CS6501 IR Paper Presentation

Differentiable Unbiased Online Learning to Rank
Harrie Oosterhis, Maarten de Rijke

Shengyuan Piao, Zice Wei, Peiyi Yang, Fangzhou Xu
April 8th, 2021



Outline

e Introduction
e Related Work
e Method

e Experiments

e Results and Analysis



Introduction

e Online Learning to Rank (OLTR) Method
o  Pro: Does not require an existing ranker of decent quality
o  Con: Not good at handling bias and noise
o  Paper proposed Pairwise Differentiable Gradient Descent (PDGD) Method
m  Unbiased OLTR methods
m Does not rely on sampling models for exploration, but models ranking as probability
distributions over documents.
e Answer Three Research Questions:
o RQ1: Does Using PDGD result in significantly better performance than Multileave Gradient
Descent (MGD)?
o RQ2:Is the gradient estimation of PDGD unbiased?
o RQ3:1s PDGD capable of effectively optimizing different types of ranking models?



Related Work

e Dueling Bandit Gradient Descent (DBGD)
o OLTR method
o Interleaving
e Multileave Gradient Descent (MGD)
o Vastly speeds up the learning rate of DBGD (better user experience)
o However, huge computational costs, large number of ranker have to be applied
e Pairwise Loss Method
o ltinjects the ranking from the current model with randomly sampled documents.
o After each impression, a pairwise loss is constructed from inferred preferences
between documents.



Method - Pairwise update is biased

(Pairwise update: rank the relevance of 2 docs according to
relevance and user reaction(=clicking))

Some preferences are more likely to be inferred due to
position bias (e.g. people only look at top 10 returned docs)

Result: Model learns biased preferrences
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Method - Capturing the bias with reversed pair

Let R* (di, dj, R) be R but with the positions of di and dj swapped:

@{ document 1
pref inferred from R: [ document 2 J
d3 >click d1 ﬁ

document 3 ]@
document2 | pref inferred from R*:
ﬁ d1 >click d3

document 3 document 1
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Intuition:
Ideally, for a preference di>dj inferred from ranking R, and if both documents are equally relevant,
then the opposite preference dj>di is equally likely to be inferred from R* (di, dj, R).



Method - Unbiasing pairwise update

The ratio between the probability of the ranking R and the reversed pair ranking R*
indicates the bias between the two directions:

P(R*(d;,d;, R)|f, D)
(R|f.D) + P(R*(d;,d;,R)|f, D)

/)(dl',([j,R) — P

This ratio is used to reweight the found biased preference and therefore unbias the
gradient estimation during model update: j

Vie(:) = Z p(d;,d;, R)VP(d; - d;|D,#). (RQ2/unbiasedness answered - see paper
di>ed; for proof of this equation)




Method - Workflow
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Experiments

Setup

e 5 datasets: sets of queries with each query having a corresponding preselected document
set and relevance labels from 0-4

e 3 baseline models: DBGD, MGD, pairwise

e 2typesof models: linear & non-linear (=neural networks)

Metrics

e offline performance/final convergence: average NDCG@10 of the ranking model over the
qgueries in the held-out test-set

e online performance/ranking quality during training: cumulative discounted NDCG@10 of
the rankings displayed during training



Experiments

User behavior (clicking/stopping) is modelled as probability over relevance label R

Table 2: Instantiations of Cascading Click Models [10] as
used for simulating user behavior in experiments.

P(click =1 | R) P(stop = 1| click = 1,R)
R 0 1 2 3 4 0 1 2 3 4

perf 00 02 04 038 1.0 00 00 00 0.0 0.0
nav 005 03 05 07 095 02 03 05 07 09
inf 04 06 07 08 09 01 02 03 04 05




Results and Analysis

1. Convergence of ranking models
2. User experience during training
3. Answering RQ1 & RQ3



Results and Analysis

Convergence of ranking models

PDGD learns faster than existing OLTR
methods

Table 3: Offline performance (NDCG) for different instantiations of CCM (Table 2). The standard deviation is shown in brackets,
bold values indicate the highest performance per dataset and click model, significant improvements over the DBGD, MGD and
pairwise baselines are indicated by * (p < 0.05) and 4 (p < 0.01), no losses were measured.

