Lexical Semantics and Word Senses

Hongning Wang

CS@UVa
Today’s lecture

1. Lexical semantics
 – Meaning of words
 – Relation between different meanings

2. WordNet
 – An ontology structure of word senses
 – Similarity between words

3. Distributional semantics
 – Similarity between words
 – Word sense disambiguation
What is the meaning of a word?

• Most words have many different senses
 – dog = animal or sausage?
 – lie = to be in a horizontal position or a false statement made with deliberate intent

• What are the relations of different words in terms of meaning?
 – Specific relations between senses
 • Animal is more general than dog
 – Semantic fields
 • Money is related to bank

“a set of words grouped, referring to a specific subject ... not necessarily synonymous, but are all used to talk about the same general phenomenon” - wiki
Word senses

• What does ‘bank’ mean?
 – A financial institution
 • E.g., “US bank has raised interest rates.”
 – A particular branch of a financial institution
 • E.g., “The bank on Main Street closes at 5pm.”
 – The sloping side of any hollow in the ground, especially when bordering a river
 • E.g., “In 1927, the bank of the Mississippi flooded.”
 – A ‘repository’
 • E.g., “I donate blood to a blood bank.”
Lexicon entries

Lemma

senses

bank

noun

\bank\n
Definition of BANK

1: a mound, pile, or ridge raised above the surrounding level: as
 a: a piled-up mass of cloud or fog
 b: an undersea elevation rising especially from the continental shelf

2: the rising ground bordering a lake, river, or sea or forming the edge of a cut or hollow

3: a steep slope (as of a hill)
 b: the lateral inward tilt of a surface along a curve or of a vehicle (as an airplane) when turning

4: a protective or cushioning rim or piece

bank

verb

Definition of BANK

transitive verb

1: to raise a bank about
 a: to cover (as a fire) with fresh fuel and adjust the draft of air so as to keep in an inactive state
 b: to build (a curve) with the roadbed or track inclined laterally upward from the inside edge

2: to heap or pile in a bank

3: to drive (a ball in billiards) into a cushion
 b: to bounce (a ball or shot) off a surface (as a backboard) into or toward a goal <bank in a rebound>

4: to form or group in a tier
Some terminologies

- **Word forms**: runs, ran, running; good, better, best
 - Any, possibly inflected, form of a word
- **Lemma** (citation/dictionary form): run; good
 - A basic word form (e.g. infinitive or singular nominative noun) that is used to represent all forms of the same word
- **Lexeme**: RUN(V), GOOD(A), BANK\(^1\)(N), BANK\(^2\)(N)
 - An abstract representation of a word (and all its forms), with a part-of-speech and a set of related word senses
 - Often just written (or referred to) as the lemma, perhaps in a different FONT
- **Lexicon**
 - A (finite) list of lexemes
Make sense of word senses

• Polysemy
 – A lexeme is polysemous if it has different related senses

bank = financial institution or a building
Make sense of word senses

• Homonyms
 – Two lexemes are homonyms if their senses are unrelated, but they happen to have the same spelling and pronunciation

 bank = financial institution or river bank
Relations between senses

• Symmetric relations
 – Synonyms: couch/sofa
 • Two lemmas with the same sense
 – Antonyms: cold/hot, rise/fall, in/out
 • Two lemmas with the opposite sense

• Hierarchical relations:
 – Hypernyms and hyponyms: pet/dog
 • The hyponym (dog) is more specific than the hypernym (pet)
 – Holonyms and meronyms: car/wheel
 • The meronym (wheel) is a part of the holonym (car)
WordNet

• A very large lexical database of English:
 – 117K nouns, 11K verbs, 22K adjectives, 4.5K adverbs
• Word senses grouped into synonym sets (“synsets”) linked into a conceptual-semantic hierarchy
 – 82K noun synsets, 13K verb synsets, 18K adjectives synsets, 3.6K adverb synsets
 – Avg. # of senses: 1.23/noun, 2.16/verb, 1.41/adj, 1.24/adverb
• Conceptual-semantic relations
 – hypernym/hyponym

George Miller, Cognitive Science Laboratory of Princeton University, 1985
A WordNet example

- http://wordnet.princeton.edu/

WordNet Search - 3.1
- WordNet home page - Glossary - Help

Word to search for: bank

Display Options: (Select option to change) ▼ Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations

Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) bank (sloping land (especially the slope beside a body of water)) "they pulled the canoe up on the bank", "he sat on the bank of the river and watched the currents"
- S: (n) depository financial institution, bank, banking concern, banking company (a financial institution that accepts deposits and channels the money into lending activities) "he cashed a check at the bank"; "that bank holds the mortgage on my home"
- S: (n) bank (a long ridge or pile) "a huge bank of earth"
- S: (n) bank (an arrangement of similar objects in a row or in tiers) "he operated a bank of switches"
- S: (n) bank (a supply or stock held in reserve for future use (especially in emergencies))
- S: (n) bank (the funds held by a gambling house or the dealer in some gambling games) "he tried to break the bank at Monte Carlo"
- S: (n) bank, cant, cambier (a slope in the turn of a road or track, the outside is higher than the inside in order to reduce the effects of centrifugal force)
Hierarchical synset relations: nouns

• **Hypernym/hyponym** (between concepts)
 – The more general ‘meal’ is a hypernym of the more specific ‘breakfast’

• **Instance hypernym/hyponym** (between concepts and instances)
 – Austen is an instance hyponym of author

• **Member holonym/meronym** (groups and members)
 – professor is a member meronym of (a university’s) faculty

• **Part holonym/meronym** (wholes and parts)
 – wheel is a part meronym of (is a part of) car.

• **Substance meronym/holonym** (substances and components)
 – flour is a substance meronym of (is made of) bread
WordNet hypernyms & hyponyms

- **S**: (n) **bank** (sloping land (especially the slope beside a body of water))
 - **direct hyponym** / **full hyponym**
 - **S**: (n) **riverbank**, **riverside** (the bank of a river)
 - **S**: (n) **waterside** (land bordering a body of water)
 - **direct hypernym** / **inherited hypernym** / **sister term**
 - **S**: (n) **slope**, **incline**, **side** (an elevated geological formation)
 - **derivationally related form**
- **S**: (n) **depository financial institution**, **bank**, **banking concern**, **banking company** (a financial institution that accepts deposits and channels the money into lending activities)
 - **direct hyponym** / **full hyponym**
 - **S**: (n) **credit union** (a cooperative depository financial institution whose members can obtain loans from their combined savings)
 - **direct hypernym** / **inherited hypernym** / **sister term**
 - **S**: (n) **depository financial institution**, **bank**, **banking concern**, **banking company** (a financial institution that accepts deposits and channels the money into lending activities)
 - **S**: (n) **Federal Reserve Bank**, **reserve bank** (one of 12 regional banks that monitor and act as depositories for banks in their region)
 - **S**: (n) **agent bank** (a bank that acts as an agent for a foreign bank)
 - **S**: (n) **commercial bank**, **full service bank** (a financial institution that accepts demand deposits and makes loans and provides other services for the public)
Hierarchical synset relations: verbs

• Hypernym/troponym (between events)
 – travel/fly, walk/stroll
 – Flying is a troponym of traveling: it denotes a specific manner of traveling

• Entailment (between events):
 – snore/sleep
 • Snoring entails (presupposes) sleeping
WordNet similarity

• Path based similarity measure between words
 – Shortest path between two concepts (Leacock & Chodorow 1998)
 • sim = 1/|shortest path|
 – Path length to the root node from the least common subsumer (LCS) of the two concepts (Wu & Palmer 1994)
 • sim = 2*depth(LCS)/(depth(w₁)+depth(w₂))

