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ABSTRACT
Modern web search engines exploit users’ search history to person-
alize search results, with a goal of improving their service utility
on a per-user basis. But it is this very dimension that leads to the
risk of privacy infringement and raises serious public concerns.
In this work, we propose a client-centered intent-aware query ob-
fuscation solution for protecting user privacy in a personalized
web search scenario. In our solution, each user query is submitted
with l additional cover queries and corresponding clicks, which
act as decoys to mask users’ genuine search intent from a search
engine. The cover queries are sequentially sampled from a set of
hierarchically organized language models to ensure the coherency
of fake search intents in a cover search task. Our approach empha-
sizes the plausibility of generated cover queries, not only to the
current genuine query but also to previous queries in the same task,
to increase the complexity for a search engine to identify a user’s
true intent. We also develop two new metrics from an informa-
tion theoretic perspective to evaluate the effectiveness of provided
privacy protection. Comprehensive experiment comparisons with
state-of-the-art query obfuscation techniques are performed on the
public AOL search log, and the propitious results substantiate the
effectiveness of our solution.
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1 INTRODUCTION
Personalization techniques inmodern information retrieval systems
are a double-edged sword. Search engines trace, analyze and exploit
their users’ personal information [29, 47] and behavior signals
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[18, 32, 45, 46] to infer what the users are looking for, when, and in
what context, so as to deliver more relevant and customized content
or advertising [13, 50]. Although personalization techniques largely
increase the utility of provided services on a per-user basis [17],
however, it is this very dimension that raises serious public concerns
about privacy infringement [12, 48]. According to [36], almost three-
quarters of search engine users in the U.S. are not okay with their
personal information being tracked and used to personalize their
future search.

Current solutions for privacy protection in online systemsmostly
focus on the identifiability aspect of privacy, i.e., who issued the
query, via providing secured communication [15, 37], encrypted
data storage [10, 35] and releasing [19, 24]. However, another im-
portant aspect of privacy, linkability, i.e., determining the interests
of an individual from their observed behaviors, has not received
enough attention. Specifically, linkability is what enables a service
provider to link multiple queries to the same user, and thereby learn
detailed information about a user’s interests. According to Jones
et al.’s study in [28], a simple supervised classifier based on the
textual query content recorded in search engine logs can link a
sequence of queries to a set of candidate users with known gender,
age and location; and this set is 300-600 times smaller than a ran-
dom chance would allow. This leaves the users with little control
to avoid “curious” systems abusing their personal information, e.g.,
targeted advertising [22] and digital discrimination [34].

In this work, we develop intent-aware query obfuscation solution
to protect the linkability aspect of privacy in a personalized web
search system. In particular, we focus on search log based person-
alization techniques [17, 41, 46, 47], which have been extensively
studied in literature and widely used in practical systems. In such
type of personalization methods, search engines profile users with
their historical queries and clicks and use such profiles to customize
future system output, such as the search results. At a high level,
the basic idea behind our solution is to hide a user’s true search
intents among a set of randomly generated but loosely related cover
queries and clicks. In order to compensate the degenerated search
quality that is caused by the injected noise, on the client-side, we
maintain a noise-free user profile to re-rank the received search
results. Our proposed solution is totally client-centered, with no
support required from the search engine side, which makes it gen-
eral and adaptable to many personalized application scenarios, e.g.,
recommender systems.

The key challenge in this research is to ensure the plausibility
of the generated cover queries, not only with respect to the user’s
current query but also to the sequence of his/her previous queries
and clicks in the same search task [27, 49]. Existing studies in query
obfuscation only focus on the first aspect of plausibility. For exam-
ple, latent semantic analysis [33] and topic models [2] have been
used to cluster queries into semantically coherent groups; every
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time, cover queries are randomly generated from qualitatively sim-
ilar but different query groups with respect to the true user query.
However, users’ true search intents usually span a wide spectrum in
practice; for complex needs like health diagnosis, they often submit
multiple queries and even continue the search for several days [1].
As a result, the strong dependency between a user’s sequential
search behaviors leave the genuine query sequence distinctive, as
the cover queries are independently generated for each query in the
same task from those conventional query obfuscation methods.

We address the challenge by generating sequences of related
cover queries to form cover tasks with respect to a user’s gradually
developed search tasks. To ensure semantic relatedness within the
sequence of cover queries, we sample queries from a set of hierar-
chically organized language models based on the topic ontology
defined in the Open Directory Project (ODP) [44]. To make the
sampled queries comparable to the genuine ones in plausibility, we
adopt the rejection sampling method [21] to ensure the entropy of
sampled queries is close to that of the enuine query. Additionally,
as query term matching still plays a very important role in modern
search engine [17, 18], we submit the genuine user query together
with the cover queries and only return the search results for gen-
uine queries to the user to ensure utility of the search results. As
a result, there is a trade-off between privacy protection our solu-
tion provides and the utility of search results; and the number of
generated cover queries controls such trade-off.

Quantitatively evaluating the effectiveness of privacy protection
is also challenging. Previous studies have shown that people do
not necessarily reveal their true privacy needs in laboratory experi-
ments and/or questionnaires [14]. And it is even more challenging
(if not impossible) for third-parties to judge privacy needs from the
logged search history because different users hold different criteria
about privacy [5, 12]. In this work, we assume all user queries are
sensitive and need privacy protection; and we measure the change
of entropy between the prior and posterior distributions over the
search intents inferred for a user after a genuine search task is
finished. An algorithm is considered as a good privacy protection
solution if it creates similar changes of entropy in the cover queries
to those in the genuine queries, i.e., Bayes-optimal privacy [30]. In
our empirical evaluations, promising improvement in privacy pro-
tection and search quality measured by a distinct set of performance
metrics confirm the effectiveness of our proposed solution.