MQ2007 MQ2008 MSLR-WEB10k Yahoo istella
perfect
DBGD (linear) 0.483 (0.029) 0.683 (029) 0.331 a1 0.684 (0010) 0.448 ©019)
DBGD (neural) 0.463 (0.025) 0.670 (0.026) 0.319 (o1 0.676 (©016) 0.429 o)
MGD (linear) 0.494 (0022) 0.690 (019 0.333 (0.003) 0.714 (©0002) 0.496 (0009
Pairwise (linear) 0.479 (0022) 0.674 o7 0.315 (0.003 0.709 o0y 0.252 (0.002)

PDGD (linear)

0.511 o1 4 4 4 4

0.699 (0029 4 4 4 4

0.427 (0005) & 4 4 4

0.736 (000s) 4 4 4 &

0.573 (0009 & 4 4 &

PDGD (neural) 0.509 (0020) 4 & & & 0.698 (002 4 & & & 0.430 (0.005) 4 4 4 & 0.733 (oo0s) & & & & 0.575 (0.006) & 4 4 4
navigational

DBGD (linear) 0.461 (0.025) 0.670 (0.025) 0.319 (o1 0.661 (023 0.401 (0015

DBGD (neural) 0.430 (0.033) 0.646 (0.01) 0.304 (0019 0.649 ©.029) 0.382 (0.029)

MGD (linear) 0.426 (0.020) 0.662 (015 0.321 (0.003) 0.706 (0.009) 0.405 (0.009)

Pairwise (linear) 0.476 (0.022) 0.677 (o) 0.312 (0.003 0.696 (0009 0.209 (0002)

PDGD (linear)
PDGD (neural)

0.496 (o19) A 4 4 4
0.493 (0020) & 4 4 4

0.695 (0021) A A 4 4
0.692 oot 4 A & &

0.406 (015 A 4 4 4
0.386 (00104 4 4 4

0.725 (0005) 4 4 4 4
0.722 000y & 4 4 4

0.540 (ooos) 4 4 4 4
0.532 ooy & 4 4 4

informational
DBGD (linear) 0.411 (0.03) 0.631 (0.036) 0.299 (o017 0.620 (0.035) 0.360 (0.028)
DBGD (neural) 0.383 (0.047) 0.595 (0.053) 0.276 (0.033) 0.603 (0.040) 0.316 (0.057)
MGD (linear) 0.406 (0.021) 0.647 (0039 0.318 (0.003) 0.676 (0.043) 0.387 (0.005)
Pairwise (linear) 0.478 (0.022) 0.677 018 0.311 (0003) 0.690 (0.006) 0.183 (0001)

PDGD (linear)
PDGD (neural)

0.487 (0o2n) 4 4 4 4
0.483 (0022 4 4 4

0.690 (0.022) & 4 4 4
0.686 (0022) 4 4 4 4

0.368 (0.025) 4 4 4 4
0.355 (0021) A 4 4 4

0.713 (o00s) 4 4 4 4
0.709 (o009 4 4 4 &

0.532 (o10) A 4 4 4
0.525 ooz 4 4 4 4




Results and Analysis

Convergence of ranking models

e PDGD has an improved point of
final convergence and learns faster
compared to DBGD and MGD

e Needs more datato achieve fully

converge.
e Speed-quality tradeoff.
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Figure 2: Offline performance (NDCG) on the MSLR-

WEB10k dataset under three different click models, the

shaded areas indicate the standard deviation.
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Figure 3: Long-term offline performance (NDCG) on the

MSLR-WEB10k dataset under three click models, the shaded
areas indicate the standard deviation.



