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ABSTRACT
Building analytics can produce substantial energy savings
in commercial buildings by automatically detecting waste-
ful or incorrect operations. However, a new building’s sens-
ing and control points need to be mapped to the inputs of
an analytics engine before analysis is feasible and the pro-
cess of mapping is a highly manual process - a key obstacle
to scaling up building analytics. In this paper, we present
new techniques to perform automatic mapping without any
manual intervention. Our approach builds on and improves
upon techniques from transfer learning: it learns a set of
statistic classifiers of the metadata from a labeled building
and adaptively integrates those classifiers to another unla-
beled building, even if the two buildings have very different
metadata conventions. We evaluate this approach using 7
days’ data from over 2,500 sensors located in 3 commercial
buildings. Results indicate that this approach can auto-
matically label at least 36% of the points with more than
85% accuracy, while the best baseline achieves only 63% la-
bel accuracy on average. These techniques represent a first
step towards technology that would enable any new build-
ing analytics engine to scale quickly to the 10’s of millions
of commercial buildings across the globe, without the need
for manual mapping on a per-building basis.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems

General Terms
Performance, Experimentation
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1. INTRODUCTION
To incentivize the reduction of building energy consump-

tion, the U.S. government launched the Better Buildings
Challenge to make buildings at least 20 percent more effi-
cient by 2020 [13]. To achieve this goal, many organizations
are applying data analytics to the thousands of sensing and
control points1 in buildings to detect wasteful, incorrect,
and inefficient operations. Many promising analytical ap-
proaches have been created that demonstrate promise for
substantial energy savings [14, 8]. However, these analytic
engines are tightly coupled to the database schemata and
metadata conventions in the buildings for which they were
designed. In practice, unfortunately, most buildings use dif-
ferent metadata conventions depending on the type of equip-
ment in the building, the vendors of the equipment, and
the contractors who originally installed it. Therefore, the
same analytics cannot easily be applied to different buildings
where the type, location, and relationships between sensors
are represented differently, before those different schemata
and conventions are mapped to a common norm. The pro-
cess of mapping a new building to the inputs of an analytics
engine is currently a manual process that often involves a
technician visiting the building to visually inspect the equip-
ment installation. It can take days or weeks and is a key
obstacle to the widespread use of building analytics.

Several solutions have been proposed to facilitate the map-
ping problem. Bhattarcharya et al. [3] formulate a solution
that derives a set of regular expressions from a handful of la-
beled examples to normalize the sensor point names, where
the example selection is aided by data feature-based cluster-
ing. Schumann et al. [26] develop a probabilistic framework
to classify sensor types based on the similarity between a
point name and the entries in a manually constructed dic-
tionary. Hong et al. [17] propose an active learning based
approach to iteratively acquire human labels for informative
point names for supervised statistical classifier learning and
propagate the acquired labels to similar points. These ap-
proaches can significantly reduce the time required for map-
ping in each new building, but they all still require some
manual effort, one building at a time.

Additionally, the mapping problem cannot be solved sim-
ply by investing more person hours into the problem. Even
after a building is fully mapped, a new analytics engine may
be developed that requires a different kind of metadata, e.g.
which devices are on the northern side of the building, or
which sensors are affected by a given air handler unit. These

1A sensing or control “point” is a sensor, a controller, or a
software value.



and other types of metadata may even never have been en-
coded in the original databases at all. Thus, as energy mod-
els and building analytics engines become more nuanced, the
mapping problem will become increasingly important.
In this paper, we envision a technology that would enable

building analytics engine to be quickly applied to the 10’s of
millions of commercial buildings across the globe. Doing so
would enable a new market where boutique analytics could
quickly be matched with the buildings they would benefit
the most. The key to this vision is to perform all mapping
operations automatically and to remove the human from the
scalability equation entirely. Any such system would not
need to perform perfect mapping; it must only do a first
pass to label an initial batch of important points (e.g., room
temperature) with decent accuracy that is good enough to
flag the right buildings for a more detailed, manual inspec-
tion process.
As our contribution, we take a first step towards scalable

building analytics by developing new techniques to automat-
ically infer the sensor type information in a building without
manual labelling. The insight that guides our solution is that
a sensor typically has two attributes – its recorded name (a
text string) and its numerical readings generated over time.
In particular, the sensor names are likely to be good indi-
cators of metadata structure but might not be consistent
across buildings, while the sensor readings are more con-
sistent across buildings but are likely to be poor indicators
of sensor types. Our techniques combine the complemen-
tary strengths of these two attributes to automatically rec-
ognize sensor types in one building based on another build-
ing. More specifically, our approach comprises three steps.
1) We start with a fully labeled building and train multiple
statistical classifiers based on the sensor time-series data.
These classifiers predict sensor types based on the raw sen-
sor data, e.g., readings from air temperature sensors are dif-
ferent and change more slowly than those generated by light
or CO2 sensors. 2) In an unlabeled building, we cluster the
points based on patterns in their names such as the phrases
“temp”or “occ”. 3) We ensemble the classifiers from the first
building to label the points in the second unlabeled building,
and assign higher weights to classifiers whose predictions on
an instance’s neighborhood in the target building are more
consistent with the name feature defined clusters.
To evaluate our solution, we use a dataset2 with 7 days of

data from over 2,500 sensors located in 3 commercial build-
ings across 2 different college campuses, and true sensor type
was created manually for all three buildings. Then, we ap-
plied our techniques on each building to automatically infer
the sensor type for the other two buildings. The experi-
mental results indicate that the proposed solution can au-
tomatically label at least 36% of the points with more than
85% accuracy, and in some cases labels up to 81% of the
points with 96% accuracy. In contrast, training classifiers on
one building and applying them directly to another building
achieves only 63% label accuracy on average. Our technique
does not label all points, but those that are labeled have near
perfect label accuracy. These labeled points usually belong
to the most common types such as temperature and CO2,
which can form an important base for further analysis. Be-
fore concluding, we present two techniques that are showing