2 RELATEDWORK
The inherent tension between personalization and privacy roots
in the nature of personalization techniques, which heavily depend
on utilizing various types of personal information to differenti-
ate individuals’ information need from the general groups’ needs
[18, 32, 45–47]. Shen et al. [43] envisioned four levels of privacy pro-
tection in a personalized retrieval system, e.g., pseudo identity v.s.,
no identity, and analyzed various software architectures to achieve
such a purpose. Their categorization of privacy preservation can be
summarized as the identifiability and linkability aspects of privacy,
and we discuss the related works to our proposed research with
respect to these aspects.
• Protecting identifiability. A prodigious amount of research ef-
fort has been devoted to protecting this aspect of privacy. Anonymized
proxies, e.g., the Tor Project [15], provide a way of concealing users’
identities from third-party’s monitoring when accessing an online

service system. Collaborative schemes are proposed in [11, 16] to
let each user submit queries generated by other users, such that
individual users are hidden inside groups’ identities. However, such
solutions suffer from slow response time [39], heavy dependency
on the availability of backend system, and ignorance of the se-
mantic content of users’ inquiries, which may inherently reveal
users’ identities. More importantly, such solutions largely disable
personalization by physically hiding users’ identities.
• Protecting linkability. The incident of AOL query log release
[7] has demonstrated the risk of privacy breaches from the in-
quiries received on the server side. Query privacy is achieved in
Boolean retrieval by matching the encrypted or hashed keywords in
place of their plaintext counterparts [9, 20]. Murugesan and Clifton
defined a relaxed problem called “Plausibly Deniable Search” in
relevance-based retrieval and proposed a latent semantic indexing
based approach to generate cover-up queries to hide a user’s orig-
inal queries [33]. However, it can only obfuscate queries falling
into a predefined dictionary, which greatly limits its practical value.
Follow-up work further considers the semantic relatedness between
the generated queries and genuine query [40], injects decoy terms
with similar specificity as the original query terms [35] or according
to a given knowledge base [40], and generates scrambled queries
[3, 4] by maintaining anonymity and generality of user queries.
Zhu and Xiong anonymized simple keyword-based user profiles to
protect privacy while facilitating personalized web search [53].

A large pool of prior works are done based on Obfuscation-
based private web search (OB-PWS) [6] where dummy queries are
generated and sent to the search engine along with users’ true
queries to prevent accurate inference of search profiles and provide
query deniability. Browser extensions, such as TrackMeNot [23],
are developed following OB-PWS notion to conceal users’ general
interests. However, most existing research works anonymizes user
queries in an isolated manner without considering the relatedness
between consecutive user queries in the same task; the dependency
among users’ sequential interactions has not been considered. In our
solution, we formulate a sequence of related cover queries and clicks
with respect to a user’s gradually developed search intents. Both
query-level and task-level plausibility are achieved via controlled
statistical sampling.

3 METHODOLOGY
In this section, we first describe the privacy definition that we focus
on in this paper, and then discuss in detail about each component
of our developed intent-aware query obfuscation solution, where
1) a sequence of cover queries are sampled from a topic hierarchy
regarding a user’s gradually developed search intent, and 2) client-
side reranking is performed on the true user profile to compensate
the degenerated search quality caused by the injected noise.

3.1 Defining Privacy
We focus on Bayes-optimal privacy [30] that bounds the difference
between the prior and posterior beliefs of an adversary about a
user’s private information. Consider in a search scenario, a (mali-
cious) search engine keeps track of search queries and clicks from
its users and performs inference of user search intents from such
data. To protect a particular user’s sensitive information, a privacy
protection mechanism has to manipulate the queries and clicks
sent to the search engine from this user. Bayes-optimal privacy is



Figure 1: Intent-aware Query-obfuscation framework for Privacy-protection. The dashed arrows represent the generalization
and specification operations on the topic tree to generate sequential cover queries with respect to a user’s genuine search task.

obtained if the protection mechanism provides an adversary little
additional information for inferring a user’s sensitive information
beyond its background knowledge (such as that from the user’s
nonsensitive information or public data or logs from other users).
To be more specific, Bayes-optimal privacy requires the adversary’s
posterior belief about the user’s sensitive information not to exceed
ϵ amount of its prior belief, after observing the manipulated queries
and clicks.

However, the original definition of Bayes-optimal privacy is not
easy to operate in the search scenario. First, it assumes a clear
separation between sensitive and nonsensitive information, as it
was originally designed for privacy-preserving data publishing.
However, as we discussed in the introduction, privacy is a highly
emotional issue and different users might have different privacy
requirements. Second, the inference function is originally defined
solely as generalization mappings between attribute values. For
example, partitioning ordered attributes into intervals and only
publishing the intervals. In the search scenario, users submit natural
language queries and can click on any of the returned documents,
which can hardly be predefined. This leads to unrestricted inference
a search engine may perform, and it further complicates the prior
and posterior belief estimation.

To make the Bayes-optimal privacy operational in the search
scenario, we make two assumptions. First, we assume the topics of
search queries are sensitive, which indicate a user’s (private) search
intent. This assumption is practical and serves as the basis for many
deployed personalization algorithms [8, 13, 17, 47]. Therefore, the
inference a search engine needs to perform is to map queries to
topics. To realize the fact that modern search engines utilize a se-
quence of queries (i.e., search tasks [1, 27, 49]) to infer a user’s
search intent, we do not limit our inference function to a single
query, but to a set of queries. Second, we assume all user search
topics are sensitive. Although arguably this assumption may not
hold in practice, it leads to a stronger privacy protection. The Bayes
optimal privacy can then be effectively measured in the space of
search topics, i.e., the difference between the prior and posterior
distributions of topics inferred from a user’s search history. Accord-
ingly, the privacy attack imposed in the resulting threat model is
that a search engine performs topical inference about users’ private

information from their submitted queries and clicks. We do not
assume the search engine would deliberately provide degenerated
search results to force users to provide more sensitive queries and
clicks, as it is against its business model.

