Today’s lecture

• Logistic regression model
 – A discriminative classification model
 – Two different perspectives to derive the model
 – Parameter estimation
Review: Bayes risk minimization

- Risk – assign instance to a wrong class
 \[y^* = \arg\max_y P(y|X) \]
 - \(y^* = \arg\max_y P(y|X) \)
 - \(\hat{y} = 0 \) and \(\hat{y} = 1 \)
 - \(p(X|y = 0)p(y = 0) \) and \(p(X|y = 1)p(y = 1) \)
 - False negative
 - False positive

*Optimal Bayes decision boundary

We have learned multiple ways to estimate this
Instance-based solution

• k nearest neighbors
 – Approximate Bayes decision rule in a subset of data around the testing point
Instance-based solution

• k nearest neighbors
 – Approximate Bayes decision rule in a subset of data around the testing point
 – Let V be the volume of the m dimensional ball around x containing the k nearest neighbors for x, we have

$$p(x)V = \frac{k}{N} \Rightarrow p(x) = \frac{k}{NV}$$

$$p(x|y = 1) = \frac{k_1}{N_1V} \quad p(y = 1) = \frac{N_1}{N}$$

With Bayes rule:

$$p(y = 1|x) = \frac{N_1}{N} \times \frac{k_1}{N_1V} = \frac{k_1}{k}$$

Total number of instances

Total number of instances in class 1

Counting the nearest neighbors from class 1
Generative solution

- Naïve Bayes classifier

\[y^* = \arg\max_y P(y|X) \]
\[= \arg\max_y P(X|y)P(y) \]
\[= \arg\max_y \prod_{i=1}^{d} P(x_i|y)P(y) \]

By Bayes rule

By independence assumption
Estimating parameters

- Maximial likelihood estimator

\[P(x_i | y) = \frac{\sum_d \sum_j \delta(x_d = x_i, y_d = y)}{\sum_d \delta(y_d = y)} \]

\[P(y) = \frac{\sum_d \delta(y_d = y)}{\sum_d 1} \]
Discriminative v.s. generative models

All instances are considered for probability density estimation.

Generative model

Discriminative model

More attention will be put onto the boundary points.

\[y = f(x) \]
Parametric form of decision boundary in Naïve Bayes

- For binary case

\[f(X) = \text{sgn}(\log P(y = 1|X) - \log P(y = 0|X)) \]

\[= \text{sgn} \left(\log \frac{P(y = 1)}{P(y = 0)} + \sum_{i=1}^{d} c(x_i, d) \log \frac{P(x_i|y = 1)}{P(x_i|y = 0)} \right) \]

\[= \text{sgn}(w^T \bar{X}) \]

where

\[w = \left(\log \frac{P(y = 1)}{P(y = 0)}, \log \frac{P(x_1|y = 1)}{P(x_1|y = 0)}, ..., \log \frac{P(x_v|y = 1)}{P(x_v|y = 0)} \right) \]

\[\bar{X} = (1, c(x_1, d), ..., c(x_v, d)) \]

Linear regression?
Regression for classification?

• Linear regression
 – $y \leftarrow w^T X$
 – Relationship between a scalar dependent variable y and one or more explanatory variables
Regression for classification?

- **Linear regression**
 - \(y \leftarrow w^T X \)
 - Relationship between a **scalar** dependent variable \(y \) and one or more explanatory variables

\[
y = \begin{cases}
1 & w^T X > 0.5 \\
0 & w^T X \leq 0.5
\end{cases}
\]

What if we have an outlier?

Y is discrete in a classification problem!
Regression for classification?