2This dataset was simply employed as a testing case and the
development of our technique was data- agnostic without
any customization for this dataset.

promise to improve this coverage and expand support for a
larger fraction of analytics algorithms.

2. BACKGROUND AND RELATED WORK
In modern commercial buildings, metadata is often ex-

pressed as short text strings with several concatenated ab-
breviations in a point name. Table 1 lists a few point names
of sensors from three different building management systems
(Trane3, Siemens4 and Barrington Controls5). For example,
the point name SODA1R300__ART is constructed as a con-
catenation of the building name (SOD), the air handler unit
identifier (A1), the room number (R300) and the sensor type
(ART, area room temperature). As the name indicates, this
point measures the temperature in a particular room; and it
also indicates the control unit that can affect the tempera-
ture in this room. Clearly, different naming conventions are
used in these buildings. For example, the notion of room
temperature is encoded with a different abbreviation in each
of the three buildings: Temp, RMT and ART. Such variations
across different buildings impose great difficulty in quickly
deploying automated analytic solutions.

Building Point Name

A
Zone Temp 2 RMI204

spaceTemperature 1st Floor Area1

B
SDH_SF1_R282_RMT

SDH_S1-01_ROOM_TEMP

C
SODA1R300__ART

SODA1R410B_ART

Table 1: Example point names for temperature sensors from
three different buildings.

To the best of our knowledge, we are the first to develop
transfer learning based solutions to address the problem of
automated sensor type classification across buildings.

Researchers have tried to systematically address the prob-
lem of point name normalization. Dawson-Haggerty et al. [12]
and Krioukov et al. [21] introduce a Building Operating Sys-
tem Service stack, whereby the underlying building sensor
stock is presented to applications through a driver-based
model and an application stack provides a fuzzy-query based
interface to the namespace exposed through the driver in-
terface. Although this architecture has some useful prop-
erties for easing generalizability across buildings, the driver
registration process is still performed manually. Bhattar-
charya et al. [3] exploit a programming language based so-
lution, where they derive a set of regular expressions from
a handful of labeled examples to normalize the point name
of sensors. This approach assumes a consistent format for
all point names across buildings, which might not be true in
practice (as shown in Table 1). Schumann et al. [26] develop
a probabilistic framework to classify sensor types based on
the similarity of a raw point name to the entries in a man-
ually constructed dictionary. However, the performance of
this method is limited by the coverage and diversity of en-
tries listed in the dictionary, and the dictionary size becomes
intractable when there exist a lot of variations of the same
type, or conflicting definitions of a dictionary entry in differ-

3http://www.trane.com/
4http://www.siemens.com/
5The company is no longer in business.

http://www.trane.com/
http://www.siemens.com/


ent buildings. Hong et al [17] formulate an active learning
based approach to iteratively acquire human labels for infor-
mative examples and propagate the acquired labels among
points. However, all aforementioned work depends on man-
ual annotations, and thus none of them address the scala-
bility issue of metadata normalization across buildings nor
leverage the knowledge from already labeled buildings.
Applying transfer learning to cross building sensor type

classification saves extra effort in manual annotation by ex-
ploiting the labels in the already well labeled buildings. There
are several categories of transfer learning, e.g., inductive,
transductive, and multi-task transfer learning as compre-
hensively surveyed in [24]. Inductive transfer learning [9]
assumes the set of class labels in the target domain is dif-
ferent from those in the source domain, and aims at achiev-
ing high classification performance in the target domain by
transferring knowledge from the source domain. Multi-task
transfer learning [6] has a similar setting, but tries to learn
from the target and source domains simultaneously. Trans-
ductive transfer learning [10] assumes the source and target
domains have the same set of labels, but different marginal
distribution of features or conditional distribution of labels.
This breaks the basic identical and independent assump-
tion in classical supervised learning models and makes them
inept. Typical solutions in transductive transfer learning
reweight the source domain trained classifiers’ predictions
in the target domain, e.g., instance-based local weighting [4,
19, 29]. But these solutions usually assume that only the
marginal distribution of features differ in the source and
target domain. Ensemble methods are therefore explored to
assign different weights to a set of classifiers to accommodate
the varying conditional probabilities of labels in the target
domain [1, 20]. Our problem setting falls into this category:
we assume we have well-labeled instances from one source
building, but do not have any labeled instances in the target
building. We exploit different properties of a sensor point to
perform the transfer learning: sensor’s data is utilized to es-
timate a diverse set of classifiers to transfer knowledge from
the source building to target building; sensor names in the
target building are used to compute the ensemble weight of
classifiers during knowledge transfer.