• http://wn-similarity.sourceforge.net/
WordNet::Similarity

<table>
<thead>
<tr>
<th>Measure</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Score</th>
<th>Trace</th>
</tr>
</thead>
</table>
| path | apple\#n\#1 | pizza\#n\#1 | 0.0909 | HyperTree: *Root*\#n\#1 entity\#n\#1 physical_entity\#n\#1 matter\#n\#3 solid\#n\#1 food\#n\#2 produce\#n\#1 edible_fruit\#n\#1 apple\#n\#1
HyperTree: *Root*\#n\#1 entity\#n\#1 physical_entity\#n\#1 object\#n\#1 whole\#n\#2 natural_object\#n\#1 plant_part\#n\#1 plant_organ\#n\#1 reproductive_structure\#n\#1 fruit\#n\#1 edible_fruit\#n\#1 apple\#n\#1
HyperTree: *Root*\#n\#1 entity\#n\#1 physical_entity\#n\#1 object\#n\#1 whole\#n\#2 natural_object\#n\#1 plant_part\#n\#1 plant_organ\#n\#1 reproductive_structure\#n\#1 fruit\#n\#1 pome\#n\#1 apple\#n\#1
HyperTree: *Root*\#n\#1 entity\#n\#1 physical_entity\#n\#1 substance\#n\#7 food\#n\#1 nutriment\#n\#1 dish\#n\#2 pizza\#n\#1
Shortest path: apple\#n\#1 edible_fruit\#n\#1 produce\#n\#1 food\#n\#2 solid\#n\#1 matter\#n\#3 substance\#n\#7 food\#n\#1 nutriment\#n\#1 dish\#n\#2 pizza\#n\#1
Path length = 11 |
| path | apple\#n\#2 | pizza\#n\#1 | 0.0526 | HyperTree: *Root*\#n\#1 entity\#n\#1 physical_entity\#n\#1 object\#n\#1 whole\#n\#2 living_thing\#n\#1 organism\#n\#1 plant\#n\#2 vascular_plant\#n\#1 woody_plant\#n\#1 tree\#n\#1 angiospermous_tree\#n\#1 fruit_tree\#n\#1 apple_tree\#n\#1 apple\#n\#2
HyperTree: *Root*\#n\#1 entity\#n\#1 physical_entity\#n\#1 substance\#n\#7 food\#n\#1 nutriment\#n\#1 dish\#n\#2 pizza\#n\#1
Shortest path: apple\#n\#2 apple_tree\#n\#1 fruit_tree\#n\#1 angiospermous_tree\#n\#1 tree\#n\#1 woody_plant\#n\#1 vascular_plant\#n\#1 plant\#n\#2 organism\#n\#1 living_thing\#n\#1 whole\#n\#2 object\#n\#1 physical_entity\#n\#1 matter\#n\#3 substance\#n\#7 food\#n\#1 nutriment\#n\#1 dish\#n\#2 pizza\#n\#1
Path length = 19 |
WordNet:::Similarity

<table>
<thead>
<tr>
<th>Measure</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Score</th>
<th>Trace</th>
</tr>
</thead>
</table>
| wup | apple#n1 | pizza#n1 | 0.4444 | HyperTree: *Root*#n1 entity#n1 physical_entity#n1 matter#n3 solid#n1 food#n2 produce#n1 edible_fruit#n1 apple#n1
HyperTree: *Root*#n1 entity#n1 physical_entity#n1 object#n1 whole#n2 natural_object#n1 plant_part#n1 plant_organ#n1 reproductive_structure#n1 fruit#n1 edible_fruit#n1 apple#n1
HyperTree: *Root*#n1 entity#n1 physical_entity#n1 object#n1 whole#n2 natural_object#n1 plant_part#n1 plant_organ#n1 reproductive_structure#n1 fruit#n1 pome#n1 apple#n1
HyperTree: *Root*#n1 entity#n1 physical_entity#n1 matter#n3 substance#n7 food#n1 nutriment#n1 dish#n2 pizza#n1
Lowest Common Subsumers: matter#n3 (Depth=4)
Depth(apple#n1) = 9
Depth(pizza#n1) = 9 |
| wup | apple#n2 | pizza#n1 | 0.25 | HyperTree: *Root*#n1 entity#n1 physical_entity#n1 object#n1 whole#n2 living_thing#n1 organism#n1 plant#n2 vascular_plant#n1 woody_plant#n1 tree#n1 angiospermous_tree#n1 fruit_tree#n1 apple_tree#n1 apple#n2
HyperTree: *Root*#n1 entity#n1 physical_entity#n1 matter#n3 substance#n7 food#n1 nutriment#n1 dish#n2 pizza#n1
Lowest Common Subsumers: physical_entity#n1 (Depth=3)
Depth(apple#n2) = T5
Depth(pizza#n1) = 9 |
Distributional hypothesis

• What is tezgüino?
 – A bottle of tezgüino is on the table.
 – Everybody likes tezgüino.
 – Tezgüino makes you drunk.
 – We make tezgüino out of corn.

