University of Virginia
Department of Computer Science

CS 6501: Text Mining
Spring 2015

9:30am-9:45am, Thursday, April 30th

Name:
ComputingID:

- This is a closed book and closed notes quiz. No electronic aids or cheat sheets are allowed.
- There are 2 pages, 3 parts of questions, and 20 total points in this quiz.
- The questions are printed on the back of this paper!
- Please carefully read the instructions and questions before you answer them.
- Please pay special attention on your handwriting; if the answers are not recognizable by the instructor, the grading might be inaccurate (NO argument about this after the grading is done).
- Try to keep your answers as concise as possible; grading is not by keyword matching.

| Total | /20 |
1 True/False Questions (3pts×2)

For the statement you believe it is *False*, please give your brief explanation of it (you do not need to explain anything when you believe it is *True*). *Note the credit can only be granted if your explanation is correct.*

1. Since EM algorithm is guaranteed to converge, initialization is not important for it.
 False, and Explain: EM only guarantees local maximum, so that initialization is important to find better local maximum.

2. Normalized mutual information is preferred over purity when evaluating clustering results, because it is normalized.
 False, and Explain: Purity does not penalize cluster size: in extreme case when one has equal number of clusters as instances, purity is maximized.

2 Multi-choice Questions (4pts×2)

1. What is true about k-means algorithm: (b),(c)
 (a) it is a variant of kNN;
 (b) convergency is guaranteed;
 (c) it is a greedy algorithm;
 (d) hard to be parallelized.

2. What is true about EM algorithm: (a),(c),(d)
 (a) it is a greedy algorithm;
 (b) it optimizes the upper bound of original objective function;
 (c) it maximize the expectation of the complete data likelihood;
 (d) it can deal with latent variable models.

3 Short Questions (6 pts)

1. Write down at least three different ways to compute distance between two clusters of instances.
 1. single link: minimum distance between any pair of instances from the two clusters;
 2. complete link: maximum distance between any pair of instances from the two clusters;
 3. average link: average distance between any pair of instances from the two clusters.