3. THE BUILDING ADAPTER
Based on the insight that sensor reading data and sensor

names characterize different properties of a sensor stream,
we develop a transfer learning based approach to exploit
features extracted from both for classifying sensor types in
a new building. Specifically, we construct classifiers based
on data features because they are more likely to be con-
sistent across buildings. However, a single supervised clas-
sifier might not perform well on all instances in the new
building due to the inductive bias inherent in classifier train-
ing. Hence, we employ an ensemble of classifiers, where each
classifier captures a different “perspective” in predicting the
sensor type. When applied to a new target building, since
different classifiers might be effective in predicting different
instances, we appeal to the instance-specific local weighting
method [16] to weight those different classifiers while ensem-
ble. In our solution, the weight is derived based on the con-
sistency between a classifier’s predictions and the instance’s
local clustering structure, which is estimated on the sensor
names in the target building. In the rest of the section,
we first elaborate how we construct the two different types

of features and then concentrate on the proposed transfer
learning method.

3.1 Feature Representation
Our solution exploits two common attributes of the sensor

points in a building - the actual sensor reading data and the
text string-based point names, both of which play an im-
portant role in differentiating sensor types. In this section,
we describe the construction of two different sets of features,
i.e., data features and name features.

3.1.1 Data Features
A signal6 in the time domain is a trend of sensor read-

ing. Different types of sensors generally have different am-
plitudes that can be separated and binned, as demonstrated
in Figure 1. Similar to piecewise aggregated approximation
(PAA [7]) – where the mean is calculated in a fixed-length
window – we compress the signal by computing a set of
summary statistics over fixed-length windows. Table 2 sum-
marizes the statistics we calculate as data features.

Category Statistical Function Acronym

Extrema
Minimum min
Maximum max

Average
Median emd
Root Mean Square rms

Quartiles
1st and 3rd Quartiles 1q, 3q
Inter-quartile range iqr

Moments
Variance var
Skewness skew
Kurtosis kurt

Shape Linear Regression Slope slope

Table 2: Statistical functions applied to each time-series on
window level.

Our feature extraction process consists of three steps. First,
each sensor trace is segmented into N hour-long windows
with 50% overlap between consecutive windows. Second, for
each time window, we compute the statistics shown above.
For example, the vector for MIN is computed as follows:
MIN = {min1,min2, ...,minN}, where N is the number
of time windows. We compute a similar vector for each
statistic shown in the table. Third, we compute a statistical
summary of these vectors. For each vector we compute the
minimum, maximum, median and variance, resulting in a
feature vector containing 44 variables:

F = {min(MIN),max(MIN),

median(MIN), var(MIN),

...

min(SLOPE),max(SLOPE),

median(SLOPE), var(SLOPE)}

F is the data feature representation of each sensor stream
used in our study.

3.1.2 Name Features
Sensor point names are short text strings with several con-

catenated abbreviations, as shown in Table 1. To extract

6In this paper, we use the term “signal”, “trace” and “time-
series” interchangeably.



0 100 200 300 400 500 600 700
380

400

420

440

460

480
CO2

U
ni

t: 
pp

m

(a) CO2

0 200 400 600 800 1000 1200 1400
30

35

40

45

50

55
Relative Humidity

U
ni

t: 
%

(b) Humidity

0 100 200 300 400 500 600 700
69

70

71

72

73

74

75
Room Temprature

U
ni

t: 
Fa

hr
en

he
it 

de
gr

ee

(c) Room Temperature

0 1 2 3 4 5 6 7
x 104

69

69.5

70

70.5

71

71.5

72

72.5

73
Room Temperature Set Point

U
ni

tL
 F

ah
re

nh
ei

t d
eg

re
e

(d) Room Temperature Set Point

0 100 200 300 400 500 600 700
−100

0

100

200

300

400

500

600

700

U
ni

t: 
C

FM

Air Volume

(e) VAV Air Volume

0 100 200 300 400 500 600 700
68.5

69

69.5

70

70.5

71

71.5

72
Chilled Water Supply Temperature

U
ni

t: 
Fa

hr
en

he
it 

de
gr

ee

(f) Chilled Water Supply Temperature

Figure 1: Different types of sensor generally have different amplitudes that can be separated and binned to characterize the
data.

features from a point name, we first convert all alphabetical
characters to lower cases and trim out numerical characters.
For example, Zone Temp 2 RMI204 becomes {zone, temp,

rmi}. Next we compute k-mers [22], which helps measure
sequence similarity without requiring alignment, to capture
variations in type abbreviations. For example, the type of
“temperature” might be encoded as “tmp” or “temp” and
only considering the bag-of-words will miss the similarity
within a word boundary, leaving these two strings far in the
vector space after transformation. Therefore, we adopt k-
mers, which refers to all the possible substrings of length
k in a given string. This feature representation is widely
used in protein and gene sequence analysis and we limit our
k-mers computation within a word boundary. For example,
for a string “ABCDEF”, the 3-mers (k=3) generated would
be {ABC, BCD, CDE, DEF}.
In general, a smaller k will increase the overlapping be-

tween the generated k-mers, making points less differen-
tiable. Therefore, we compute all k-mers of length 3 and
4 for each point name. For example, {zone, temp, rmi}

yields a set of k-mers {zon, one, tem, emp, rmi} when
k=3. A dictionary of k-mers is constructed with all the k-
mers generated from each point name. Each point name is
transformed into a feature vector based on the frequency of
k-mers in it. For example, a set of k-mers {zon, tem, emp,

zon} will be transformed to a vector (2,0,1,1,0) with the
dictionary {zon, one, tem, emp, rmi}, meaning zon oc-
curs twice, one does not appear, and so forth. This feature
representation of point names will be used for clustering on
the new building.