- Logistic regression
 \[p(y|x) = \sigma(w^T X) = \frac{1}{1 + \exp(-w^T X)} \]
 - Directly modeling of class posterior

What if we have an outlier?
Logistic regression for classification

• Why sigmoid function?

\[
P(y = 1|X) = \frac{P(X|y = 1)P(y=1)}{P(X|y = 1)P(y=1) + P(X|y = 0)P(y=0)}
\]

\[
= \frac{1}{1 + \frac{P(X|y = 0)P(y = 0)}{P(X|y = 1)P(y = 1)}}
\]

- Binomial
 - \(P(y = 1) = \alpha\)

- Normal with identical variance
 - \(P(X|y = 1) = N(\mu_1, \delta^2)\)
 - \(P(X|y = 0) = N(\mu_0, \delta^2)\)
Logistic regression for classification

- Why sigmoid function?

\[
P(y = 1|X) = \frac{P(X|y = 1)P(y=1)}{P(X|y = 1)P(y=1) + P(X|y = 0)P(y=0)}
\]

\[
= \frac{1}{1 + \frac{P(X|y = 0)P(y = 0)}{P(X|y = 1)P(y = 1)}}
\]

\[
= \frac{1}{1 + \exp \left(- \ln \frac{P(X|y = 1)P(y = 1)}{P(X|y = 0)P(y = 0)} \right)}
\]
Logistic regression for classification

• Why sigmoid function?

\[
\ln \frac{P(X|y = 1)P(y=1)}{P(X|y = 0)P(y=0)} = \ln \frac{P(y=1)}{P(y=0)} + \sum_{i=1}^{V} \ln \frac{P(x_i|y=1)}{P(x_i|y=0)}
\]

\[
= \ln \frac{\alpha}{1 - \alpha} + \sum_{i=1}^{V} \left(\frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i - \frac{\mu_{1i}^2 - \mu_{0i}^2}{2\delta_i^2} \right)
\]

\[
= w_0 + \sum_{i=1}^{V} \frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i
\]

\[
= w_0 + w^T X
\]

\[
= w^T \bar{X}
\]

Origin of the name: logit function
Logistic regression for classification

- Why sigmoid function?

\[
P(y = 1|X) = \frac{P(X|y = 1)P(y = 1)}{P(X|y = 1)P(y = 1) + P(X|y = 0)P(y = 0)} \\
= \frac{P(X|y = 0)P(y = 0)}{1 + \frac{P(X|y = 1)P(y = 1)}{P(X|y = 0)P(y = 0)}} \\
= \frac{1}{1 + \exp(-\ln \frac{P(X|y = 1)P(y = 1)}{P(X|y = 0)P(y = 0)})} \\
= \frac{1}{1 + \exp(-w^T\bar{X})}
\]

Generalized Linear Model

Note: it is still a linear relation among the features!
Logistic regression for classification

• For multi-class categorization

\[- P(y = k | X) = \frac{\exp(w_k^T X)}{\sum_{j=1}^{K} \exp(w_j^T X)} \]

\[- P(y = k | X) \propto \exp(w_k^T X) \]

When \(K=2 \),

\[P(y = 1 | X) = \frac{\exp(w_1^T X)}{\exp(w_1^T X) + \exp(w_0^T X)} = \frac{1}{1 + \exp(-(w_1 - w_0)^T X)} \]
Logistic regression for classification

• Decision boundary for binary case

\[
\hat{y} = \begin{cases}
1, & p(y = 1|X) > 0.5 \\
0, & \text{otherwise}
\end{cases}
\]

\[
p(y = 1|X) = \frac{1}{1 + \exp(-w^T X)} > 0.5
\]

\[
i.f.f. \quad \exp(-w^T X) < 1
\]

\[
i.f.f. \quad w^T X > 0
\]

\[
\hat{y} = \begin{cases}
1, & w^T x > 0 \\
0, & \text{otherwise}
\end{cases}
\]

A linear model!
Logistic regression for classification

• Decision boundary in general
 \[\hat{y} = \arg \max_y p(y|X) \]
 \[= \arg \max_y \exp(w_y^T X) \]
 \[= \arg \max_y w_y^T X \]

A linear model!
Logistic regression for classification

• Summary

\[P(y = 1|X) = \frac{P(X|y = 1)P(y=1)}{P(X|y = 1)P(y=1)+P(X|y = 0)P(y=0)} \]

\[= \frac{1}{1 + \frac{P(X|y = 0)P(y = 0)}{P(X|y = 1)P(y = 1)}} \]

