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Abstract. The Catmull-Smith two-pass resampling algorithm simplifies the non-

trivial reconstruction of a transformed two-dimensional image by decomposing the

transformation into two one-dimensional passes. We present a theoretically mo-

tivated modification to this algorithm that provides improved image quality. For

the case of projective transformations, this improvement results in a final algorithm

that is more robust and accurate than the original while even affecting correctness

in some cases.

1. Introduction

From image mosaics to multibaseline stereo scene reconstruction, projective
transformations play a fundamental role in many areas of computer graphics
and computer vision. As with almost every application, a balance is sought
between the quality of the result and the cost of the computation. Catmull and
Smith’s two-pass resampling algorithm [Catmull, Smith 80], [Wolberg et al.
00] provides a desirable balance between quality and cost by simplifying the
reconstruction process to two inexpensive one-dimensional scans of an image.
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(a) Original Image (b)Intermediate Image (c)Final Image

Figure 1. This image sequence shows the result of decomposing a projective trans-
formation into two one-dimensional passes. (a) Starting with a two-dimensional
image, (b) the algorithm first transforms each row according to the perspective pro-
jection matrix. (c) The final image is obtained by transforming the columns of the
intermediate image.

The first scan maps every row of the image to a row of an intermediate image,
and the second scan maps every column of the intermediate image to a column
of the final result (Figure 1). This decomposition of a three-dimensional
transformation of an image into two one-dimensional passes not only provides
clean streaming implementations amenable to computer graphics hardware,
but it also simplifies the reconstruction process by avoiding the expensive
consideration of a resampling kernel that has been projectively transformed
itself. We will show that our improvements help achieve higher quality results
within this framework, thus improving a very common algorithm used to
efficiently compute photo-quality projective transformations of images.

The decomposition of a transformation into two one-dimensional scans is
an approximation of the original mapping, and like any approximation, it
involves some errors; these errors may sometimes seriously degrade the quality
of the result. The quality can be significantly improved by either prerotating
the image by 90◦, or by changing the order to scan columns first. Combining
these two choices provides four variations, and [Catmull, Smith 80] chooses the
one with the largest intermediate image area. This is a reasonable approach,
but it does not always lead to the best choice. The association of a large
intermediate area with a good final result is heuristic, with no theoretical basis.
The area of the intermediate image reflects the behavior of the algorithm on
average, but good average behavior may conceal a bad spot, as illustrated in
Figure 2(a—c). The transformation there is projective, and the intermediate
image of greatest area contains a singularity; the choice in Figure 2(d—f) for the
same transformation has a smaller intermediate area, but it produces a clean
result. This document proposes a theoretically sound test for choosing the
variation with the least worst offender. The test is general, and for projective
(perspective) transformations, it turns out to be simple and inexpensive to
compute.
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(a) Original Image (b) Intermediate Image (c) Final Image

(d) Original Image (e) Intermediate Image (f) Final Image

Figure 2. A bottleneck singularity can arise when the maximum area of the in-
termediate image is used in guiding the two-pass decomposition. (a—c) The top
sequence shows the intermediate and final images of one such degenerate decompo-
sition where prerotating the original image by 90◦ and then scanning the rows first
produces the intermediate image with the maximum area, but exposes a singularity
in the final image. (d—f) The bottleneck error, however, is minimized by scanning
the columns first without any prerotation and avoids this degenerate situation.

2. The Bottleneck Problem

The main source of trouble in the two-pass resampling algorithm is the so-
called bottleneck problem. The problem is best illustrated when the mapping
is a 90◦ rotation. Sampling rows first takes a horizontal line to a vertical one,
so the first pass will shrink the entire image to a single vertical line, from
which the end result cannot be recovered. Similarly, a first vertical scan will
shrink the entire image to a single horizontal line. The problem will obviously
disappear if we prerotate the image by 90◦.
The rotation example is an extreme case; the intermediate image may have

just one collapsed row, as in Figure 2(b). The result shows up as a tear in
the final image (Figure 2(c)). However, even when the row does not shrink
entirely, a very short row in the intermediate image represents a substantial
loss of information, reducing the quality of the final result.
To analyze the bottleneck problem, consider a mapping (x(u, v), y(u, v))

from the unit square 0 ≤ u, v ≤ 1, and suppose we scan rows first. Let du be
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an infinitesimal horizontal line segment in the source image. The first pass
maps it to a horizontal segment of length |dx| = ee∂x∂uduee in the intermediate
image, and the second pass takes it to a segment of length

0
(dx)2 + (dy)2.

