Lexical Semantics and Word Senses

Hongning Wang
CS@UVa
Today’s lecture

1. Lexical semantics
 – Meaning of words
 – Relation between different meanings

2. WordNet
 – An ontology structure of word senses
 – Similarity between words

3. Distributional semantics
 – Similarity between words
 – Word sense disambiguation
What is the meaning of a word?

• Most words have many different senses
 – dog = animal or sausage?
 – lie = to be in a horizontal position or a false statement made with deliberate intent

• What are the relations of different words in terms of meaning?
 – Specific relations between senses
 • Animal is more general than dog
 – Semantic fields
 • Money is related to bank

“a set of words grouped, referring to a specific subject ... not necessarily synonymous, but are all used to talk about the same general phenomenon” - wiki
Word senses

• What does ‘bank’ mean?
 – A financial institution
 • E.g., “US bank has raised interest rates.”
 – A particular branch of a financial institution
 • E.g., “The bank on Main Street closes at 5pm.”
 – The sloping side of any hollow in the ground, especially when bordering a river
 • E.g., “In 1927, the bank of the Mississippi flooded.”
 – A ‘repository’
 • E.g., “I donate blood to a blood bank.”
Lexicon entries

- **Lemma**: bank
- **Senses**:
 1. A mound, pile, or ridge raised above the surrounding level: as
 - a piled-up mass of cloud or fog
 - an undersea elevation rising especially from the continental shelf
 2. The rising ground bordering a lake, river, or sea or forming the edge of a cut or hollow
 3. A steep slope (as of a hill)
 - the lateral inward tilt of a surface along a curve or of a vehicle (as an airplane) when turning
 4. A protective or cushioning rim or piece

- **Definition of BANK**
 - **transitive verb**
 1. To raise a bank about
 2. To cover (as a fire) with fresh fuel and adjust the draft of air so as to keep in an inactive state
 3. To build (a curve) with the roadbed or track inclined laterally upward from the inside edge
 4. To heap or pile in a bank
 5. To drive (a ball in billiards) into a cushion
 6. To bounce (a ball or shot) off a surface (as a backboard) into or toward a goal <bank in a rebound>
 7. To form or group in a tier
Some terminologies

• **Word forms**: runs, ran, running; good, better, best
 – Any, possibly inflected, form of a word

• **Lemma** (citation/dictionary form): run; good
 – A basic word form (e.g. infinitive or singular nominative noun) that is used to represent all forms of the same word

• **Lexeme**: RUN(V), GOOD(A), BANK¹(N), BANK²(N)
 – An abstract representation of a word (and all its forms), with a part-of-speech and a set of related word senses
 – Often just written (or referred to) as the lemma, perhaps in a different FONT

• **Lexicon**
 – A (finite) list of lexemes
Make sense of word senses

• Polysemy
 – A lexeme is polysemous if it has different related senses

bank = financial institution or a building
Make sense of word senses

• Homonymns
 – Two lexemes are homonyms if their senses are unrelated, but they happen to have the same spelling and pronunciation

bank = financial institution or river bank
Relations between senses

• Symmetric relations
 – Synonyms: couch/sofa
 • Two lemmas with the same sense
 – Antonyms: cold/hot, rise/fall, in/out
 • Two lemmas with the opposite sense

• Hierarchical relations:
 – Hypernyms and hyponyms: pet/dog
 • The hyponym (dog) is more specific than the hypernym (pet)
 – Holonyms and meronyms: car/wheel
 • The meronym (wheel) is a part of the holonym (car)
WordNet

George Miller, Cognitive Science Laboratory of Princeton University, 1985

• A very large lexical database of English:
 – 117K nouns, 11K verbs, 22K adjectives, 4.5K adverbs

• Word senses grouped into synonym sets ("synsets") linked into a conceptual-semantic hierarchy
 – 82K noun synsets, 13K verb synsets, 18K adjectives synsets, 3.6K adverb synsets
 – Avg. # of senses: 1.23/noun, 2.16/verb, 1.41/adj, 1.24/adverb