Binomial

\[P(y = 1) = \alpha \]

\[P(X|y = 0) = N(\mu_0, \delta^2) \]

\[P(X|y = 1) = N(\mu_1, \delta^2) \]

Normal with identical variance
A different perspective

• Imagine we have the following

<table>
<thead>
<tr>
<th>Documents</th>
<th>Sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>“happy”, “good”, “purchase”, “item”, “indeed”</td>
<td>positive</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{\(p(x = "happy", y = 1) + p(x = "good", y = 1) + p(x = "purchase", y = 1)\)} \\
\text{\(+ p(x = "item", y = 1) + p(x = "indeed", y = 1) = 1\)}
\end{align*}
\]

Question: find a distribution \(p(x, y)\) that satisfies this observation.

Answer1: \(p(x = "item", y = 1) = 1\), and all the others 0

Answer2: \(p(x = "indeed", y = 1) = 0.5, p(x = "good", y = 1) = 0.5,\) and all the others 0

\textit{We have too little information to favor either one of them.}
Occam's razor

• A problem-solving principle
 – “among competing hypotheses that predict equally well, the one with the fewest assumptions should be selected.”
 • William of Ockham (1287–1347)
 – Principle of Insufficient Reason: "when one has no information to distinguish between the probability of two events, the best strategy is to consider them equally likely”
 • Pierre-Simon Laplace (1749–1827)
A different perspective

• Imagine we have the following

<table>
<thead>
<tr>
<th>Documents</th>
<th>Sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>“happy”, “good”, “purchase”, “item”, “indeed”</td>
<td>positive</td>
</tr>
</tbody>
</table>

\[
p(x = "happy", y = 1) + p(x = "good", y = 1) + p(x = "purchase", y = 1)
+ p(x = "item", y = 1) + p(x = "indeed", y = 1) = 1
\]

Question: find a distribution \(p(x, y) \) that satisfies this observation.

As a result, a safer choice would be:

\[
p(x = \cdot, y = 1) = 0.2
\]

Equally favor every possibility
A different perspective

• Imagine we have the following

<table>
<thead>
<tr>
<th>Observations</th>
<th>Sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>“happy”, “good”, “purchase”, “item”, “indeed”</td>
<td>positive</td>
</tr>
<tr>
<td>30% of time “good”, “item”</td>
<td>positive</td>
</tr>
</tbody>
</table>

\[
p(x = \text{"happy"}, y = 1) + p(x = \text{"good"}, y = 1) + p(x = \text{"purchase"}, y = 1) + p(x = \text{"item"}, y = 1) + p(x = \text{"indeed"}, y = 1) = 1
\]
\[
p(x = \text{"good"}, y = 1) + p(x = \text{"item"}, y = 1) = 0.3
\]

Question: find a distribution \(p(x, y) \) that satisfies this observation.

Again, a safer choice would be:

\[
p(x = \text{"good"}, y = 1) = p(x = \text{"item"}, y = 1) = 0.15, \text{ and all the others } \frac{7}{30}
\]

Equally favor every possibility
A different perspective

• Imagine we have the following

<table>
<thead>
<tr>
<th>Observations</th>
<th>Sentiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>“happy”, “good”, “purchase”, “item”, “indeed”</td>
<td>positive</td>
</tr>
<tr>
<td>30% of time “good”, “item”</td>
<td>positive</td>
</tr>
<tr>
<td>50% of time “good”, “happy”</td>
<td>positive</td>
</tr>
</tbody>
</table>

\[
p(x = "happy", y = 1) + p(x = "good", y = 1) + p(x = "purchase", y = 1) + p(x = "item", y = 1) + p(x = "indeed", y = 1) = 1
\]

\[
p(x = "good", y = 1) + p(x = "item", y = 1) = 0.3
\]

\[
p(x = "good", y = 1) + p(x = "happy", y = 1) = 0.5
\]

Question: find a distribution \(p(x, y) \) that satisfies this observation.

