A Bandit Approach to Personalized News Article Recommendation

Qingyun Wu

News Recommendation Cycle

may be tied to missing family

A K-armed Bandit Formulation

 A gambler must decide which of the K non-identical slot machines(we called them arms) to play in a sequence of trails in order to maximize total reward.

News Website <-> gambler
Candidate news articles <-> arms
User Click <-> Reward

How to pull arms to maximize reward?

How to select articles to serve users to maximize user clicks

Ideal Solution

Pick
$$\underset{a}{\operatorname{arg max}} \mu_a$$

But we DO NOT know the mean.

Let's estimate it

Choices	X ₁	X ₂	<i>X</i> ₃	X ₄	X ₅	X ₆	•••
a_1					1	1	
a_2	0		1	0			
•••							
a_k		0					

Time

Exploitation VS. Exploration

Exploitation: pull an arm for which we current have the highest estimate of mean of reward

Exploration: Pull an arm we never pulled before

Not only look at the mean, but also the confidence!

Pick
$$\underset{a}{\operatorname{arg\,max}} (\mu_a + \alpha * UCB)$$

UCB₁

$$\arg\max_{a}(\mathring{\mu_{a}} + \sqrt{\frac{2\ln T}{n_{a}}})$$

LinUCB (Contextual)

- Article feature: URL categories, topic categories
- User feature: demographic information, geographic features, behavioral categories

LinUCB(Contextual)

Assumption

$$E(y_{t,n} \mid x_{t,n}) = x_{t,n}^T \theta_n$$

Article Feature Vector

User preference

Parameter Estimation

$$\hat{\theta}_n = A^{-1}b$$

$$A_n = \lambda I + \sum_{t} x_{t,n} x_{t,n}^T$$
 $b_n = \sum_{t} y_{t,n} x_{t,n}$

Pick
$$\arg\max_{a}(x_{t,n}^T\hat{\theta}_n + \alpha\sqrt{x_{t,n}^T(D_n^TD_n + I_d)x_{t,a}})$$

From LinUCB to Collaborative-LinUCB

$$\sum_{i=1}^{N} W_{ij} = 1 \qquad \sum_{j=1}^{N} W_{ij} = 1$$

If user i and user j are connected by an edge, $W_{ij} > 0$

Otherwise $W_{ij} = 0$

Assumption

$$E(r_{t,n} \mid x_{t,n}) = x_{t,n}^T \theta_n \longrightarrow E(r_{t,n} \mid x_{t,n}) = x_{t,n}^T \sum_{i}^{N} W_{ni} \theta_i$$

Collaborative-LinUCB

Parameter Estimation

$$\hat{\theta}_n = A_n^{-1} b_n$$

$$A_{n} = \lambda I + \sum_{m=1}^{N} W_{mn}^{2} \sum_{t} x_{tm} x_{tm}^{T}$$

$$A_{n} = \lambda I + \sum_{m=1}^{N} W_{mn}^{2} \sum_{t} x_{tm} x_{tm}^{T}$$

$$b_{n} = \sum_{m=1}^{N} W_{mn} \sum_{t} (x_{tm} y_{tm} - x_{tm} x_{tm}^{T} \sum_{j \neq n}^{N} W_{mj} \theta_{j}^{U})$$

Make a choice

$$\arg\max_{a} (x_{tn}^{T} \sum_{j=1}^{N} \hat{\theta}_{nj} + \alpha \sqrt{x_{tn}^{T} \sum_{j=1}^{N} W_{nj} A_{j}^{-1} x_{tn}})$$

Measurement criteria

Regret

$$R_{A}(T) = E[\sum_{t} r_{t,a_{t}^{*}}] - E[\sum_{t} r_{t,a_{t}}]$$

Summary

CoLinUCB

Q&A