• The contexts in which a word appears tell us a lot about what it means.
Recap: Lexical semantics

• Meaning of words
 – Within a word
 • Polysemy and homonyms
 – Between words
 • Symmetric relations
 – Synonyms and antonyms
 • Hierarchical relations
 – Hypernyms and hyponyms
 – Holonyms and meronyms
Recap: WordNet

• An ontology structure of word senses
 – Nodes on the graph: synonym sets
 – Conceptual-semantic relations
 – Similarity
 • Shortest path between two concepts
 • Path length to the root node from the least common subsumer (LCS) of the two concepts
Distributional semantics

• Use the contexts in which words appear to measure their similarity
 – Assumption: similar contexts => similar meanings
 – Approach: represent each word w as a vector of its contexts c
 • Vector space representation
 • Each dimension corresponds to a particular context c_n
 • Each element in the vector of w captures the degree to which the word w is associated with the context c_n
 – Similarity metric
 • Cosine similarity
How to define the contexts

• Nearby words
 – \(w \) appears near \(c \) if \(c \) occurs within \(\pm k \) words of \(w \)
 • It yields fairly broad thematic relations
 – Decide on a fixed vocabulary of \(N \) context words \(c_1 \ldots c_N \)
 • Prefer words occur frequently enough in the corpus but not too frequent (i.e., avoid stopwords)
 – Co-occurrence count of word \(w \) and context \(c \) as the corresponding element in the vector
 • Pointwise Mutual Information (PMI)

• Grammatical relations
 – How often is \(w \) used as the subject of the verb \(c \)?
 – Fine-grained thematic relations
Mutual information

• Relatedness between two random variables

\[- I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log\left(\frac{p(x, y)}{p(x)p(y)}\right)\]
Pointwise mutual information

- PMI between w and c using a fixed window of $\pm k$ words

$$PMI(w; c) = p(w, c) \log\left(\frac{p(w, c)}{p(w)p(c)}\right)$$

How often w and c co-occur within a sentence

How often w occurs

How often c occurs

How often w and c co-occur inside a window
Word sense disambiguation

• What does this word mean?
 – This **plant** needs to be **watered** each day.
 • living plant
 – This **plant** manufactures **1000 widgets** each day.
 • factory

• Word sense disambiguation (WSD)
 – Identify the sense of content words (noun, verb, adjective) in context (assuming a **fixed** inventory of word senses)
Dictionary-based methods

- A dictionary/thesaurus contains glosses and examples of a word

bank¹

Gloss: a financial institution that accepts deposits and channels the money into lending activities

Examples: “he cashed the check at the bank”, “that bank holds the mortgage on my home”

bank²

Gloss: sloping land (especially the slope beside a body of water)

Examples: “they pulled the canoe up on the bank”, “he sat on the bank of the river and watched the current”
Lesk algorithm

• Compare the context with the dictionary definition of the sense
 – Construct the signature of a word in context by the signatures of its senses in the dictionary
 • Signature = set of context words (in examples/gloss or in context)
 – Assign the dictionary sense whose gloss and examples are the most similar to the context in which the word occurs
 • Similarity = size of intersection of context signature and sense signature
Sense signatures

bank\(^1\)

Gloss: a financial institution that accepts deposits and channels the money into lending activities

Examples: “he cashed the check at the bank”, “that bank holds the mortgage on my home”

Signature\(\text{bank}^1\) = \{financial, institution, accept, deposit, channel, money, lend, activity, cash, check, hold, mortgage, home\}

bank\(^2\)

Gloss: sloping land (especially the slope beside a body of water)

Examples: “they pulled the canoe up on the bank”, “he sat on the bank of the river and watched the current”

Signature\(\text{bank}^1\) = \{slope, land, body, water, pull, canoe, sit, river, watch, current\}
Signature of target word

“The bank refused to give me a loan.”

• Simplified Lesk
 – Words in context
 – \(\text{Signature(bank)} = \{\text{refuse, give, loan}\} \)

• Original Lesk
 – Augmented signature of the target word
 – \(\text{Signature(bank)} = \{\text{refuse, reject, request, ... , give, gift, donate, ... loan, money, borrow, ...}\} \)
Learning-based Methods

• Will be discussed in the lecture of “Text Categorization”
 – Basically treat each sense as an independent class label
 – Construct classifiers to assign each instance with context into the classes/senses
What you should know

• Lexical semantics
 – Relationship between words
 – WordNet

• Distributional semantics
 – Similarity between words
 – Word sense disambiguation
Today’s reading

• Speech and Language Processing
 – Chapter 19: Lexical Semantics
 – Chapter 20: Computational Lexical Semantics