Text Clustering

Hongning Wang
CS@UVa
Today’s lecture

• Clustering of text documents
 – Problem overview
 • Applications
 – Distance metrics
 – Two basic categories of clustering algorithms
 – Evaluation metrics
Clustering v.s. Classification

- Assigning documents to its corresponding categories

How to label it?
Clustering problem in general

• Discover “natural structure” of data
 – What is the criterion?
 – How to identify them?
 – How many clusters?
Clustering problem in general

• Clustering - the process of grouping a set of objects into clusters of similar objects
 – Basic criteria
 • high intra-class similarity
 • low inter-class similarity
 – No (little) supervision signal about the underlying clustering structure
 – Need similarity/distance as guidance to form clusters
What is the “natural grouping”?

Clustering is very subjective!
Distance metric is important!

- group by gender
- group by source of ability
- group by costume
Clustering in text mining

Access

Filter information

Serve for IR applications

Sub-area of DM research

Mining

Discover knowledge

Organization

Text clustering

Based on NLP/ML techniques

Add Structure/Annotations

CS@UVa

CS6501: Text Mining
Applications of text clustering

• Organize document collections
 – Automatically identify hierarchical/topical relation among documents
Applications of text clustering

• Grouping search results
 – Organize documents by topics
 – Facilitate user browsing

http://search.carrot2.org/stable/search
Applications of text clustering

• Topic modeling
 – Grouping words into topics

Will be discussed later separately
Distance metric

• Basic properties
 – Positive separation
 • $D(x, y) > 0, \forall x \neq y$
 • $D(x, y) = 0$, i.f.f., $x = y$
 – Symmetry
 • $D(x, y) = D(y, x)$
 – Triangle inequality
 • $D(x, y) \leq D(x, z) + D(z, y)$
Typical distance metric

- **Minkowski metric**
 \[d(x, y) = p \sqrt{\sum_{i=1}^{V} (x_i - y_i)^p} \]
 - When \(p = 2 \), it is Euclidean distance

- **Cosine metric**
 \[d(x, y) = 1 - \cosine(x, y) \]
 - when \(|x|^2 = |y|^2 = 1 \), \(1 - \cosine(x, y) = \frac{r^2}{2} \)
Typical distance metric

• Edit distance
 – Count the minimum number of operations required to transform one string into the other
 • Possible operations: insertion, deletion and replacement

Can be efficiently solved by dynamic programming
Typical distance metric

• Edit distance
 – Count the minimum number of operations required to transform one string into the other
 • Possible operations: insertion, deletion and replacement
 – Extent to distance between sentences
 • Word similarity as cost of replacement
 – “terrible” -> “bad”: low cost
 – “terrible” -> “terrific”: high cost
 • Preserving word order in distance computation
Clustering algorithms

- Partitional clustering algorithms
 - Partition the instances into different groups
 - Flat structure
 - Need to specify the number of classes in advance
Clustering algorithms

• Typical partitional clustering algorithms
 – k-means clustering
 • Partition data by its closest mean
Clustering algorithms

• Typical partitional clustering algorithms
 – k-means clustering
 • Partition data by its closest mean
 – Gaussian Mixture Model
 • Consider variance within the cluster as well
Clustering algorithms

• Hierarchical clustering algorithms
 – Create a hierarchical decomposition of objects
 – Rich internal structure
 • No need to specify the number of clusters
 • Can be used to organize objects
Clustering algorithms

• Typical hierarchical clustering algorithms
 – Bottom-up agglomerative clustering
 • Start with individual objects as separated clusters
 • Repeatedly merge closest pair of clusters

Most typical usage: gene sequence analysis
Clustering algorithms

- Typical hierarchical clustering algorithms
 - Top-down divisive clustering
 - Start with all data as one cluster
 - Repeatedly splitting the remaining clusters into two
Desirable properties of clustering algorithms

• Scalability
 – Both in time and space

• Ability to deal with various types of data
 – No assumption about input data
 – Minimal requirement about domain knowledge