Results and Analysis

User experience during training

Online performance of DBGD
and MGD are close; MGD has a
higher online performance.
Pairwise baseline has a lower
online performance

PDGD has significant
improvements.

Table 4: Online performance (Discounted Cumulative NDCG, Section 4.4) for different instantiations of CCM (Table 2). The
standard deviation is shown in brackets, bold values indicate the highest performance per dataset and click model, significant
improvements and losses over the DBGD, MGD and pairwise baselines are indicated by 2 (p < 0.05) and 4 (p < 0.01) and by ¥
and Y, respectively.

MQ2007 MQ2008 MSLR-WEB10k Yahoo istella
perfect
DBGD (linear) 675.7 213 843.6 (103 533.6 156 1159.3 1) 589.9 (92
DBGD (neural) 602.7 (s8.1) 776.9 (1.4 481.2 (530 1135.7 @13 494.3 (05)
MGD (linear) 689.6 (153) 858.6 (106) 558.7 (64 1203.9 (o9 670.9 s6)
Pairwise (linear) 458.4 (133 616.6 (255 345.3 us) 1027.2 o2 64.5 2
PDGD (linear) 797.3 173 A A A A 959.7 (13.4) A A A 4 691.4 (1234 A A A 1360.3 (105 4 4 4 4 957.5 0a) 4 4 4 A
PDGD (neural) T743.7 1s5) A 4 A A 9254 (133 A 4 A A 619.2 (1364 4 A A 1319.6 1on) & 4 4 4 834.0 (222)4 4 A A
navigational
DBGD (linear) 638.6 (207) 816.9 (s20) 508.2 (216) 1129.9 (322 538.2 (20.0)
DBGD (neural) 573.7 @84 740.3 @07 465.8 (520) 1116.0 @9 414.3 (962
MGD (linear) 635.9 (47 824.5 (310) 538.1 () 1181.7 200 593.2 o)
Pairwise (linear) 459.9 (129) 618.6 (252) 347.3 59 1031.2 o) 72.6 22
PDGD (linear) 703.0 170) A A 4 4 903.1 (107) 4 4 4 4 578.1(160) 4 4 4 A 1298.4 (33.4) A A A 4 704.1 (3354 A A A
PDGD (neural) 560.9 116 Y 7 V 4 7887 (335 Y AV A 448.1 (123 YV V A 1176.1 704 4 7 4 390.2Gy Y VYA
informational

DBGD (linear) 584.2 @1y 757.4 s69) 477.2 322 1110.0 @70) 436.8 (57.9)
DBGD (neural) 550.8 (757 720.9 (9.0 444.7 09) 1091.2 (s 322.9 (1210
MGD (linear) 618.8 (217 815.1 (113 540.0 ¢ 1159.1 oo 581.8 (107
Pairwise (linear) 462.6 (114) 619.6 (250 349.7 6 1034.1 o) 77.0 29
PDGD (linear) 704.8 (305 A A A A 907.9 (120) A 4 4 A 567.3 (365 A A A A 1266.7 (s00) A 4 4 & 731.5 (s00) A 4 A 4

PDGD (neural) 594.6 (23002 A V A 818.3 (306 A &4 A 470.1 19497 A V A 1178.1 (z25) 4 4 4 & 484.3 (615 A AV A




Results and Analysis

Answering RQ1 & RQ3

e RQ1 Doesusing PDGD result in significantly better performance than MGD?
o PDGD outperforms existing methods (model convergence & user experience)

e RQ3IsPDGD capable of effectively optimizing different types of ranking models?
o PDGD is applicable to different ranking models and effective for both linear
and non-linear models.



Conclusion

1. PDGD outperforms existing methods both in terms of model convergence and

user experience during learning.
2. The gradient estimation of PDGD is unbiased.
3. PDGD is applicable to different ranking models and effective for both linear and

non-linear models.
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