We should note the difference between our privacy definition
and the notion of plausible deniability defined in [33]. Specifi-
cally, plausibility is defined as the distance in a vector space among
queries, and deniability requires all submitted queries to locate
within a certain distance to each other so that they are equally
plausible. First, plausibility only focuses on individual queries and
ignores the dependency among users’ sequential search behaviors
in the same search task. It thus fails to measure the privacy disclo-
sure resulted from the observable sequential interactions on the
search engine side. Second, it does not account for the background
knowledge an adversary might have in inference. This will lead to
a less effective protection of privacy, e.g., generating cover queries
with close distances to each other but highly rare with respect to a
global distribution of queries.

We have to admit that defining search privacy at a topic level
cannot well handle information leakage from users’ “ego-surfing”
behavior, e.g., searching for one’s own name and SSN. Special treat-
ment can be added to address such situations, such as generating
common person names if a person’s name is detected in a user
query. We leave this as our future work and focus on topic-level
privacy protection defined above. In the following, we will discuss
our proposed solution for generating the obfuscated user queries
and clicks from client-side, which controls a search engine’s pos-
terior belief about a user’s sensitive information at the topic level,
such that the aforementioned Bayes-optimal privacy is obtained.

3.2 Protecting Privacy
We consider the search intent behind a user query as the semantic
topic embedded in its text content, and the topics are hierarchically
organized such that they form an ontology structure named intent
tree. To accommodate a user’s sequential search behaviors, queries
serving for the same intent can be grouped into tasks [27], so that
a task maps to a sub-graph on the intent tree. Such concept has
been extensively exploited in modern search engines to construct
user profiles to personalize search results [32, 45–47]. The server



inferred user profile represents its posterior belief about the user’s
sensitive information in this topic space, regarding the definition
of Bayes-optimal privacy.

To protect user privacy in this topic space, we introduce con-
trolled noise to the user profiles maintained on the server-side by
submitting cover queries and clicks from related topics on the intent
tree: the obfuscated queries and clicks are generated with respect
to the changes detected in the search topics of genuine queries. In
this way, the user profile maintained on the server side gets lower
perception about the user’s developing true intents. As a result, it
reduces the difference between the adversary’s prior and posterior
beliefs about a user’s private information.

We name our proposed solution Intent-aware Query-obfuscation
for Privacy-protection, or IQP in short. The workflow of IQP is il-
lustrated in Figure 1, where a user interacts with a potentially
non-trustworthy search engine. The goal of IQP is to assist users
in fulfilling their information need with reduced effort (i.e., person-
alization) while minimizing sensitive information disclosure to the
search engine (i.e., privacy).

In IQP, the search process works as follows. First, when a user
issues a query, the client-side model infers its underlying search
topic against the intent tree; then based on the inferred topic, cover
queries are generated from related topics with a similar specificity.
The specificity of a user’s intent is estimated by the depth of inferred
topics on the intent tree and the frequency of this query against
a reference corpus, which ensemble the prior knowledge a search
engine might have. It is easy to prove that when one proportionally
samples from those equally specific search topics to generate the
cover queries, the difference between the server-side prior and
posterior beliefs of a user’s sensitive information is minimized
(as the relative entropy between these two distributions is kept).
Second, as the user continues searching with related topics, i.e., in
the same task, subsequent cover queries are generated with respect
to the relative changes in the genuine queries’ search topics (e.g.,
becomemore specific or more general). This also helps minimize the
difference between server’s prior and posterior beliefs of a user’s
sensitive information. Third, once the search results are returned
for each submitted query, only those related to the user’s genuine
query will be provided to the user after re-ranking them using
the locally maintained true user profile. In the meanwhile, cover
clicks are also generated in all the returned search results to prevent
privacy disclosure from click patterns.

To materialize our IQP framework, three components need to be
realized, namely: 1) query intent inference, 2) intent-aware cover
query and click generation; 3) client-side personalization. We will
use the search process illustrated in Figure 1 as a running example
to discuss our design of these components.

• Task1: Query Intent Inference.We choose the topic hierarchy
defined in the Open Directory Project (ODP) [44] as our intent tree
for query intent inference, as it has been widely used for search
intent modeling [8] and personalization [13, 17, 47]. Note that our
solution is not restricted to the ODP topic structure, and it can be
easily adopted to any other general or specific topic ontology, such
as Wikipedia categories. We build a set of language models up to
four-grams for each node on the intent tree, as [25] suggested that
the typical length of a web query is between 3 and 4. Those lan-
guage models are estimated based on the crawled content from the
associated URLs in each ODP topic node; and hierarchical Dirichlet

Algorithm 1 Intent-aware Cover Query Generation
Input: User profile, p ; Query, q; Topic tree, T ; parameter, l
Output: Set of cover queries, Q
1: q′ ← GetLastSubmittedQuery(p)
2: tq ← GetTopic(q), tq′ ← GetTopic(q′)
3: T ← {}, Q ← {},
4: if q and q′ belong to the same task then
5: T ′ ← GetTopic(GetCoverQuer ies(q′))
6: for each t ∈ T ′ do
7: T ← T + [t ′ ∈ T : distance(tq, tq′ ) = distance(t, t ′)]
8: else
9: T ← GetCoverTopics(T , l )
10: for each t ∈ T do
11: k ← PoissonDistr ibution(lenдth(q))
12: Q ← Q + Re ject ionSamplinд(nGramLM (t ), k )
13: return Q

prior smoothing [31] is performed to smooth the language models.
The search intent of a given user query can then be effectively
predicted by the maximum a posterior inference,

P(t |q) ∝ P(q |t)P(t) = P(WmWm−1 · · ·W1 |t)P(t) (1)

where P(WmWm−1 · · ·W1 |t) is provided by the n-gram language
models for topic t . The prior distribution for topic t can be estimated
with regard to the topic hierarchy by,

P(t) ∝ #[nodes in the sub-tree rooted at t] (2)

This estimation can be improved by the statistics from an annotated
search log, when it is available. To ensure its runtime efficiency,
we build an inverted index over the raw content of the intent tree
nodes, and only perform inference on the matched nodes with a
given query. For the nodes with no content overlapping with the
query, its language models can only score this query via the prior
distribution introduced by smoothing. Therefore we consider it as
less significant.