3.2 Locally Weighted Ensembles for Knowl-
edge Transfer

To effectively encapsulate and transfer knowledge from
one labeled building to another, we construct a set of dif-
ferent classifiers, including support vector machines [30], lo-
gistic regression [18] and random forest [5], using the same
set of data features from the source building. Each classi-

fier presents a different “perspective” for recognizing sensor
types in the source building, due to the inductive bias of
the underlying classifier. We refer to these classifiers as base
classifiers in this paper, which will be combined for type
classification in the target building.

The performance of any particular classifier can vary from
building to building, and different classifiers can be effective
at different regions or structures in a target building: no
single classifier can perform well on all instances. There-
fore, to combine the knowledge in base classifiers, we em-
ploy the method from [16] to locally weigh each classifier
and combine the predictions from different base classifiers
in the target building. The weight is computed per classifier
per instance based on the consistency between a base clas-
sifier’s predictions and the local clustering structure of the
target instance. Intuitively, the estimated local weights will
favor classifiers whose predictions are consistent with the es-
timated local structure of the target instance in the target
building.

Formally, let x be the data feature vector of an instance in
the target building and y be its predicted class label. Given
a set of k base classifiers M1, . . . ,Mk and the new testing
set DT encoded with the data features, the general Bayesian
model averaging rule estimates the posterior distribution of
y in x as,

p(y|x) =
k∑

i=1

p(y|x,DT ,Mi)p(Mi|DT ) (1)

where p(y|x,DT ,Mi) = p(y|x,Mi), because x ∈ DT and
p(y|x,Mi) is the label for x predicted by Mi and p(Mi|DT )
is the probability of choosing Mi given the testing set DT .
Since x ∈ DT , p(Mi|DT ) equals to p(Mi|x), which is the
locally adjusted weight for Mi, and Eq. 1 becomes,

p(y|x) =
k∑

i=1

wMi
x p(y|x,Mi) (2)



where wMi
x = p(Mi|x). A classifier Mi is expected to have a

higher weight for x if Mi’s predicted local structure for x is
closer to the estimated neighborhood. We will next explain
how the weight is calculated per instance.

3.3 Graph-based Weight Estimation
Ideally a larger weight should be assigned to the classifier

whose predicted neighborhood structure of a testing instance
in the target building is most consistent with its true neigh-
borhood. To locally weight the classifiers in such a manner,
we appeal to the technique proposed in [16]: it performs
clustering in the target domain and assumes if the cluster-
ing boundary for the region where x falls, agrees with the
decision boundary of Mi, a larger weight should be assigned
to Mi for instance x. In other words, if the predictions
made by Mi on the area surrounding x have greater con-
sistency with the clustering results, Mi will be assigned a
larger weight for x.
Based on these assumptions, the weight can be estimated

with a graph-based algorithm. To compute the wMi
x for Mi

at point x, we construct two neighborhood graphs: GM =
(V,EM ) and GC = (V,EC), for classification and cluster-
ing results respectively, where each vertex is an instance in
the target domain DT . The neighborhood graph describes
whether different examples belong to the same class/cluster.
In the graph constructed for classifier Mi, i.e., GMi , an edge
exists between two vertices (denoting the two instances are
“neighbors”) if and only if Mi assigns the same label for
these two instances. Likewise, in GC , an edge exists between
two vertices if and only if these two instances reside in the
same cluster. If the neighbors of x on both graphs signifi-
cantly overlap, meaning the structure predicted by classifier
is consistent with the cluster structure, Mi will be assigned
a larger weight in the ensemble. So the weight wMi

x for Mi

at x is proportional to the similarity of the two graphs:

wMi
x ∝ s(GM , GC |x) =

|VM ∩ VC |
|VM ∪ VC |

(3)

where VM (VC) is the set of neighbors of x on graph GM

(GC), |X| is the cardinality of set X, and s(GM , GC |x) de-
notes the similarity between two graphs. Figure 2 illustrates
an example of neighborhood graphs for an instance x (in grey
circle): two different classifiers predict different instances (in
white circles) as neighbors to the target instance (in grey
circles), where classifier 1 has a similarity of 0.75 with the
cluster graph while classifier 2 has a similarity of 0.5 with
the cluster graph.

i1

i4i3

i2

Classifier 1 Classifier 2 Clustering

i1

i4i3

i2i1

i4i3

i2

Figure 2: An example of local neighborhood graphs of x
(in grey circle): two different classifiers predict different in-
stances as neighbors to the target instance, where classifier
1’s prediction is more similar than classifier 2’s to the cluster
structure.