• Conceptual-semantic relations
 – hypernym/hyponym
A WordNet example

- http://wordnet.princeton.edu/

WordNet Search - 3.1
- WordNet home page - Glossary - Help

Word to search for: bank

Display Options: (Select option to change) ▼ Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) bank (sloping land (especially the slope beside a body of water)) "they pulled the canoe up on the bank", "he sat on the bank of the river and watched the currents"
- S: (n) depository financial institution, bank, banking concern, banking company (a financial institution that accepts deposits and channels the money into lending activities) "he cashed a check at the bank", "that bank holds the mortgage on my home"
- S: (n) bank (a long ridge or pile) "a huge bank of earth"
- S: (n) bank (an arrangement of similar objects in a row or in tiers) "he operated a bank of switches"
- S: (n) bank (a supply or stock held in reserve for future use (especially in emergencies))
- S: (n) bank (the funds held by a gambling house or the dealer in some gambling games) "he tried to break the bank at Monte Carlo"
- S: (n) bank, cant, cambier (a slope in the turn of a road or track, the outside is higher than the inside in order to reduce the effects of centrifugal force)
Hierarchical synset relations: nouns

• **Hypernym/hyponym** (between concepts)
 – The more general ‘meal’ is a hypernym of the more specific ‘breakfast’

• **Instance hypernym/hyponym** (between concepts and instances)
 – Austen is an instance hyponym of author

• **Member holonym/meronym** (groups and members)
 – professor is a member meronym of (a university’s) faculty

• **Part holonym/meronym** (wholes and parts)
 – wheel is a part meronym of (is a part of) car.

• **Substance meronym/holonym** (substances and components)
 – flour is a substance meronym of (is made of) bread

Jane Austen, 1775–1817, English novelist
WordNet hypernyms & hyponyms

- **S: (n) bank** (sloping land (especially the slope beside a body of water))
 - *direct hyponym / full hyponym*
 - **S: (n) riverbank, riverside** (the bank of a river)
 - **S: (n) waterside** (land bordering a body of water)
 - *direct hypernym / inherited hypernym / sister term*
 - **S: (n) slope, incline, side** (an elevated geological formation)
 - *derivationally related form*
- **S: (n) depository financial institution, bank, banking concern, banking company** (a financial institution that accepts deposits and channels the money into lending activities)
 - *direct hyponym / full hyponym*
 - **S: (n) credit union** (a cooperative depository financial institution whose members can obtain loans from their combined savings)
 - *direct hypernym / inherited hypernym / sister term*
 - **S: (n) depository financial institution, bank, banking concern, banking company** (a financial institution that accepts deposits and channels the money into lending activities)
 - **S: (n) Federal Reserve Bank, reserve bank** (one of 12 regional banks that monitor and act as depositories for banks in their region)
 - **S: (n) agent bank** (a bank that acts as an agent for a foreign bank)
 - **S: (n) commercial bank, full service bank** (a financial institution that accepts demand deposits and makes loans and provides other services for the public)
Hierarchical synset relations: verbs

- Hypernym/troponym (between events)
 - travel/fly, walk/stroll
 - Flying is a troponym of traveling: it denotes a specific manner of traveling

- Entailment (between events):
 - snore/sleep
 - Snoring entails (presupposes) sleeping
WordNet similarity

• Path based similarity measure between words
 – Shortest path between two concepts (Leacock & Chodorow 1998)
 • $\text{sim} = \frac{1}{|\text{shortest path}|}$
 – Path length to the root node from the least common subsumer (LCS) of the two concepts (Wu & Palmer 1994)
 • $\text{sim} = \frac{2 \times \text{depth}(\text{LCS})}{\text{depth}(w_1) + \text{depth}(w_2)}$