We have to note that topic inference in search queries is still an
open research problem [8], and no perfect solution exists so far. The
inaccuracy of topic inference undeniably affects our IQP solution;
and the search enginemight also use different methods than ours for
this purpose. It is interesting to study how the difference between
server-side and client-side inference accuracy leads to different
level of privacy disclosure in IQP. In this paper, we assume the
server side would use a similar topic inference algorithm; and leave
this more general question as our future work.
• Task2: Intent-aware Cover Query and Click Generation.
We adopt the entropy l-diversity principle [30] to protect Bayes-
optimal privacy. Intuitively, entropy increases as frequencies be-
come more uniform; if there are l equally “well-represented" sen-
sitive topics in a user profile, a search engine needs l-1 damaging
pieces of background knowledge to eliminate l-1 possibilities and
infer a positive disclosure. Hence, by setting the parameter l, we can
determine how much protection is provided against background
knowledge – even if this background knowledge is unknown to us.

In IQP, after inferring the topic of a user’s genuine query, those
closely related topics will be selected to generate cover queries. In-
stead of selecting the topics independently (as performed in existing
works [2, 33]), IQP maintains the relative transition of those se-
lected cover topics with respect to those in the recognized genuine



search task. We consider two factors when selecting the cover top-
ics: 1) specificity of user search intents, and 2) transition between
current and previous search intents in the current search task. The
first aspect ensures the selected cover intents are comparable to the
genuine ones. The second ensures the sequentially generated cover
queries are comparable to the true query sequence, because the
transition among true queries in the same task discloses additional
information about a user’s search intent. Various solutions have
been proposed to identify search tasks [1, 27, 49]; and we can use
any off-the-shelf algorithm for this purpose (even the tasks are
performed in an interleaved manner), as it is orthogonal to our
query generation procedure.

We list the procedure of cover query generation in Algorithm
1. For the first query in a search task, IQP selects l cover topics
with respect to the prior probability of the inferred genuine search
intent (i.e., Step 9 in Algorithm 1), where we use the same prior
distribution of search topics defined in Eq (2). A straightforward
way is to use rejection sampling [21]. However, consider the intent
is organized in a tree structure, sibling nodes would always have
similar prior and therefore being preferred; but selecting them as
cover intents discloses their shared common ancestors (as shown in
Figure 1). To avoid this type of disclosure, we add another constraint
in rejection sampling: only a fraction of cover topics can be selected
from the sibling nodes, and the rest should be randomly sampled
from the non-sibling nodes of similar prior probability. This ratio
is dynamically adjusted by the depth of the intent node of the true
user query: if it is more specific (deeper in the tree), fewer cover
topics will be selected from its sibling nodes, as they would share
more common ancestors; and vice versa.

Once IQP detects the user continues a previous search task, the
cover topics will be selected to retain similar transitions on the
intent tree as in the true query sequence (i.e., Step 5–7 in Algorithm
1). We choose to follow the intent transition pattern detected in
the genuine query sequence, rather than to perform random walk
on the intent tree, because the transition probability also discloses
information about a user’s search intent. It is unlikely for a user to
randomly traverse in the topic space to fulfill an information need
(although every step seems plausible); and therefore if the cover
queries are generated in this way, a search engine can easily recog-
nize and filter them. In particular, IQP assumes if the previous and
current query intents belong to the same topic path on the intent
tree, the queries are serving for closely related intents. For example,
in Figure 1, if the user’s next query becomes “Polycystic Ovary Syn-
drome", it indicates the user switches to a more general intent (i.e.,
from “Top/Health/Disease/Treatment" to “Top/Health/Disease").
IQP will retrieve the topics used to cover the previous query and
follow the same transition pattern to select new cover topics, i.e.,
move those topics upwards along the intent tree. For the selected
topics, if they cannot follow the detected transition on the intent
tree, for example leaf nodes cannot move downwards, we will keep
them intact with probability β , otherwise we use rejection sampling
method described above to select a new cover topic (i.e., to initiate
a new cover task).

After the cover topic is selected, we use rejection sampling to
generate cover queries from the n-gram language models associ-
ated with the topic, so that similar specificity between the genuine
and cover queries can be achieved (i.e., Step 10–12 in Algorithm
1). Specifically, we use the difference between entropy of genuine

and generated cover queries as the condition in rejection sampling.
In addition, we use a Poisson distribution to randomize the length
of the cover queries. Rate parameter λ of the Poisson distribution
is set to the average length of the queries submitted by the user.
This further reduces information available for the search engine to
discover the genuine query. Besides, as users would only click on
results for the genuine queries, we also generate cover clicks for
the cover queries, otherwise a search engine can easily recognize
the injected queries by their click-through rates. We use a posi-
tional click model [38] trained on a large reference search log, and
sample clicks from it accordingly. Specifically we estimated click
model per topic nodes on the intent tree to maintain different click
distributions under different search intents.