The weight for eachMi is calculated by normalizing among
all similarity scores:

wMi
x =

s(GMi , GC |x)∑k
i=1 s(GMi , GC |x)

(4)

The final prediction for x is simply ŷ = argmaxy p(y|x) as
p(y|x) is defined in Eq. 2.

3.3.1 Distance-based Adjustment
In some cases the similarity score defined in Eq 4 can be

problematic. Consider the case shown in Figure 3. The ex-
ample shows two classifiers where the target instance has two
neighbors. The distance between the instances are marked
on the edge. Since the original similarity definition only
considers the number of neighbors, both classifiers will be
assigned the same weight of 0.5. However, the neighbors
in classifier 1 are closer to the target instance than those in
classifier 2. Therefore classifier 1 should be assigned a higher
weight. To fix the issue we include the distance between in-
stances into consideration and adjust similarity score as,

s∗(GM , GC |x) = 1−
∑

dVI/|VI |∑
dVU /|VU |

(5)

where VI = VM ∩ VC , VU = VM ∪ VC , and
∑

dVI is the
sum of distance between x to its neighbors in VI (likewise
for

∑
dVU ).

i1

i4i3

i2

Classifier 1 Classifier 2 Clustering

i1

i4i3

i2i1

i4i3

i2

1.5 2.5

3.5 4.5

Figure 3: An example of local neighborhood graphs of x
with the distance between instances into consideration.

3.3.2 Thresholding-based Adjustment
The use of a weighted-average decision for x among base

classifiers is reasonable when at least some classifiers perform
well on x. However, the similarity s(GMi , GC |x) for Mi is
expected to be small when the predictions of Mi around x
conflict with its true local structure. In such a case, using
the decision from this classifier might be misleading. Since
s(GMi , GC |x) reflects the consistency between Mi’s predic-
tions and the testing instance x’s local clustering structure,
we set a threshold on the average similarity score over all
Mi on x to limit the usage of these base classifiers. As an
adjustment before the normalization of similarity scores, we
check the average similarity score with,

s̄x =
1

k

k∑
i=1

s(GMi , GC |x) (6)

We continue with the ensemble of predictions only if s̄x is
larger than a threshold δ, and we will discuss the choice of
δ in the evaluation section.



3.4 Non-parametric Bayesian Clustering
In our transfer learning based approach, clustering struc-

ture for instances in target building is exploited to approx-
imate the true local structure of an instance. However, if
employing clustering algorithms such as Gaussian Mixture
Model (GMM) [32], we need to manually specify the num-
ber of clusters for a given input data set; and the clustering
results are very sensitive to this setting. More importantly,
usually there is more than one pattern in the point names
even for the same type of sensors; therefore we cannot as-
sume a class has only one cluster. It is impossible for us to
pre-specify the optimal number of clusters. To make clus-
tering feasible on the new target building, we use a non-
parametric Bayesian solution as in [17] - Dirichlet Process
with GMM, which automatically decides the number and
structure of clusters. In particular, name feature distribu-
tion p(x) is exploited via its latent clustering structure.
In GMM, the cluster label for every instance is treated as

a latent variable, which is drawn from a multinomial distri-
bution p(c), i.e., p(c) ∝ αc, where ∀c, αc ≥ 0 and

∑
c αc = 1.

In any given cluster c, the conditional data likelihood of an
instance x is specified by a multivariate Gaussian distribu-
tion. To reduce the number of parameters to estimate, we
choose the isotropic Gaussian in our solution,

p(x|c) = (2πσ2)−d/2 exp− (x− µc)
T(x− µc)

2σ2
(7)

where the variance σ2 is shared by all the clusters. {αc, µc}kc=1

and σ are considered as model parameters in GMM.
We assume the model parameters (α, µ) in each cluster

are also random variables, which are drawn from a Dirichlet
Process prior [15]. A Dirichlet Process DP (G0, η) with a
base distribution G0 and a scaling parameter η is a distribu-
tion over distributions [15]. The base distribution G0 spec-
ifies the prior distribution of model parameters, e.g., mean
parameter µ in each cluster, and the scaling parameter η
specifies the concentration of samples drawn from the DP,
e.g., cluster proportion p(c). An important property of the
DP is that though the draws from a DP have countably infi-
nite size, they are discrete with probability one, which leads
to a probability distribution on partitions of the data. The
number of unique draws, i.e., the number of clusters, varies
with respect to the data and therefore is random, instead of
being pre-specified.
As a result, with the DP (G0, η) prior, the data density

in a given collection of instances can be expressed using a
stick-breaking representation [28]:

p(x) =

∞∑
c=1

αcN (x|µc, σ)p(µc|G0) (8)

where α = α∞
c=1 ∼ Stick(η) represents the proportion of

clusters in the whole collection. The stick-breaking process
Stick(η) for the cluster proportion parameter α is defined as:
α′
c ∼ Beta(1, η), αc = α′

c

∏c−1
i=1 (1 − α′

i). Since the variance
σ2 is fixed in all clusters, we use a conjugate prior for µ in
G0, i.e., for ∀c, µci ∼ N (a, b), with the assumption that each
dimension in µc is independently drawn from a univariate
Gaussian. This will greatly simplify the later on inference
procedure.
Because the data density distribution defined in Eq (8)

only has finite support at the points of {αc, µc}kc=1, we can
calculate the posterior distribution of latent cluster labels

in each unlabeled instance to discover the clustering struc-
ture. Following the sampling scheme proposed in [23], we
use a Gibbs sampling method to infer the posterior of clus-
ter membership. Detailed specifications of this sampling al-
gorithm can be found in [23].