Time to think about:

1) what do we mean by equally/uniformly favoring the models?
2) given all these constraints, how could we find the most preferred model?
Maximum entropy modeling

- A measure of uncertainty of random events

\[-H(X) = E[I(X)] = - \sum_{x \in X} P(x) \log P(x)\]

Maximized when \(P(X)\) is uniform distribution

Question 1 is answered, then how about question 2?
Represent the constraints

• Indicator function
 – E.g., to express the observation that word ‘good’ occurs in a positive document
 \[f(x, y) = \begin{cases}
 1 & \text{if } y = 1 \text{ and } x = 'good' \\
 0 & \text{otherwise}
 \end{cases} \]
 – Usually referred as feature function
Represent the constraints

- Empirical expectation of feature function over a corpus
 \[E[\tilde{p}(f)] = \sum_{x,y} \tilde{p}(x, y) f(x, y) \]
 where \(\tilde{p}(x, y) = \frac{c(f(x,y))}{N} \) i.e., frequency of observing \(f(x, y) \) in a given collection.

- Expectation of feature function under a given statistical model
 \[E[p(f)] = \sum_{x,y} \tilde{p}(x) p(y|x) f(x, y) \]

 Empirical distribution of \(x \) in the same collection.
 Model’s estimation of conditional distribution.
Represent the constraints

- When a feature is important, we require our preferred statistical model to accord with it

 \[
 C := \{ p \in P \mid E[p(f_i)] = E[\bar{p}(f_i)], \forall i \in \{1,2,\ldots,n\} \}
 \]

 \[
 E[p(f_i)] = E[\bar{p}(f_i)]
 \]

\[
\sum_{x,y} \bar{p}(x,y) f_i(x,y) = \sum_{x,y} \bar{p}(x) p(y|x) f_i(x,y)
\]

Is Question 2 answered?

We only need to specify this in our preferred model!
Represent the constraints

• Let’s visualize this

(a) No constraint
(b) Under constrained
(c) Feasible constraint
(d) Over constrained

How to deal with these situations?
Maximum entropy principle

• To select a model from a set C of allowed probability distributions, choose the model $p^* \in C$ with maximum entropy $H(p)$

$$p^* = \arg\max_{p \in C} H(p)$$

Both questions are answered!
Maximum entropy principle

• Let’s solve this constrained optimization problem with Lagrange multipliers

Primal:

\[p^* = \arg \max_{p \in C} H(p) \]

Lagrangian:

\[L(p, \lambda) = H(p) + \sum_{i} \lambda_i (p(f_i) - \tilde{p}(f_i)) \]

a strategy for finding the local maxima and minima of a function subject to equality constraints
Maximum entropy principle

- Let's solve this constrained optimization problem with Lagrange multipliers

Lagrangian:

\[L(p, \lambda) = H(p) + \sum_i \lambda_i (p(f_i) - \tilde{p}(f_i)) \]

Dual:

\[p_\lambda(y|x) = \frac{1}{Z_\lambda(x)} \exp \left(\sum_i \lambda_i f_i(x, y) \right) \]

\[\Psi(\lambda) = - \sum_x \tilde{p}(x) \log Z_\lambda(x) + \sum_i \lambda_i \tilde{p}(f_i) \]
Maximum entropy principle

- Let’s solve this constrained optimization problem with Lagrange multipliers

 Dual:

 $$\Psi(\lambda) = - \sum_x \tilde{p}(x) \log Z_\lambda(x) + \sum_i \lambda_i \tilde{p}(f_i)$$

 where

 $$Z_\lambda = \sum_y \exp \left(\sum_i \lambda_i f_i(x, y) \right)$$
Maximum entropy principle

• Primal: maximum entropy
 \[- p^* = \arg \max_{p \in C} H(p) \]

• Dual: logistic regression
 \[- p_\lambda(y|x) = \frac{1}{Z_\lambda(x)} \exp(\sum_i \lambda_i f_i(x, y)) \]

where
 \[Z_\lambda = \sum_y \exp \left(\sum_i \lambda_i f_i(x, y) \right) \]

