better in 
most cases 
with 
different 
metrics.
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Caser components

Different components of Caser model (such as horizontal and vertical filters) all 
exhibit effectiveness.
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Numerical Results

Recent items have higher weight.
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Capture of union-level sequential patterns



Thank you for listening!
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