Putting it all together: Algorithm 1 summarizes our
transfer learning algorithm for the problem of sensor type
classification across buildings. We start by training a few
base classifiers based on the data features and labeled in-
stances in a source building. Then we generate clusters us-
ing GMM with DP priors on the name features of instances
in the target building. For each instance x in the target
building, we measure the local similarity score for each base
classifier. If the average similarity is large enough, we com-
pute the weight for each classifier at x by normalizing the
similarity score. Finally we calculate the weighted sum of
predictions from all base classifier and obtain the label y for
x.

Algorithm 1: Transfer Learning for Sensor Type Clas-
sification
Input: Data features of the source building
DS = {xD

1 , xD
2 , . . . , xD

n } and their labels
YS = {y1, y2, . . . , yn} data features of the target
building DT = {xD

1 , xD
2 , . . . , xD

m}, and name features of
the target building PT = {xP

1 , x
P
2 , . . . , x

P
m}

Output: predicted labels of the instances in target
building Y
Initialize: Generate clusters with DP (G0, η) on name
features in PT
Train k classifiers M1, . . . ,Mk based on DS and YS ;

for xD in DT do
Construct neighborhood graphs GM and GC for xD

as defined in Section 3.3 for each Mi;
Compute the similarity score for each Mi with
Eq. 5;
Check the average similarity score ŝx over all Mi

with Eq. 6;
If ŝx > δ, then use Eq. 4 and Eq. 2 to predict the
label y;

end

4. EVALUATION
To investigate the effectiveness of our solution, we eval-

uate our transfer learning based classification technique on
the sensor reading data and the point names of sensors from
three commercial buildings. Extensive experiments demon-
strate that our technique is able to accurately classify sen-
sor types for a considerable fraction of the instances with-
out any human intervention. With more training data, the
performance of our technique can be further enhanced. To
demonstrate the promising usage of the technique, we com-
bine transfer learning with traditional labeling technique to
accelerate the learning efficiency.

4.1 Taxonomy and Data Collection
Table 3 summarizes all the sensor types evaluated in our

experiments in these three buildings and the number of sen-
sors for each type. For example, “room temperature” mea-
sures the temperature in room, and the other temperature
measurements for water circulation and air ventilation are
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Figure 4: A typical HVAC system consisting of an air han-
dler unit (AHU), several variable air volume boxes (VAV),
water-based heating/cooling pipes and air circulation ducts.
(Figure used with permission from the authors of [2].)

illustrated in Figure 4. Setpoints are grouped together into
one general type.
Our evaluation dataset, which contains both sensor read-

ing data and point names of sensor streams, is collected from
over 2,500 sensors of different types deployed in three com-
mercial buildings. We collected a week’s sensor reading data
from each building. Building A is Rice Hall at the Univer-
sity of Virginia, where the sense points report to a database
component in a Trane BMS, between every 10 seconds to 10
minutes. Both building B and C are from UC Berkeley: B
is Sutardja Dai Hall, which contains sensors and equipment
from KETI7 and Siemens. Building C is Soda Hall, which
that uses an archaic system by Barrington Controls which is
no longer in business. Points and sensors in these two build-
ings transmit data to an sMAP [11] archiver periodically
between every 5 seconds to 10 minutes.
All of our learning and classification processes are imple-

mented with the scikit-learn [27] library; an open-source ma-
chine learning package implemented in Python.

4.2 Feature Transferability
We first examine how well the two different types of fea-

tures explained in Section 3.1 perform in classifying sensor
types when being applied across buildings, i.e., learning a
classifier based on the features from one building and testing
it on another. We expect data features to be more gener-
alizable than point names since building environments are
conditioned similarly while the sensor naming conventions
could be vastly different. For example, temperature read-
ings in a room will usually fall between 60-70 degrees, no
matter in which building. In contrast, point name features
might not transfer well due to various naming conventions
as illustrated earlier in Table 1.
To examine how well each type of features can be used

for knowledge transfer, we perform sensor type classifica-
tion across buildings with each set of features separately.
For example, with data features from building A, we train a
random forest and apply it to building B on the same type
of feature, and vice versa. Table 4 8 summarizes the results,

7http://www.keti.re.kr/
8We also performed this experiment with other statistical
classifiers, but due to space limit we only reported the results
by random forest and the choice of classifiers does not af-

Building
Type A B C

CO2 16 52 0
Humidity 54 52 0
Air Pressure 142 216 215
Room Temp 159 231 208
Facility Operation Status 59 72 41
Facility Control 0 138 403
Setpoint 140 486 229
Air Flow Volume 14 172 9
Damper Position 0 290 10
Fan Speed 0 25 15
HW Supply Temp 27 1 0
HW Return Temp 15 1 0
CW Supply Temp 18 2 11
CW Return Temp 15 3 10
Supply Air Temp 20 17 3
Return Air Temp 6 2 4
Mixed Air Temp 5 2 3
Ice Tank Entering Temp 1 2 0
Ice Tank Leaving Temp 1 4 0
Occupancy 25 52 0
Timer 0 0 15
Sum 575 1124 1166

Table 3: Number of points by type for the 3 test buildings.
“Temp” stands for “temperature”, “HW” for “hot water” and
“CW” for “cold water”.

