Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding

Yushun Dong, Sihang Jiang, Simon Zhu, Hanzhi Zhou

ROADMAP

1

Background & Motivation

What problem to solve? Why need a new model?

2

Methodology

What's our model? How does it solve the problem?

3

Experiment Design

How to evaluate?
What're the datasets and baselines?

4

Results & Other Conclusions

How does our model perform? Future works

Background & Motivation

Top-N sequential recommendation captures customers' sequential patterns aside from general behavior

Customers' General Preferences vs. Sequential Patterns

• e.g: Buying iPhone accessory after buying an IPhone.

What Top-N sequential recommendation does:

recommends each user N items that maximize his/her future needs, by
considering both general preferences and sequential patterns. Unlike
conventional top-N recommendation, top-N sequential recommendation
models the user behavior as a sequence of items, instead of a set of items.

<u>Current sequential recommendation systems leave out</u> <u>union-level and skip patterns</u>

The current Markov Chain models only point-level sequential patterns.

Figure 1: An example of point and union level dynamic pattern influences, the order of Markov chain L=3

Data exploration reveals common union-level and skip patterns

Figure 2: The number of association rules vs L and skip steps. The minimum support count = 5 and the minimum confidence = 50%.

New model (Caser) gets the best of both worlds

ConvolutionAl Sequence Embedding Recommendation Model (Caser)

- Caser models both users' general preferences and sequential patterns, and generalizes several existing state-of-the-art methods in a single unified framework.
- Caser capture sequential patterns at point-level, union-level, and of skip behaviors with horizontal and vertical convolutional filters.

Methodology

Questions to be answered:

- How to model union-level influences?
- How to model point-level influences?
- How to incorporate skip behaviors in the model?

Questions to be answered:

- How to model union-level influences?
- How to model point-level influences?
- How to incorporate skip behaviors in the model?

 S_1^u S_{t-3}^u S_{t-2}^u S_{t-1}^u S_t^u S_{t+1}^u $S_{|S^u|}^u$

A basic intuition of union-level influence is that the **union exerts influence as a whole**, which is similar to the localized characteristic of an image.

Questions to be answered:

- How to model union-level influences?
- How to model point-level influences?
- How to incorporate skip behaviors in the model?

Such similarity motivates us to utilize convolutional kernel (i.e., filters) to extract such localized union information.

Questions to be answered:

- How to model union-level influences?
- How to model point-level influences?
- How to incorporate skip behaviors in the model?

 S_1^u S_{t-3}^u S_{t-2}^u S_{t-1}^u S_t^u S_{t+1}^u $S_{|S^u|}^u$

Point-level can be modeled using traditional weighted-summing.

Questions to be answered:

- How to model union-level influences?
- How to model point-level influences?
- How to incorporate skip behaviors in the model?

 S_1^u S_{t-3}^u S_{t-2}^u S_{t-1}^u S_t^u S_{t+1}^u $S_{|S^u|}^u$

Point-level can be modeled using traditional weighted-summing.

items).

Questions to be answered:

- How to model union-level influences?
- How to model point-level influences?
- How to incorporate skip behaviors in the model?

$$S_{t-3}^u \quad S_{t-2}^u \quad S_{t-1}^u$$

$$S_t^u$$

$$S_{t-3}^u \quad S_{t-2}^u \quad S_{t-1}^u$$

$$p(\mathcal{S}|\Theta) = \prod_{u} \prod_{t \in C^u} \sigma(\boldsymbol{y}_{\mathcal{S}_t^u}^{(u,t)}) \prod_{j \neq \mathcal{S}_t^u} (1 - \sigma(\boldsymbol{y}_j^{(u,t)}))$$

The solution can be straightforward: directly turn predicting

the next item into predicting the next item set (including T

$$\mathcal{D}_{t}^{u} = \{S_{t}^{u}, S_{t+1}^{u}, ..., S_{t+T}^{u}\}$$
$$C^{u} = \{L+1, L+2, ..., |S^{u}|\}$$

Experiment Design

Datasets & Train/Test Split

Datasets:

MovieLens: user id, movie, rating

Gowalla: user id, check-in time, location

Foursquare (non-public): user id, check-in time, location

Tmall (non-public): user id, purchase time, item

Selected because of acceptable "sequential intensity" according to the authors

Train/test Split:

70% train, 10% validation (tune), 20% test

Dataset Characteristics

Table 1: Statistics of the datasets

Datasets	Sequential Intensity	#users	#items	avg. actions per user	Sparsity
MovieLens	0.3265	6.0k	3.4k	165.50	95.16%
Gowalla	0.0748	13.1k	14.0k	40.74	99.71%
Foursquare	0.0378	10.1k	23.4k	30.16	99.87%
Tmall	0.0104	23.8k	12.2k	13.93	99.89%

Define a rule $X_L \to Y$ to be $(S_{t-L}, ..., S_t) \to S_{t+1}$ $X_L : L$ previous items, Y : next item

Sequential Intensity (SI) =
$$\frac{\text{#rules}}{\text{#users}}$$

#rules =
$$\sum_{L=1}^{5} \left| \left\{ X_L \mid \frac{\sup(X_L Y)}{\sup(X_L)} > 0.5 \text{ and } \sup(X_L Y) \ge 5 \right\} \right|$$

where $sup(X_LY)$ (support) is the number of rules that have Y follows X_L and $sup(X_L)$ is the number of occurrences of X_L