One practical concern of this solution is its induced burden on
network traffic. Treatments exist to alleviate this burden: for ex-
ample, submitting the cover query and click in an asynchronized
fashion regarding the genuine query and click (e.g., randomly post-
pone the submission of cover traffic), so that peak time traffic is
reduced (but total traffic is the same). However, the total amount
of additional information cannot be reduced, as it is necessary to
achieve Bayes Optimal privacy in this scenario.
•Task3: Client-side Personalization.As cover queries and clicks
are injected from client-side for privacy protection, search quality
from a search engine that builds user profile on such noisy input for
personalization will be undermined. To retain the utility of person-
alization, we perform client-side reranking with an uncontaminated
user profile. We use rank aggregation by Borda’s method [51] to
merge the ranked search results from search engine and client-side
user profile. Specifically, Borda’s method assigns a ranking score
corresponding to the position in which a candidate document ap-
pears within each ranker’s ranked list, and the candidates are sorted
by this integrated ranking score:

score(d) = α/R1(d) + (1 − α)/R2(d) (3)
where Ri (d) denotes the ranking order of document d in ranker
i’s ranked list, and α controls the weight of each ranker. We use a
language model estimated on the uncontaminated user profile to
compute personalization score as follows [42, 46],

UPScore(d) =
∑

w ∈q∩d
log
(1 − λ)pml (w |d) + λp(w |C)

λp(w |C)
· t f (w)

then aggregate the rankings using Eq (3) to compute the final
ranking of the retrieved documents. [2] used a similar client-side
reranking strategy, but their client-side ranking is simply based on
document profile matching, without considering the background
popularity of a matched query term outside a user profile. How-
ever, we should note that the main focus on this work is privacy
protection rather than yet another personalization method; more
advanced techniques, such as learning-based methods, can be ap-
plied to further boost the retrieval quality and we leave this as one
of our future works.

4 METRICS OF PRIVACY PROTECTION
Evaluating the effectiveness of privacy protection is vital and as
important as developing the protection solution. But as we dis-
cussed earlier, there is insufficient attention in this direction. Some
prior work uses KL-divergence to measure the statistical differ-
ence between the user profiles constructed on the server-side and
client-side, and Normalized Mutual Information [2] to measure the



Figure 2: Illustration of the Confusion Index calculation

statistical relatedness between a set of genuine user queries and cor-
responding cover queries. These two metrics reflect the difference
between a search engine’s prior and posterior beliefs of a user’s
search behavior. But such metrics treat queries as independent,
so that it cannot measure information disclosure at the task-level,
where queries are dependent on each other.

We design two new metrics to evaluate the task-level privacy
disclosure from the perspective of task distribution in the space of
search intents and intent transitions. We name them as Confusion
Index and Transition Index accordingly.
• Confusion Index (cIndex)We measure a search engine’s belief
about a user’s information need conveyed in a search task by the
difference between the prior and posterior distributions on the in-
tent tree. According to [27], a task can be represented as connected
components on the intent tree. Hence, the difference only needs to
be measured on those components (as other parts have no change
resulted from this search task). We quantify the belief updates by
the change of entropy on those associated components in the prior
and posterior distributions, i.e., the entropy l-diversity principle. A
larger entropy reduction on a component indicates a user’s intent
is more likely to concentrate on it, and therefore the search engine
will be more confident to assert it is the user’s true intent. There-
fore, in cIndex we rank the connected components affected by the
genuine and cover tasks in a descending order regarding entropy
change, and count how many connected components created by
the cover tasks are ranked ahead of those created by genuine tasks.
The larger cIndex is, the less accurately a search engine will be
able to recognize the true user intent in a search task, and there-
fore the less sensitive information is disclosed. Intuitively, cIndex
directly quantifies privacy disclosure at the level of related search
intents. The prior probability of a connected component can be
estimated in the same way as defined in Eq (2), and the posterior
can be estimated based on the counts collected from the inferred
intents in the associated task (Dirichlet prior smoothing is used in
our experiments). Formally, we define cIndex on an intent tree as,

cIndex(m) =
∑ |m |

i=1

[∑i−1
j=1

(
1 − δ (j)

)
−
∑i−1

j=1
δ (j)

]
(4)

wherem is a list of connected components resulted from all histori-
cal queries ranked in a descending order of entropy change; and
δ (j) = 1 if the jth component inm is related to a true user task, and 0
otherwise. To keep cIndex value invariant with respect to the input
sequence length, we normalize it by (cIndex −min)/(max −min)
wheremin represents cIndex score when all true components are
ranked ahead of cover components (case 1 in Figure 2) andmax
represents score when all cover components are ranked ahead of
true components (case 2 in Figure 2) in a given set of connected
components.

The logic behind the design of cIndex is the Bayes-optimal Pri-
vacy principle. The entropy changes on the connected components
on the intent tree directly relate to the update of a search engine’s
posterior belief from an observed query sequence. If connected
components with large entropy change are resulted from cover
queries, the search engine’s posterior belief on the true user intent
can hardly be increased. Hence, privacy is obtained. We visualize
the definition of cIndex in Figure 2. Intuitively, cIndex counts how
many connected components resulted from a cover task can be
ranked above those resulted from a true task at every position in
this ranked list. It is easy to verify that cIndex requires a balanced
distribution between the cover components and true components
(i.e., comparable change in entropy). On the one hand, if an algo-
rithm concentrates all cover queries on one component, although
its entropy change will be maximized, it can only cover one true
component and therefore leads to a worse cIndex. On the other
hand, if an algorithm puts every cover query into a disjoint compo-
nent to maximize the number of cover components, their entropy
change will be minimal and make the true intents ranked all above
the cover ones.
• Transition Index (tIndex) In cIndex, we measure task plausi-
bility regarding its queries’ concentration on the intent tree. This
ignores the internal relation between queries in a task – their transi-
tional patterns. We follow a similar principle as in cIndex to define
tIndex, which counts how many cover tasks will be ranked ahead
of true tasks with respect to the intent transition probability.