\(\lambda^* \) is determined by \(\Psi(\lambda) \)
Maximum entropy principle

• Let’s take a close look at the dual function

\[\Psi(\lambda) = -\sum_x \tilde{p}(x) \log Z_\lambda(x) + \sum_i \lambda_i \tilde{p}(f_i) \]

where

\[Z_\lambda = \sum_y \exp \left(\sum_i \lambda_i f_i(x, y) \right) \]
Maximum entropy principle

- Let’s take a close look at the dual function

\[\Psi(\lambda) = -\sum_x \tilde{p}(x) \log Z_\lambda(x) + \sum_x \tilde{p}(x) \sum_i \lambda_i \tilde{p}(f_i) \]

\[= \sum_x \tilde{p}(x) \log \frac{\exp(\sum_i \lambda_i \tilde{p}(f_i))}{Z_\lambda(x)} \]

\[= \sum_x \tilde{p}(x) \log p(y|x) \]

Maximum likelihood estimator!
Recap: logistic regression

• Summary

\[P(y = 1 | X) = \frac{P(X | y = 1)P(y = 1)}{P(X | y = 1)P(y = 1) + P(X | y = 0)P(y = 0)} \]

\[= \frac{1}{1 + \frac{P(X | y = 0)P(y = 0)}{P(X | y = 1)P(y = 1)}} \]

Binomial

\[P(y = 1) = \alpha \]

\[P(X | y = 0) = N(\mu_0, \delta^2) \]

\[P(X | y = 1) = N(\mu_1, \delta^2) \]

Normal with identical variance
Recap: logistic regression

- Why sigmoid function?

\[
\ln \frac{P(X|y = 1)P(y=1)}{P(X|y = 0)P(y=0)} = \ln \frac{P(y=1)}{P(y=0)} + \sum_{i=1}^{V} \ln \frac{P(x_i|y=1)}{P(x_i|y=0)}
\]

\[
= \ln \frac{\alpha}{1 - \alpha} + \sum_{i=1}^{V} \left(\frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} \right) x_i - \frac{\mu_{1i}^2 - \mu_{0i}^2}{2\delta_i^2}
\]

\[
= w_0 + \sum_{i=1}^{V} \frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i
\]

\[
= w_0 + w^T X
\]

\[
= \bar{w}^T \bar{X}
\]
Recap: logistic regression

- Decision boundary for binary case

\[\hat{y} = \begin{cases}
1, & p(y = 1|X) > 0.5 \\
0, & \text{otherwise}
\end{cases} \]

\[p(y = 1|X) = \frac{1}{1 + \exp(-w^T X)} > 0.5 \]

\[\text{i.f.f.} \]
\[\exp(-w^T X) < 1 \]
\[\text{i.f.f.} \]
\[w^T X > 0 \]

- \[\hat{y} = \begin{cases}
1, & w^T x > 0 \\
0, & \text{otherwise}
\end{cases} \]

A linear model!
Recap: Occam's razor

- A problem-solving principle
 - “among competing hypotheses that predict equally well, the one with the fewest assumptions should be selected.”
 - William of Ockham (1287–1347)
 - Principle of Insufficient Reason: "when one has no information to distinguish between the probability of two events, the best strategy is to consider them equally likely”
 - Pierre-Simon Laplace (1749–1827)
Recap: maximum entropy modeling

- A measure of uncertainty of random events

\[-H(X) = E[I(X)] = -\sum_{x \in X} P(x) \log P(x)\]

Maximized when \(P(X)\) is uniform distribution

Question 1 is answered, then how about question 2?
Recap: maximum entropy principle

• To select a model from a set C of allowed probability distributions, choose the model $p^* \in C$ with maximum entropy $H(p)$

$$p^* = \arg\max_{p \in C} H(p)$$

Both questions are answered!
Recap: maximum entropy principle

• Primal: maximum entropy
 \[- p^* = \text{argmax}_{p \in C} H(p) \]

• Dual: logistic regression
 \[- p_\lambda(y|x) = \frac{1}{Z_\lambda(x)} \exp(\sum_i \lambda_i f_i(x, y)) \]

where \[Z_\lambda = \sum_y \exp \left(\sum_i \lambda_i f_i(x, y) \right) \]

\(\lambda^* \) is determined by \(\Psi(\lambda) \)
Questions haven’t been answered

• Class conditional density
 – Why it should be Gaussian with equal variance?

