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Background & Motivation




Top-N sequential recommendation captures customers’

sequential patterns aside from general behavior

Customers’ General Preferences vs. Sequential Patterns

® e.g: Buying iPhone accessory after buying an IPhone.

What Top-N sequential recommendation does:

e recommends each user N items that maximize his/her future needs, by
considering both general preferences and sequential patterns. Unlike

conventional top-N recommendation, top-N sequential recommendation

models the user behavior as a sequence of items, instead of a set of items.
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Current sequential recommendation systems leave out
union-level and skip patterns

e The current Markov Chain models only point-level sequential patterns.
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Figure 1: An example of point and union level dynamic pattern influences, the order of Markov chain L = 3
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Data exploration reveals common union-level and skip patterns
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Figure 2: The number of association rules vs L and skip steps.
The minimum support count = 5 and the minimum confi-

dence = 50%.
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New model (Caser) gets the best of both worlds

ConvolutionAl Sequence Embedding Recommendation Model (Caser)

e Caser models both users’ general preferences and sequential patterns, and generalizes several
existing state-of-the-art methods in a single unified framework.
Caser capture sequential patterns at point-level, union-level, and of skip behaviors with horizontal

and vertical convolutional filters.

i UVA ENGINEERING




Methodology




How can we build a better model?

Questions to be answered:

How to model union-level influences?
How to model point-level influences?
How to incorporate skip behaviors in

the model?
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How can we build a better model?

Questions to be answered:

A basic intuition of union-level influence is that the union

[ ion- i ? . C .
How to model union-level influences exerts influence as a whole, which is similar to the localized

characteristic of an image.
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How can we build a better model?

Questions to be answered:

Such similarity motivates us to utilize convolutional kernel

[ ion- i ? . . . . . .
How to model union-level influences (i.e., filters) to extract such localized union information.

User Sequence Latent Space Horizontal Filters Predictions

Fl1.2xd Great Wall

‘ h H -

F%:2 xd

St

i UVA ENGINEERING




How can we build a better model?

Questions to be answered:

Point-level can be modeled using traditional
weighted-summing.

e How to model point-level influences? Embeddings
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How can we build a better model?

Questions to be answered:

Point-level can be modeled using traditional

weighted-summing.
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How can we build a better model?

Process overview:
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How can we build a better model?

Process overview:
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How can we build a better model?

Questions to be answered:

The solution can be straightforward: directly turn predicting
the next item into predicting the next item set (including T

items).
e How to incorporate skip behaviors in the model?
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Experiment Design




Datasets & Train/Test Split

Datasets:

MovieLens: user id, movie, rating

Gowalla: user id, check-in time, location

Foursquare (non-public): user id, check-in time, location

Tmall (non-public): user id, purchase time, item

Selected because of acceptable “sequential intensity” according to the authors
Train/test Split:

70% train, 10% validation (tune), 20% test
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Dataset Characteristics

Table 1: Statistics of the datasets
SIe quen.tlal #users #items el Sparsity
ntensity per user
MovieLens 0.3265 6.0k 3.4k 165.50 95.16%
Gowalla 0.0748 13.1k 14.0k 40.74 99.71%
Foursquare 0.0378 10.1k 23.4k 30.16 99.87%
Tmall 0.0104 23.8k 12.2k 13.93 99.89%

Datasets

Define a rule X; — Y to be (S;_r, ..., St) = Sit1

X : L previous items, Y : next item Sequential Intensity (SI) — #I'u_leS

#users

c sup(X, Y
Hrules = Z {XL | SUpEnY ) > 0.5 and sup(XpY) > 5}

sup(X1) A measure of the intensity of sequential patterns

L=1
where sup(X,Y')(support) is the number of rules that have Y follows X,

and sup(Xp) is the number of occurrences of X,
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Evaluation Metrics

Rhat: Predicted top N items the user want next
R: Ground truth (actual items the user want next)

Rel(N): O or 1, indicates whether the item predicted N

exists in the ground truth

IR ﬂ f\,l:Nl

P Ni=
rec@ N

IR

Recall@N =

Zﬁil Prec@N X rel(N)
IR

AP
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Results & Other Conclusions




Caser
performs
better in
most cases
with
different
metrics.

Performance comparison on data sets

Metric

MovieLens

Prec@1
Prec@5
Prec@10
Recall@1
Recall@5
Recall@10
MAP

Gowalla

Prec@1
Prec@5
Prec@10
Recall@1
Recall@5
Recall@10
MAP

Foursquare

Prec@1
Prec@5
Prec@10
Recall@1
Recall@5
Recall@10
MAP

Prec@1
Prec@5
Prec@10
Recall@1
Recall@5
Recall@10
MAP

A
Zaa.
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Caser components

Table 3: MAP vs. Caser Components

MovieLens Gowalla
Caser-p 0.0935 0.0777
Caser-h 0.1304 0.0805
Caser-v 0.1403 0.0841
Caser-vh 0.1448 0.0856
Caser-ph 0.1372 0.0911
Caser-pv 0.1494 0.0921
Caser-pvh 0.1507 0.0928

Different components of Caser model (such as horizontal and vertical filters) all
exhibit effectiveness.
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Numerical Results
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Figure 7: Visualization for four vertical convolutional filters
of a trained model on MovieLens data when L = 9.

Recent items have higher weight.
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Capture of union-level sequential patterns

Previous Sequence Predictions
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Figure 8: Horizontal convolutional filters’s effectiveness of
capturing union-level sequential patterns on MovielLens
data.
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Thank vou for listening!