However, if we define transition as the change of search intent in
two consecutive queries, the transitional space would be quadratic
to the number of nodes on an intent tree. This is unfortunately
too large to obtain a confident estimation for any practical topic
ontology (e.g., ODP tree has more than 7,600 nodes in its first four
levels). To reduce the problem space, we define transition of intents
against the intent tree structure: if the follow-up query moves the
inferred intent to the parent node of the previous query’s intent,
we denote the change as “UP1;” if it is moved to the grandparent
node, it is denoted as “UP2,” and etc. We consider up to two levels
along the intent tree, and also include “SA,” “MB” and “Others” to
indicate staying at the same node, moving to a sibling node and the
other nodes. As a result, our transition matrix is defined over those
relative changes on the intent tree and can be effectively estimated
from reference search logs with annotated search topics. Despite
such definition of transition looses precision in recognizing fine-
grain transition patterns in tasks, it makes the evaluation possible.

With an estimated transition matrix, every (both genuine and
cover) task can be scored by its transition likelihood, and ranked in
a descending order. We also normalized the transition probability
with respect to length to avoid potential bias introduced by such
a factor. The same method as defined in Eq (4) and normalization
process is used to compute the corresponding tIndex.

5 EXPERIMENTS
In this section, we compare our approacheswith five state-of-the-art
query obfuscation techniques [2, 33, 35, 40, 53] in terms of privacy
protection, query plausibility, and search effectiveness.

5.1 Dataset & Setup
We used the AOL search log, which contains 16,946,938 queries
submitted by 657,426 unique users from March 1 to May 31, 2006.



There are 1,632,797 unique clicked documents. We have to admit
that the AOL data set is a bit out of date, but it is the largest Eng-
lish search log data publicly available. We built our customized
search engine using Apache Lucene, where we chose Okapi BM25
as the ranking algorithm. For simplicity, our search engine always
returns the top 100 documents. To simulate a personalized search
engine, we compute relevance score of documents using a language
model estimated by the server-side constructed user profiles [42].
In particular, the server-side user profiles are built on all submit-
ted user queries and the corresponding clicked document content
(including cover queries and cover clicks). All the documents are
re-ranked using the rank aggregation method described in Eq (3)
before returning to the users. We found α = 0.5 for server-side
rank aggregation and α = 0.3 for client-side re-ranking provided
the best ranking results. And we fixed them in all our experiments.

In our evaluation, we used the top 1000 most active users based
on the volume of their query history; and this resulted in total
318,023 testing queries. We considered the clicked documents of
each query as relevant in the ranking-based evaluation. As our so-
lution is orthogonal to the choice of search task extraction method,
we choose to identify in-session tasks in our experiments for sim-
plicity; but any other task identification method can be seamlessly
inserted into our framework. We used 30-minutes inactive time
threshold to segment sessions [26], and we further segmented a
session into tasks if the cosine similarity of two consecutive queries
is less than 0.5 [27]. Since the total number of nodes in the ODP tree
is large, we only considered categories up to level four. This gives
us 7,600 topic nodes. To build the language models, we crawled
82,020 web documents pointed by the URLs in those topic nodes.

We employed mean average precision over the top 100 returned
documents, i.e., MAP@100, to evaluate the ranking quality. In ad-
dition to the newly proposed cIndex and tIndex metrics, we also
included the previously used Normalized Mutual Information (NMI)
between true and cover queries and Kullback–Leibler divergence
(KL) between true and noisy user profiles to measure the effective-
ness of privacy protection [2]. In particular, to compute tIndex, we
randomly sampled 10 thousands users from the AOL search log
except those in our testing set, and performed the topic inference
defined in Eq (1) to estimate the transition probability matrix. Basi-
cally, cIndex and tIndex measure privacy disclosure at a task level,
and NMI and KL divergence measure it at a query level.

We also employed another two previously used metrics based
on external web resources to evaluate the statistical property of
true and cover queries, i.e., statistical plausibility. This reflects the
additional knowledge a search engine might have about individual
users. First, we compute Information Content ratio [40] by,

IC ratio(a,b) =
Max

(
hit_count(a),hit_count(b)

)
Min

(
hit_count(a),hit_count(b)

) , (5)

which measures the ratio of search result hits for query a and b in
a large search engine index. A good cover query should have its
IC ratio close to one, so that it cannot be differentiated from the
true query in this dimension. We used Microsoft Bing API to find
the hit count of a query. Second, we use Microsoft Web Language
Model API to compute the probability difference between a query
and its cover query at the web scale, and name this metric as query
plausibility difference, or ∆P in short. A good cover query should
have ∆P close to zero, i.e., it has very similar probability as the true

query regarding to a search engine’s background knowledge. Note,
both metrics are query-level measures about privacy disclosure.