• Model parameters
 – What is the relationship between \(w \) and \(\lambda \)?
 – How to estimate them?
Maximum entropy principle

• Let’s take a close look at the dual function

\[\Psi(\lambda) = -\sum_x \tilde{p}(x) \log Z_\lambda(x) + \sum_x \tilde{p}(x) \sum_i \lambda_i \tilde{p}(f_i) \]

\[= \sum_x \tilde{p}(x) \log \frac{\exp(\sum_i \lambda_i \tilde{p}(f_i))}{Z_\lambda(x)} \]

\[= \sum_x \tilde{p}(x) \log p(y|x) \]

Maximum likelihood estimator!
Maximum entropy principle

• The maximum entropy model subject to the constraints \mathcal{C} has a parametric solution $p^*_\lambda(y|x)$ where the parameters λ^* can be determined by maximizing the likelihood function of $p_\lambda(y|x)$ over a training set.

Features follow Gaussian distribution

Maximum entropy model

Logistic regression

With a Gaussian distribution, differential entropy is maximized for a given variance.
Recap: logistic regression

- Why sigmoid function?

\[
\ln \frac{P(X|y = 1)P(y=1)}{P(X|y = 0)P(y=0)} = \ln \frac{P(y=1)}{P(y=0)} + \sum_{i=1}^{V} \ln \frac{P(x_i|y=1)}{P(x_i|y=0)}
\]

\[
= \ln \frac{\alpha}{1 - \alpha} + \sum_{i=1}^{V} \left(\frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i - \frac{\mu_{1i}^2 - \mu_{0i}^2}{2\delta_i^2} \right)
\]

\[
= w_0 + \sum_{i=1}^{V} \frac{\mu_{1i} - \mu_{0i}}{\delta_i^2} x_i
\]

\[
= w_0 + w^T X
\]

\[
= \bar{w}^T \bar{X}
\]

Origin of the name: logit function
Maximum entropy principle

Let’s solve this constrained optimization problem with Lagrange multipliers

Primal:

\[p^* = \arg\max_{p \in C} H(p) \]

Lagrangian:

\[L(p, \lambda) = H(p) + \sum_i \lambda_i (p(f_i) - \tilde{p}(f_i)) \]

a strategy for finding the local maxima and minima of a function subject to equality constraints
Parameter estimation

• Maximum likelihood estimation
 - $L(w) = \sum_{d \in D} y_d \log p(y_d = 1|X_d) + (1 - y_d) \log p(y_d = 0|X_d)$
 - Take gradient of $L(w)$ with respect to w

\[
\frac{\partial L(w)}{\partial w} = \sum_{d \in D} y_d \frac{\partial \log p(y_d = 1|X_d)}{\partial w} + (1 - y_d) \frac{\partial \log p(y_d = 0|X_d)}{\partial w}
\]
Parameter estimation

- Maximum likelihood estimation

\[
\frac{\partial \log p(y_d=1|X_d)}{\partial w} = - \frac{\partial \log (1 + \exp(-w^T X_d))}{\partial w} = \exp(-w^T X_d) - \frac{\exp(-w^T X_d)}{1 + \exp(-w^T X_d)} X_d
\]

\[
= (1 - p(y_d = 1|X_d)) X_d
\]

\[
\frac{\partial \log p(y_d=0|X_d)}{\partial w} = (0 - p(y_d = 1|X_d)) X_d
\]
Parameter estimation

• Maximum likelihood estimation

\[L(w) = \sum_{d \in D} y_d \log p(y_d = 1|X_d) + (1 - y_d) \log p(y_d = 0|X_d) \]