Data Feature Name Feature

A->B 0.778 0.400
B->A 0.612 0.254
B->C 0.521 0.030
C->B 0.399 0.302
A->C 0.922 0.021
C->A 0.584 0.399

Table 4: Type classification accuracy between two build-
ings (denoted as X->Y) with different sets of features: data
features transfer better than point name features of sensors.

from which we can conclude that data features are more use-
ful to build a classifier across buildings than name features,
but the resulting performance is not perfect. These observa-
tions confirm our assumption that data feature is preferable
to train statistic classifiers across buildings.

4.3 Features for Clustering
As shown in Algorithm 1, to perform classification in a

target building we need to generate clusters for the points
in it. These clusters are employed to compute the weight of
base classifiers. Therefore, it is preferred to have points in
the same cluster well aligned with their true class labels: the
higher quality of clusters is, the more accurate the weights
will be given to the base classifiers.

Table 5 shows the quality of clusters generated by our non-
parametric Bayesian method on data features and name fea-
tures. Cluster quality is measured by rand index [25], which

fect the conclusion. Besides, we performed feature selection
for classification and the performance differences between
different sets of features are marginal.

http://www.keti.re.kr/


Data Feature Name Feature

A 0.21 0.58
B 0.34 0.75
C 0.32 0.78

Table 5: Quality of clusters generated in three buildings with
different features measured by rand index (in the range [0,1],
higher is better).

is a standard measure of the similarity between the group-
ing in clusters and the true labels. From the results we can
clearly observe that clusters constructed by the name fea-
tures are more consistent with their true sensor type labels
than those generated by the data features. This confirms
our assumption about using name features to estimate local
clustering structures in target buildings.

4.4 Base Classifier Performance
Our transfer learning based approach employs a few base

classifiers. Each base classifier is trained on the same set of
data features from the source building. There is no restric-
tion on what classifiers should be selected in this step. We
employ three base classifiers: random forest, logistic regres-
sion (LR) and support vector machines (SVM) with RBF
kernels.
For the three buildings, we create six cross building train-

ing and testing pairs, and the corresponding classification
performance is summarized in Table 6. The base classi-
fiers achieve an accuracy between 0.158 and 0.921 in this
cross building evaluation scenario. On average, random for-
est performed the best, followed by SVM and LR. We should
note that the accuracy of learning on building C and testing
on building B is substantially worse than the other cases.
One reason is that building B contains many dynamic tem-
perature setpoints whose values change throughout the day,
whereas the setpoints in building C are static. Anther ma-
jor source of error is the type of air flow, whose reading
amplitude is significantly different from the ones in building
C.

4.5 Transfer Learning Performance
We first consider the case where only one building is ex-

ploited as the source, i.e., all base classifiers are trained on
data from only one building. The overall accuracy of transfer
learning for type classification across our three target build-
ings is illustrated in Figure 5. There is an intrinsic trade-off
between the prediction accuracy and the percentage being
labeled, as we set a threshold on the average weight of base
classifiers. Since the average similarity score s̄ reflects the
confidence in predictions by classifiers, when we increase the
threshold δ on the average similarity score for base classi-
fiers, we filter out more instances with low prediction confi-
dence and have labels of better quality – naturally resulting
in a drop in the percentage of instances being labeled. We
observe such a trend from Figure 5: when we have a small
threshold, the approach can label more instances with low
confident labels while we can label fewer instances with much
better quality when increasing the threshold. Empirically,
we can set the threshold δ be around 0.4, which strikes a
reasonable balance between accuracy and coverage.
As an example, Figure 6 presents a confusion matrix for

classification results for the case of transferring from build-
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Figure 6: Confusion matrix for the classification results of
transferring from A to C. “rmt” stands for room tempera-
ture, “stpt” for setpoint, “sup” for supply, “ret” for return,
and “SAT” for supply air temperature.

ing A to building C. The numbers below the predicted labels
on the x-axis denote the percentage of each type of sensor
streams in that building, while the numbers below the true
labels on the left denote the percentage of points being la-
beled by our technique in each sensor type.

On imbalanced data sets, investigation of accuracy alone
is not enough. We also measure the weighted macro F1
score of classification for our approach and the baseline. The
weighted macro F1 score is an altered version of macro F1
score [31], which calculates the F1 score for each class; where
“one-versus-all”binary classification is performed and weighs
the resulting F1 of each class by support (the number of true
instances for each label).

As a baseline, we take the subset of instances in the new
building that get labeled by the transfer learning process and
apply base classifiers to predict labels on the same popula-
tion. We set δ to 0.4 and repeat 10 times for the experiment
in each direction (e.g., A->B). The average performance is
reported in Table 7. Each cell contains two results: the for-
mer is from our approach while the latter is from the best
base classifier. The case of transferring from C to B is again
substantially worse than other cases because the transfer
learning algorithm is bounded by the performance of base
classifiers. Intuitively, if none of the base classifiers is able
to correctly predict an instance, no matter how we manipu-
late the weights, it will not make a difference in the results.
Overall, our approach outperforms the best baseline.