• Interpretability and usability
Cluster validation

• Criteria to determine whether the clusters are meaningful
 – Internal validation
 • Stability and coherence
 – External validation
 • Match with known categories
Internal validation

• Coherence
 – Inter-cluster similarity v.s. intra-cluster similarity
 – Davies–Bouldin index

$$DB = \frac{1}{k} \sum_{i=1}^{k} \max_{j \neq i} \left(\frac{\sigma_i + \sigma_j}{d(c_i, c_j)} \right)$$
 – where k is total number of clusters, σ_i is average distance of all elements in cluster i, $d(c_i, c_j)$ is the distance between cluster centroid c_i and c_j.

We prefer smaller DB-index!
Internal validation

• Coherence
 – Inter-cluster similarity v.s. intra-cluster similarity
 – Dunn index
 \[D = \frac{\min_{1 \leq i < j \leq k} d(c_i, c_j)}{\max_{1 \leq i \leq k} \sigma_i} \]
 – Worst situation analysis

• Limitation
 – No indication of actual application’s performance
 – Bias towards a specific type of clustering algorithm if that algorithm is designed to optimize similar metric
External validation

• Given class label Ω on each instance

 – Purity: correctly clustered documents in each cluster

 \[
purity(\Omega, C) = \frac{1}{N} \sum_{i=1}^{k} \max_j |c_i \cap w_j|
\]

 – where c_i is a set of documents in cluster i, and w_j is a set of documents in cluster j

\[
purity(\Omega, C) = \frac{1}{17} (5 + 4 + 3)
\]

Not a good metric if we assign each document into a single cluster

Required, might need extra cost
External validation

• Given class label Ω on each instance
 – Normalized mutual information (NMI)

\[
NMI(\Omega, C) = \frac{I(\Omega, C)}{[H(\Omega)+H(C)]/2}
\]

– where \(I(\Omega, C) = \sum_i \sum_j P(w_i \cap c_j) \log \frac{P(w_i \cap c_j)}{P(w_i)P(c_j)} \), \(H(\Omega) = \sum_i P(w_i) \log P(w_i) \) and \(H(C) = \sum_j P(c_j) \log P(c_j) \)

• Indicate the increase of knowledge about classes when we know the clustering results
External validation

• Given class label \(\Omega \) on each instance
 – Rand index
 • Idea: we want to assign two documents to the same cluster if and only if they are from the same class
 • \(RI = \frac{TP+TN}{TP+FP+FN+TN} \)

Essentially it is like classification accuracy

<table>
<thead>
<tr>
<th></th>
<th>(w_i = w_j)</th>
<th>(w_i \neq w_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_i = c_j)</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>(c_i \neq c_j)</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

Over every pair of documents in the collection
External validation

• Given class label Ω on each instance
 – Rand index

<table>
<thead>
<tr>
<th>$c_i = c_j$</th>
<th>$w_i = w_j$</th>
<th>$w_i \neq w_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_i = c_j$</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>$c_i \neq c_j$</td>
<td>24</td>
<td>72</td>
</tr>
</tbody>
</table>

$$TP + FP = \binom{6}{2} + \binom{6}{2} + \binom{5}{2} = 40$$

$$TP = \binom{5}{2} + \binom{4}{2} + \binom{3}{2} + \binom{2}{2} = 20$$
External validation

• Given class label Ω on each instance
 – Precision/Recall/F-measure

• Based on the contingency table, we can also define precision/recall/F-measure of clustering quality

<table>
<thead>
<tr>
<th></th>
<th>$w_i = w_j$</th>
<th>$w_i \neq w_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_i = c_j$</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>$c_i \neq c_j$</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>
What you should know

• Unsupervised natural of clustering problem
 – Distance metric is essential to determine the clustering results

• Two basic categories of clustering algorithms
 – Partitional clustering
 – Hierarchical clustering

• Clustering evaluation
 – Internal v.s. external
Today’s reading

• Introduction to Information Retrieval
 – Chapter 16: Flat clustering
 • 16.2 Problem statement
 • 16.3 Evaluation of clustering