• Take gradient of \(L(w) \) with respect to \(w \)

\[
\frac{\partial L(w)}{\partial w} = \sum_{d \in D} \left[y_d \frac{\partial \log p(y_d = 1|X_d)}{\partial w} + (1 - y_d) \frac{\partial \log p(y_d = 0|X_d)}{\partial w} \right]
\]

\[
= \sum_{d \in D} y_d (1 - p(y_d = 1|X_d))X_d + (1 - y_d)(0 - p(y_d = 1|X_d))X_d
\]

\[
= \sum_{d \in D} (y_d - p(y = 1|X_d))X_d
\]

Good news: neat format, concave function for \(w \)

Bad news: no close form solution

Can be easily generalized to multi-class case
Gradient-based optimization

• Gradient descent

\[\nabla L(w) = \left[\frac{\partial L(w)}{\partial w_0}, \frac{\partial L(w)}{\partial w_1}, \ldots, \frac{\partial L(w)}{\partial w_V} \right] \]

\[w^{(t+1)} = w^{(t)} - \eta^{(t)} \nabla L(w) \]

Step-size, affects convergence

Iterative updating
Parameter estimation

• Stochastic gradient descent

while not converge

randomly choose $d \in D$

$$\nabla L_d(w) = \left[\frac{\partial L_d(w)}{\partial w_0}, \frac{\partial L_d(w)}{\partial w_1}, ..., \frac{\partial L_d(w)}{\partial w_V} \right]$$

$$w^{(t+1)} = w^{(t)} - \eta^{(t)} \nabla L_d(w)$$

$$\eta^{(t+1)} = a \eta^{(t)}$$

Gradually shrink the step-size
Parameter estimation

- Batch gradient descent

\[
\text{while not converge}
\]

Compute gradient w.r.t. all training instances

\[
\nabla L_D(w) = \left[\frac{\partial L_D(w)}{\partial w_0}, \frac{\partial L_D(w)}{\partial w_1}, \ldots, \frac{\partial L_D(w)}{\partial w_V} \right]
\]

Compute step size \(\eta^{(t)} \)

\[
w^{(t+1)} = w^{(t)} - \eta^{(t)} \nabla L_D(w)
\]

Second order methods, e.g., quasi-Newton method and conjugate gradient, provide faster convergence

Line search is required to ensure sufficient decent

First order method
Model regularization

• Avoid over-fitting
 – We may not have enough samples to well estimate model parameters for logistic regression
 – Regularization
 • Impose additional constraints over the model parameters
 • E.g., sparsity constraint – enforce the model to have more zero parameters
Model regularization

- L2 regularized logistic regression
 - Assume the model parameter w is drawn from Gaussian: $w \sim N(0, \sigma^2)$
 - $p(y_d, w|X_d) \propto p(y_d|X_d, w)p(w)$
 - $L(w) = \sum_{d \in D}[y_d \log p(y_d = 1|X_d)$
 $+(1 - y_d) \log p(y_d = 0|X_d)] - \frac{w^T w}{2\sigma^2}$

$L2$-norm of w
Generative V.S. discriminative models

Generative
- Specifying joint distribution
 - Full probabilistic specification for all the random variables
- Dependence assumption has to be specified for $p(X|y)$ and $p(y)$
- Flexible, can be used in unsupervised learning

Discriminative
- Specifying conditional distribution
 - Only explain the target variable
- Arbitrary features can be incorporated for modeling $p(y|X)$
- Need labeled data, only suitable for (semi-) supervised learning
Naïve Bayes V.S. Logistic regression

Naïve Bayes
- Conditional independence
 - \(p(X|y) = \prod_i p(x_i|y) \)
- Distribution assumption of \(p(x_i|y) \)
- # parameters
 - \(k(V + 1) \)
- Model estimation
 - Closed form MLE
- Asymptotic convergence rate
 - \(\epsilon_{NB,n} \leq \epsilon_{NB,\infty} + O\left(\frac{\log V}{n}\right) \)