We compare with the following five baseline approaches:
• Plausible Deniable Search (PDS) We implemented the PDS
[33] model based on the ODP dataset. Following its design, we
created 161,553 seed queries and 161,318 canonical queries. In the
PDS model, a user’s genuine query is not submitted to the search
engine; instead, the cover queries are used to retrieve results for the
user. This results in very poor retrieval performance in a keyword-
based search engine. We modified this model by submitting the
original user query along with the generated cover queries to make
this model comparable with others in terms of search effectiveness.
•Knowledge-based Scheme (KBS) This model focuses on nouns
and noun phrases in a user query and generates cover queries based
on a predefined lexical ontology [40]. We implemented this method
based on WordNet and ODP categories. All the 117,798 nouns from
WordNet and 763,378 categories fromODP tree are used. For a given
genuine query, the name of nodes within a predefined distance (2 in
our experiment) to the inferred query intent nodes on the ontology
are selected as cover queries. Like PDS, we modified KBS model to
submit true queries to the search engine to make the comparison
coherent with others.
• Embellishing Search Queries (ESQ) ESQ model [35] embel-
lishes a user query by adding decoy terms with the original query
terms. The decoy terms are selected from pre-processed nouns of
WordNet, which are organized in buckets of different specificity. We
used 117,798 nouns and 82,115 synsets of WordNet to implement
this algorithm. ESQ has two parameters, bucket size and segment
size, which are set to 4 and 512 respectively. In ESQ, user queries are
embellished by first selecting the bucket which contains a genuine
search term and then injecting all the other terms from the same
bucket as decoy terms to the user query.
• Topic-based Privacy Protection (TPP) It is one of the most
recent works in privacy preserving personalized search [2], which
generates cover queries from a pre-trained statistical topic model.
We used the same set of crawled web documents of ODP categories
to build a LDA topic model with 100 topics. For each genuine query,
TPP first infers its topic and draw query terms independently from
the selected topic. TPP also performs client-side reranking to im-
prove search utility.
• Anonymizing User Profiles (AUP) AUP [53] is a server-side
algorithm for privacy protection. It clusters user profiles based on
cosine similarity to form group profiles. To better compute the
similarity between user profiles, AUP augments the query terms in
a user profile by using synonym and hypernym set from WordNet.
AUP balances privacy and search effectiveness by controlling the
size of group profiles and introducing diversity during clustering.
The AUP model has two parameters: p-linkability and number of
steps for hypernym set augmentation. We set p = 0.2 and only per-
formed one step augmentation, which results in 116 group profiles
over 1000 testing users.

5.2 Experiment Results
•Comparison on Search Effectiveness. The average MAP@100
with and without client-side personalization from different privacy
protection algorithms is reported in Table 1. We compared IQP with
TPP, PDS and KBS models under two different sizes of generated



Table 1: Comparison across different privacy protection solutions. ∗,⋆ indicate MAP@100 computed by submitting only cover
queries to the search engine and by submitting original queries along with cover queries. Statistical significance test is con-
ducted by comparing the best two algorithms and the result is presented in bold-faced (p-value < 0.05).

Settings Model MAP@100 MAP@100 [client-side personalization] KL Divergence NMI cIndex tIndex

l = 0

Okapi BM25 0.1236 NA NA NA NA NA
BM25 + Personalization 0.1638 NA NA NA NA NA

AUP 0.1088 0.1171 0.9636 NA NA NA
ESQ 0.1161 0.1090 0.0912 NA NA NA

l = 2

IQP 0.1387 0.1486 0.6866 0.2156 0.5127 0.6016
TPP 0.1158 0.1174 0.7558 0.3922 0.2635 0.5779
PDS 0.0000∗ 0.1307⋆ 0.1391 0.4467 0.4308 0.3313 0.1936
KBS 0.0143∗ 0.1255⋆ 0.1474 0.7001 0.2914 0.3775 0.4827

l = 4

IQP 0.1331 0.1396 0.8306 0.2193 0.5034 0.6116
TPP 0.1076 0.1094 0.9545 0.3918 0.2565 0.5872
PDS 0.0000∗ 0.1179⋆ 0.1315 0.5474 0.4337 0.3163 0.2004
KBS 0.0282∗ 0.1348⋆ 0.1411 0.8814 0.2912 0.3887 0.4149

cover queries, i.e., l = 2 and 4. Because in AUP and ESQ, no cover
query is generated, their ranking performance is reported in l = 0
row of Table 1. We also reported the average MAP@100 of our
search engine (denoted as Okapi BM25) with its personalization
function enabled (denoted as BM25 + Personalization) in Table 1.
From the results, we can observe that because of the injected cover
queries from the privacy protection algorithms, the search engine’s
ranking performance dropped significantly. And basically the more
cover queries were injected, the worse ranking performance one
would have. This is expected as the search engine is using inaccurate
historical information to personalize the results. We can note that
KBS provided improved search utility with more cover queries (with
its distance parameter set to 2). We experimented with different
distance parameters for KBS, and found MAP decreased with a
larger distance parameter, as we can expect. Comparing IQP with
other privacy protection algorithms, the decrease of ranking utility
is minimized. We attribute it to the client-side re-ranking and the
controlled noise that IQP introduces through the cover queries.
Note that, we also reported the search performance of PDS and KBS
without submitting the true user queries, as in their original designs
the genuine queries are not submitted. Clearly, this greatly hurts the
search utility of these two algorithms, as more than 90% substituted
cover queries contain generic terms from those two algorithms,
which provides little utility to users’ search intent. And arguably it
is meaningless to provide such type of privacy protection, as the
users would not gain any utility from the search service.

• Comparison on Privacy Protection.We evaluated IQP on pri-
vacy disclosure at both query level and task level, and the results
are presented in Table 1. IQP adds less amount of accumulated
noise comparing to other approaches; therefore, the KL divergence
is smaller. This result also partially explains why IQP’s ranking
performance is better than the other models’. Due to the nature of
PDS, it cannot generate cover queries for most of the user query
(more than 90% of our testing queries), as the query terms have
to exist in a predefined dictionary, and thus it provides very weak
privacy protection to the users (true queries have to be submitted
without cover queries). Significance test in the NMI results clearly
indicates that among every submitted cover query IQP discloses
less private information than the other methods. It is evident that
adding noise in a controlled manner so that privacy can be pro-
tected as well as personalization utility can be retained for users is

one of the key advantages of the proposed IQP solution. We also
noticed that the results of KL Divergence on keyword-based user
profile was not consistent with other evaluation metrics (MAP and
NMI), this is because we computed KL divergence between noisy
profile and true profile and the KL divergence computation is not
symmetric. Moreover, neither NMI nor KL divergence considers
the semantic similarity between added terms to a user profile. This
result justifies that developing task-level metric is necessary.