WordNet::Similarity

<table>
<thead>
<tr>
<th>Measure</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Score</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>apple#n1</td>
<td>pizza#n1</td>
<td>0.0909</td>
<td>HyperTree: Root#n1 entity#n1 physical_entity#n1 matter#n3 solid#n1 food#n2 produce#n1 edible_fruit#n1 apple#n1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HyperTree: Root#n1 entity#n1 physical_entity#n1 object#n1 whole#n2 natural_object#n1 plant_part#n1 plant орган#n1 reproductive_structure#n1 fruit#n1 edible_fruit#n1 apple#n1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HyperTree: Root#n1 entity#n1 physical_entity#n1 object#n1 whole#n2 natural_object#n1 plant_part#n1 plant organ#n1 reproductive structure#n1 fruit#n1 pome#n1 apple#n1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>HyperTree: Root#n1 entity#n1 physical_entity#n1 matter#n3 substance#n7 food#n1 nutriment#n1 dish#n2 pizza#n1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shortest path: apple#n1 edible_fruit#n1 produce#n1 food#n2 solid#n1 matter#n3 substance#n7 food#n1 nutriment#n1 dish#n2 pizza#n1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Path length = 11</td>
</tr>
</tbody>
</table>

path	apple#n2	pizza#n1	0.0526	HyperTree: *Root*#n1 entity#n1 physical_entity#n1 object#n1 whole#n2 living thing#n1 organism#n1 plant#n2 vascular plant#n1 woody plant#n1 tree#n1 angiospermous tree#n1 fruit tree#n1 apple tree#n1 apple#n2
				HyperTree: *Root*#n1 entity#n1 physical_entity#n1 matter#n3 substance#n7 food#n1 nutriment#n1 dish#n2 pizza#n1
				Shortest path: apple#n2 apple tree#n1 fruit tree#n1 angiospermous tree#n1 tree#n1 woody plant#n1 vascular plant#n1 plant#n2 organism#n1 living thing#n1 whole#n2 object#n1 physical_entity#n1 matter#n3 substance#n7 food#n1 nutriment#n1 dish#n2 pizza#n1
				Path length = 19
WordNet::Similarity

<table>
<thead>
<tr>
<th>Measure</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Score</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>wup</td>
<td>apple#n#1</td>
<td>pizza#n#1</td>
<td>0.4444</td>
<td>HyperTree: Root#n#1 entity#n#1 physical_entity#n#1 matter#n#3 solid#n#1 food#n#2 produce#n#1 edible_fruit#n#1 apple#n#1 HyperTree: Root#n#1 entity#n#1 physical_entity#n#1 object#n#1 whole#n#2 natural_object#n#1 plant_part#n#1 plant орган#n#1 reproductive_structure#n#1 fruit#n#1 edible_fruit#n#1 apple#n#1 HyperTree: Root#n#1 entity#n#1 physical_entity#n#1 object#n#1 whole#n#2 natural_object#n#1 plant_part#n#1 plant орган#n#1 reproductive_structure#n#1 fruit#n#1 pome#n#1 apple#n#1 HyperTree: Root#n#1 entity#n#1 physical_entity#n#1 matter#n#3 substance#n#7 food#n#1 nutrimen#n#1 dish#n#2 pizza#n#1 Lowest Common Subsumers: matter#n#3 (Depth=4) Depth(apple#n#1) = 9 Depth(pizza#n#1) = 9</td>
</tr>
<tr>
<td>wup</td>
<td>apple#n#2</td>
<td>pizza#n#1</td>
<td>0.25</td>
<td>HyperTree: Root#n#1 entity#n#1 physical_entity#n#1 object#n#1 whole#n#2 living_thing#n#1 organism#n#1 plant#n#2 vascular_plant#n#1 woody_plant#n#1 tree#n#1 angiospermu#n#1 plant#n#2 fruit#n#1 apple#n#1 apple_tree#n#1 apple#n#2 HyperTree: Root#n#1 entity#n#1 physical_entity#n#1 matter#n#3 substance#n#7 food#n#1 nutrimen#n#1 dish#n#2 pizza#n#1 Lowest Common Subsumers: physical_entity#n#1 (Depth=3) Depth(apple#n#2) = 15 Depth(pizza#n#1) = 9</td>
</tr>
</tbody>
</table>
Distributional hypothesis

• What is tezgüino?
 – A bottle of tezgüino is on the table.
 – Everybody likes tezgüino.
 – Tezgüino makes you drunk.
 – We make tezgüino out of corn.