Logistic Regression
- No independence assumption
- Functional form assumption of \(p(y|X) \propto \exp(w^T_y X) \)
- # parameters
 - \((k - 1)(V + 1) \)
- Model estimation
 - Gradient-based MLE
- Asymptotic convergence rate
 - \(\epsilon_{LR,n} \leq \epsilon_{LR,\infty} + O\left(\sqrt{\frac{V}{n}}\right) \)

Need more training data
Naïve Bayes V.S. Logistic regression

"On discriminative vs. generative classifiers: A comparison of logistic regression and naïve bayes." – Ng, Jordan NIPS 2002, UCI Data set
Recap: parameter estimation

- Maximum likelihood estimation
 - \(L(w) = \sum_{d \in D} y_d \log p(y_d = 1|X_d) + (1 - y_d) \log p(y_d = 0|X_d) \)
 - Take gradient of \(L(w) \) with respect to \(w \)

\[
\frac{\partial L(w)}{\partial w} = \sum_{d \in D} y_d \left(\frac{\partial \log p(y_d = 1|X_d)}{\partial w} \right) + (1 - y_d) \left(\frac{\partial \log p(y_d = 0|X_d)}{\partial w} \right)
\]

\[
= \sum_{d \in D} y_d (1 - p(y_d = 1|X_d)) X_d + (1 - y_d) (0 - p(y_d = 1|X_d)) X_d
\]

\[
= \sum_{d \in D} (y_d - p(y = 1|X_d)) X_d
\]

- Good news: neat format, concave function for \(w \)
- Bad news: no close form solution

Can be easily generalized to multi-class case
Recap: gradient-based optimization

• Gradient descent

\[\nabla L(w) = \left[\frac{\partial L(w)}{\partial w_0}, \frac{\partial L(w)}{\partial w_1}, \ldots, \frac{\partial L(w)}{\partial w_V} \right] \]

\[w^{(t+1)} = w^{(t)} - \eta^{(t)} \nabla L(w) \]

Iterative updating

Step-size, affects convergence
Recap: model regularization

• L2 regularized logistic regression
 – Assume the model parameter w is drawn from Gaussian: $w \sim N(0, \sigma^2)$
 – $p(y_d, w|X_d) \propto p(y_d|X_d, w)p(w)$
 – $L(w) = \sum_{d \in D}[y_d \log p(y_d = 1|X_d) + (1 - y_d) \log p(y_d = 0|X_d)] - \frac{w^T w}{2\sigma^2}$

$L2$-norm of w
Naïve Bayes V.S. Logistic regression

Naive Bayes

- Conditional independence
 - $p(X|y) = \prod_i p(x_i|y)$
- Distribution assumption of
 - $p(x_i|y)$
- # parameters
 - $k(V + 1)$
- Model estimation
 - Closed form MLE
- Asymptotic convergence rate
 - $\epsilon_{NB,n} \leq \epsilon_{NB,\infty} + O\left(\sqrt{\frac{\log V}{n}}\right)$

Logistic Regression

- No independence assumption
- Functional form assumption of
 - $p(y|X) \propto \exp(w_y^T X)$
- # parameters
 - $(k - 1)(V + 1)$
- Model estimation
 - Gradient-based MLE
- Asymptotic convergence rate
 - $\epsilon_{LR,n} \leq \epsilon_{LR,\infty} + O\left(\sqrt{\frac{V}{n}}\right)$

Need more training data
What you should know

• Two different derivations of logistic regression
 – Functional form from Naïve Bayes assumptions
 • \(p(X|y) \) follows equal variance Gaussian
 • Sigmoid function
 – Maximum entropy principle
 • Primal/dual optimization
 – Generalization to multi-class

• Parameter estimation
 – Gradient-based optimization
 – Regularization

• Comparison with Naïve Bayes
Today’s reading

• Speech and Language Processing
 – Chapter 6: Hidden Markov and Maximum Entropy Models
 • 6.6 Maximum entropy models: background
 • 6.7 Maximum entropy modeling