A measure of the intensity of sequential patterns

Evaluation Metrics

Rhat: Predicted top N items the user want next

R: Ground truth (actual items the user want next)

Rel(N): 0 or 1, indicates whether the item predicted N exists in the ground truth

$$\operatorname{Prec}@N = \frac{|R \cap \hat{R}_{1:N}|}{N}$$

$$\operatorname{Recall}@N = \frac{|R \cap \hat{R}_{1:N}|}{|R|}$$

$$AP = \frac{\sum_{N=1}^{|R|} Prec@N \times rel(N)}{|\hat{R}|},$$

Results & Other Conclusions

Performance comparison on data sets

Caser performs better in most cases with different metrics.

Dataset	Metric	POP	BPR	FMC	FPMC	Fossil	GRU4Rec	Caser	Improv.
	Prec@1	0.1280	0.1478	0.1748	0.2022	0.2306	0.2515	0.2502	-0.5%
MovieLens	Prec@5	0.1113	0.1288	0.1505	0.1659	0.2000	0.2146	0.2175	1.4%
	Prec@10	0.1011	0.1193	0.1317	0.1460	0.1806	0.1916	0.1991	4.0%
	Recall@1	0.0050	0.0070	0.0104	0.0118	0.0144	0.0153	0.0148	-3.3%
	Recall@5	0.0213	0.0312	0.0432	0.0468	0.0602	0.0629	0.0632	0.5%
	Recall@10	0.0375	0.0560	0.0722	0.0777	0.1061	0.1093	0.1121	2.6%
	MAP	0.0687	0.0913	0.0949	0.1053	0.1354	0.1440	0.1507	4.7%
-	Prec@1	0.0517	0.1640	0.1532	0.1555	0.1736	0.1050	0.1961	13.0%
	Prec@5	0.0362	0.0983	0.0876	0.0936	0.1045	0.0721	0.1129	8.0%
Gowalla	Prec@10	0.0281	0.0726	0.0657	0.0698	0.0782	0.0571	0.0833	6.5%
Gowalia	Recall@1	0.0064	0.0250	0.0234	0.0256	0.0277	0.0155	0.0310	11.9%
	Recall@5	0.0257	0.0743	0.0648	0.0722	0.0793	0.0529	0.0845	6.6%
	Recall@10	0.0402	0.1077	0.0950	0.1059	0.1166	0.0826	0.1223	4.9%
	MAP	0.0229	0.0767	0.0711	0.0764	0.0848	0.0580	0.0928	9.4%
	Prec@1	0.1090	0.1233	0.0875	0.1081	0.1191	0.1018	0.1351	13.4%
	Prec@5	0.0477	0.0543	0.0445	0.0555	0.0580	0.0475	0.0619	6.7%
Fourtage	Prec@10	0.0304	0.0348	0.0309	0.0385	0.0399	0.0331	0.0425	6.5%
Foursquare	Recall@1	0.0376	0.0445	0.0305	0.0440	0.0497	0.0369	0.0565	13.7%
	Recall@5	0.0800	0.0888	0.0689	0.0959	0.0948	0.0770	0.1035	7.9%
	Recall@10	0.0954	0.1061	0.0911	0.1200	0.1187	0.1011	0.1291	7.6%
	MAP	0.0636	0.0719	0.0571	0.0782	0.0823	0.0643	0.0909	10.4%
	Prec@1	0.0010	0.0111	0.0197	0.0210	0.0280	0.0139	0.0312	11.4%
Tmall	Prec@5	0.0009	0.0081	0.0114	0.0120	0.0149	0.0090	0.0179	20.1%
	Prec@10	0.0007	0.0063	0.0084	0.0090	0.0104	0.0070	0.0132	26.9%
	Recall@1	0.0004	0.0046	0.0079	0.0082	0.0117	0.0056	0.0130	11.1%
	Recall@5	0.0019	0.0169	0.0226	0.0245	0.0306	0.0180	0.0366	19.6%
	Recall@10	0.0026	0.0260	0.0333	0.0364	0.0425	0.0278	0.0534	25.6%
	MAP	0.0030	0.0145	0.0197	0.0212	0.0256	0.0164	0.0310	21.1%

Caser components

Table 3: MAP vs. Caser Components

	MovieLens	Gowalla	
Caser-p	0.0935	0.0777	
Caser-h	0.1304	0.0805	
Caser-v	0.1403	0.0841	
Caser-vh	0.1448	0.0856	
Caser-ph	0.1372	0.0911	
Caser-pv	0.1494	0.0921	
Caser-pvh	0.1507	0.0928	

Different components of Caser model (such as horizontal and vertical filters) all exhibit effectiveness.

Numerical Results

Figure 7: Visualization for four vertical convolutional filters of a trained model on MovieLens data when L = 9.

Recent items have higher weight.

Capture of union-level sequential patterns

Figure 8: Horizontal convolutional filters's effectiveness of capturing union-level sequential patterns on MovieLens data.

Thank you for listening!

<u>Q&A</u>