• The contexts in which a word appears tell us a lot about what it means
Distributional semantics

• Use the contexts in which words appear to measure their similarity
 – Assumption: similar contexts => similar meanings
 – Approach: represent each word w as a vector of its contexts c
 • Vector space representation
 • Each dimension corresponds to a particular context c_n
 • Each element in the vector of w captures the degree to which the word w is associated with the context c_n
 – Similarity metric
 • Cosine similarity
How to define the contexts

• Nearby words
 – w appears near c if c occurs within $\pm k$ words of w
 • It yields fairly broad thematic relations
 – Decide on a fixed vocabulary of N context words $c_1..c_N$
 • Prefer words occur frequently enough in the corpus but not too frequent (i.e., avoid stopwords)
 – Co-occurrence count of word w and context c as the corresponding element in the vector
 • Pointwise Mutual Information (PMI)

• Grammatical relations
 – How often is w used as the subject of the verb c?
 – Fine-grained thematic relations
Mutual information

- Relatedness between two random variables

\[- I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log\left(\frac{p(x, y)}{p(x)p(y)}\right)\]
Pointwise mutual information

- PMI between w and c using a fixed window of $\pm k$ words

$$PMI(w; c) = p(w, c) \log \left(\frac{p(w, c)}{p(w)p(c)} \right)$$

How often w and c co-occur inside a window

How often w occurs How often c occurs

within a sentence
Word sense disambiguation

• What does this word mean?
 – This plant needs to be watered each day.
 • living plant
 – This plant manufactures 1000 widgets each day.
 • factory

• Word sense disambiguation (WSD)
 – Identify the sense of content words (noun, verb, adjective) in context (assuming a fixed inventory of word senses)
Dictionary-based methods

- A dictionary/thesaurus contains glosses and examples of a word

bank¹

Gloss: a financial institution that accepts deposits and channels the money into lending activities

Examples: “he cashed the check at the bank”, “that bank holds the mortgage on my home”

bank²

Gloss: sloping land (especially the slope beside a body of water)

Examples: “they pulled the canoe up on the bank”, “he sat on the bank of the river and watched the current”
Lesk algorithm

• Compare the context with the dictionary definition of the sense
 – Construct the **signature** of a word in context by the signatures of its senses in the dictionary
 • **Signature** = set of context words (in examples/gloss or in context)
 – Assign the dictionary sense whose gloss and examples are the most **similar** to the context in which the word occurs
 • Similarity = size of intersection of context signature and sense signature
Sense signatures

bank

Gloss: a financial institution that accepts deposits and channels the money into lending activities

Examples: “he cashed the check at the bank”, “that bank holds the mortgage on my home”

\[\text{Signature}(\text{bank}^1) = \{\text{financial, institution, accept, deposit, channel, money, lend, activity, cash, check, hold, mortgage, home}\}\]

bank

Gloss: sloping land (especially the slope beside a body of water)

Examples: “they pulled the canoe up on the bank”, “he sat on the bank of the river and watched the current”

\[\text{Signature}(\text{bank}^2) = \{\text{slope, land, body, water, pull, canoe, sit, river, watch, current}\}\]
Signature of target word

“The bank refused to give me a loan.”

• Simplified Lesk
 – Words in context
 – \(\text{Signature(bank)} = \{\text{refuse, give, loan}\} \)

• Original Lesk
 – Augmented signature of the target word
 – \(\text{Signature(bank)} = \{\text{refuse, reject, request,\ldots , give, gift, donate,\ldots loan, money, borrow,\ldots}\} \)
Learning-based Methods

• Will be discussed in the lecture of “Text Categorization”
 – Basically treat each sense as an independent class label
 – Construct classifiers to assign each instance with context into the classes/senses
What you should know

• Lexical semantics
 – Relationship between words
 – WordNet

• Distributional semantics
 – Similarity between words
 – Word sense disambiguation
Today’s reading

• Speech and Language Processing
 – Chapter 19: Lexical Semantics
 – Chapter 20: Computational Lexical Semantics