The cIndex and tIndex defined in Section 4 are designed to eval-
uate privacy disclosure at the task level. It can be evaluated after
every user task is finished, i.e., to measure how much private in-
formation is disclosed in this task. But as we are working with
in-session tasks, which are generally short (3-4 queries in average),
the changes in entropy and transition probabilities might not be
significant. To make the comparison in a more perceptible scale, we
computed cIndex and tIndex in each week and reported the results
in Table 1. As shown in the results, IQP significantly outperformed
all baselines in cIndex and tIndex. As queries in true user tasks
are related in their search intents and therefore concentrated on
some connected components, a privacy protection algorithm has
to generate similar concentrations on the other parts of the intent
tree, i.e., plausible cover tasks, to improve cIndex. On the other
hand, IQP mimics similar transition patterns as in the true user
tasks when generating cover tasks, which leads to a better tIndex.
These results prove the effectiveness of IQP in protecting privacy
at the task level.

To make a more comprehensive comparison of different algo-
rithms’ task-level privacy protection effectiveness, we reported
cIndex and tIndex at different time intervals (with l = 2) in Figure 3.
We can notice that IQP achieved consistent performance in different
time intervals; this indicates its generated cover tasks consistently
match with the true user tasks under these two metrics. We ob-
served that the TPP baseline achieved very good tIndex in most of
comparisons. We looked into its created cover queries and found
they tended to distribute uniformly on the intent tree, because of
the design of TPP. This leads to coherent transition sequences and
a higher tIndex in TPP. But if we compare it with IQP on other
metrics, such as cIndex, its performance is clearly unsatisfactory.

Another observation we found is that more private information
is disclosed as a user interacts with a search engine for a longer
time. One potential reason is that in our current solution, we only



Figure 3: cIndex and tIndex comparisons in different algo-
rithms with different time intervals (l = 2).

Figure 4: Comparison on IC ratio between privacy protec-
tion models (l = 2).

focused on in-session tasks. But it is known that users might return
to previous unfinished tasks across sessions [1, 49]. As a result,
the generated cover tasks become inconsistent for those cross-
session tasks. But our IQP solution can be easily extended to protect
cross-session tasks, by incorporating cross-session task extraction
algorithms.
• Comparison on Statistical Query Plausibility.We compared
IQP with TPP, PDS, and KBS in terms of query plausibility using IC
ratio and query plausibility difference (∆P ) on 50 randomly selected
testing users. A privacy model that has more cover queries in a low
IC ratio range and less cover queries in a higher IC ratio range is
preferred. As depicted in Figure 4, the number of queries belongs
to a low IC ratio range is larger in IQP compared to those in TPP
and PDS but smaller compared to KBS. It indicates cover queries
generated by IQP are getting more search results (i.e., more plausi-
ble) compared to the cover queries generated by TPP and PDS, but
less than KBS. Since KBS uses category names of the ODP ontology
and hypernyms/hyponyms from WordNet, cover queries generated
by KBS is more generic so that it brings in more search results.

Figure 5 illustrates the comparison on ∆P for IQP, KBS, PDS and
TPP models. Positive ∆P indicates cover queries are less plausible
compared to the original user queries and vice versus. Therefore, a
∆P value closes to zero represents similar query plausibility; thus,
it is more difficult to differentiate true queries from the correspond-
ing cover queries. From the results, we can find KBS constantly
generates more plausible cover queries than true queries, because
it uses only noun phrases as its cover query. In a long run, this will
cause negative disclosure of privacy, as the search engine can filter

Figure 5: Comparison on query plausibility difference be-
tween genuine and cover queries (l = 2).

the queries that are overly general. Compared to the TPP model,
IQP creates more plausible cover queries which make it harder for
a search engine to decipher the true queries from the cover queries.
On the other hand, the PDS model cannot generate cover queries
for most of the genuine user query and its deficiency is clearly
evident in Figure 4 and 5.

To better understand how plausible cover queries generated by
IQP is, we present an example of in-session user queries from AOL
search log, their inferred intent by IQP and one cover query per
true query generated by IQP along with their topic in Table 2. The
user’s geniue task is health related, while the generated cover task
is highly related to real estate business.

Table 2: An example of cover queries generated by IQP along
with their topic.

Session queries pregnancy symptoms in the first month
abortion pills
florida abortion clinics

Query topics Home/Family/Pregnancy
Society/Issues/Abortion
Society/Issues/Regional

Cover queries Low priced compact flash GPS receivers
global hotel investment trends
commercial real estate development

Cover query topics Shopping/Consumer_Electronics/Accessories
Business/Real_Estate/Property_Management
Business/Real_Estate/Development

6 CONCLUSIONS AND FUTUREWORK
We developed an effective intent-aware query obfuscation solution
to maintain Bayes-Optimal Privacy in a personalized web search
environment. Our model handles users’ sequentially developed
intents in search tasks. Two new metrics measuring task-level pri-
vacy disclosure are developed to assess privacy protection quality.
Promising results on AOL search log confirmed the utility of our
solution in protecting the linkability aspect of privacy in a person-
alized retrieval system. A chrome plugin [52] is developed based
on the query obfuscation technique proposed in this paper.

This research opens a wide spectrum of future research topics.
Our current model generates fixed amount of cover queries for each
user query, as we assume all user queries are sensitive. Relaxing this
assumption and adaptively adjusting the amount of cover queries
generated for different queries would better balance the utility of



personalization and privacy protection. Furthermore, it is necessary
to perform user studies to understand real users’ perception and
satisfaction about this type of privacy protection solutions.
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