5. FUTURE DIRECTIONS
The results above indicate our proposed solution can la-

bel a fraction of the points in a commercial building with
no human intervention. As such, it will serve some but not
all forms of building analytics, depending on which sensing
points they need. In this section, we outline several promis-
ing directions to expand these results to a larger fraction of
the building points.



Target A B C

Source A N/A 0.754/0.496/0.510 0.921/0.766/0.538
B 0.614/0.228/0.362 N/A 0.513/0.247/0.258
C 0.582/0.299/0.421 0.393/0.158/0.190 N/A

Table 6: Base classifier performance across buildings on data features: each cell contains the accuracy for random forest,
logistic regression and SVM, respectively. The accuracy varies between 0.158 and 0.921, with random forest being the best
performer.

Target A B C
Acc F1 Acc F1 Acc F1

Source A N/A N/A 0.943/0.934 0.936/0.931 0.977/0.970 0.981/0.971
B 0.897/0.875 0.932/0.913 N/A N/A 0.950/0.952 0.939/0.937
C 0.862/0.862 0.864/0.864 0.726/0.702 0.691/0.726 N/A N/A

Table 7: Accuracy and F1 score of transfer learning and the best base classifier (random forest) with the threshold δ set to
be 0.4. Each cell contains two numbers for our approach and the baseline, respectively. Overall, our approach outperforms
the baseline with respect to both criteria.
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Figure 5: Type classification accuracy (Acc) against labeled percentage (Cov) with transfer learning between different pairs
of buildings (denoted as X->Y). As we increase the threshold, the coverage drops while the overall accuracy increases.

5.1 Training on Multiple Buildings

Two Sources Single Source
Acc Cov Acc Cov

Target A 0.863∗ 0.397∗ 0.855 0.362
B 0.899∗ 0.458 0.874 0.455
C 0.980∗ 0.890∗ 0.968 0.809

∗p-value<0.01

Table 8: Combining the knowledge from multiple buildings
to infer on a new one is superior to exploiting only one source
building in both accuracy (Acc) and coverage (Cov).

In practice, it is common to have labels for multiple build-
ings. Combining them as the single source could lead to
better performance. We set δ to 0.4 and use two buildings
as the training source. We repeat 10 times for the exper-
iment on each target building and the average of ten runs
is reported. From Table 8, we see that combining multiple
buildings as the source is superior to single source.
Upon further inspection of results, compared with the case

of single source, we observe that the improvements for in-
tegrating multiple sources in transfer learning mostly come
from labeling more instances of the same classes, rather than
capturing more new classes. Training with labeled data from
multiple buildings produces more robust classifiers and as
hundreds of buildings are normalized, this approach will be-
come even more promising. In contrast, existing approaches

scale only linearly with the number of buildings being nor-
malized since they all require manual labeling and only apply
to a single building.

5.2 Complementing Manual Labeling
Another important question we want to answer is how

much our transfer learning based approach can expedite tra-
ditional labeling techniques. Since our technique automati-
cally labels a considerable percentage of sensor points in a
building as a first step, the manual labeling process in this
new building can be accelerated. We adopt the active learn-
ing technique developed in [17] and examine how much our
technique can accelerate the labeling process. For brevity,
we refer interested reader to [17] for the detailed algorithm.

In the target building, we split all the testing instances
into 10 folds. We run the active learning method (AL)
and active learning combined with transfer learning method
(AL+TL), respectively, on nine folds while testing on the
one remaining fold. For the case of AL+TL, we start from
the automatic labeling process with a δ = 0.6 to minimize
the amount of inaccurate labels from transfer learning. Then
we switch to the AL algorithm developed in [17] where we
acquire one manual label per iteration. Due to space limit,
we only show the results from transferring from building B
to building A in Figure 7. We observe that AL+TL helps
reduce the number of manual labels to achieve the same per-
formance as AL. In other words, given the same amount of
manual labels, AL+TL can always outperform AL. As il-
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Figure 7: Our transfer learning based approach can comple-
ment traditional labeling technique to achieve better accu-
racy with the same amount of labels.

lustrated earlier, more training sources could further boost
the performance of transfer learning, which we expect would
also significantly expedite traditional labeling techniques for
a single building.

6. CONCLUSION
In this paper, we take a first step towards scalable building

analytics by developing new techniques to automatically in-
fer the type information in a building without manual label-
ing. Our techniques combine the complementary strengths
of the data and the point name of a sensor to automatically
create metadata for one building based on another building.
By experimenting with over 2,500 streams from three build-
ings on two campuses, we demonstrate that our technique
is able to automatically label more than 36% percent of the
labels in a new building with at least 85% accuracy, and for
some cases up to 81% with more than 96% accuracy. As fu-
ture steps, we illustrate how combining multiple buildings as
the training source could further boost the performance, and
how our solution can complement traditional labeling tech-
nique. The solution is general, simple yet effective, which
we believe can act as a tool for metadata construction for
not only building sensors, but also in the broader context of
the Internet of Things.
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