The loss of information in the first pass is the ratio0
(dx)2 + (dy2)

|dx| . (1)

The worst spot in the image will be at the maximum of this ratio, so we should
choose the variation that minimizes this maximum. (Note that this test does
not involve the intermediate image!).
The maximum of this ratio coincides with the maximum of the slopeeeeedydx

eeee = eeee∂y/∂u∂x/∂u

eeee . (2)

Thus, the row-first bottleneck error is

max

Feeee∂y/∂u∂x/∂u

eeee : 0 ≤ u, v ≤ 1k . (3)

Similarly, the columns-first error is

max

Feeee∂x/∂v∂y/∂v

eeee : 0 ≤ u, v ≤ 1k . (4)

With prerotation the rows-first error is

max

Feeee∂y/∂v∂x/∂v

eeee : 0 ≤ u, v ≤ 1k , (5)

and the columns-first error is

max

Feeee∂x/∂u∂y/∂u

eeee : 0 ≤ u, v ≤ 1k . (6)

To minimize the bottleneck error, choose the variation with least error.
In Figures 2(a—c), scanning rows first with prerotation was the choice with

maximal intermediate area, but it led to a bottleneck singularity, which man-
ifests itself as a tear in the final image. The least bottleneck error indicates
scanning columns first without prerotation, which is clearly superior as Fig-
ures 2(d—f) shows.

3. The Aliasing Error

Minimizing the bottleneck error alone does not address the problem illustrated
in Figures 3(a—c). The transformation there stretches the lower portion of the
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(a) Original Image (b) Intermediate Image (c) Final Image

(d) Original Image (e) Intermediate Image (f) Final Image

Figure 3. (a—c) The bottleneck error alone does not account for the unwarranted
aliasing of vertical edges as shown in this image sequence. The bottleneck error is
minimized by transforming the rows first, but neglects to account for the aliasing
error this decomposition produces. (Notice the severe ”bending” of the diagonal lines
in the intermediate image). (d—f) The aliasing error is minimized by transforming
the columns first and causes vertical edges to stay vertical in the intermediate image.

image vertically (while shrinking the upper portion). As a result, the fine
pixels of any diagonal feature-line at the bottom will be magnified by the
transformation to visible steps, aliasing the line (Figure 3(c)). The flaw is
inherent in the transformation, but vertical lines are immune to it. Unfor-
tunately, the first pass (rows-first) in Figure 3(b) takes vertical lines in the
source to highly slanted diagonal lines in the intermediate image, and the
vertical stretching in the second pass aliases them (Figure 3(c)). This defect
is highly visible on the image’s vertical edges. It cannot be blamed on the
transformation; it is introduced by its two-pass decomposition. The choice
indicated by the bottleneck test is bad from the aliasing point of view; scan-
ning column-first would avoid the problem because its first pass leaves vertical
lines vertical (Figure 3(d—f)).

The maximum-area test seems to address this problem in this example, but
theoretically it is only good on the average. We should be able to do better
by eliminating the worst offender, and this requires an effective metric for
the offense. For rows-first without prerotation, we want vertical lines to stay
as vertical as possible in the intermediate image. Differentially, consider an



6 journal of graphics tools

infinitesimally small vertical line segment dv in the source image; the first
pass will map it to an infinitesimal segment whose deviation from vertical
is measured by

ee∂x
∂v

ee. (This is actually the inverse of the segment’s slope in
the intermediate image.) A reasonable metric would therefore be the greatest
product of stretching and slanting:

max

Feeee∂y∂v
eeee eeee∂x∂v

eeeek . (7)

Similarly, for columns-first without prerotation, it would be

max

Feeee∂x∂u
eeee eeee∂y∂u

eeeek . (8)

With prerotation, this error is

max

Feeee∂y∂u
eeee eeee∂x∂u

eeeek (9)

for rows first and

max

Feeee∂x∂v
eeee eeee∂y∂v
eeeek (10)

for columns first. To minimize aliasing, choose the variation with least aliasing
error.
Although the aliasing error does not distinguish between the four cases (i.e.,

it is unaffected by prerotating the source image), the bottleneck error does.
Consequently, the combination of the two leads to an unambiguous choice in
most cases.

4. Combining the Two Tests

A good algorithm for choosing the best variation needs to consider both the
bottleneck and the aliasing errors, but it is not clear how to decide when the
two tests indicate conflicting choices. A simple strategy may be to minimize
a linear combination of the two errors. It is somewhat akin to adding apples
and oranges, but understanding the relative impacts of the two errors may
help us choose the coefficients. For example, a simple sum (i.e., linear combi-
nations with coefficients 1) assigns to the bottleneck effect of a 45◦ rotation
the same error as it does to a vertical stretch by a factor of 2 with slanting a
vertical line to 45◦ by the first pass (probably overrating the aliasing error).
Ultimately, the coefficient should be determined empirically, based on the vi-
sual importance of the two effects. Fortunately, the aliasing error is always
bounded while the bottleneck error becomes infinite when the first pass has
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a singularity; the bottleneck error will then outweigh the aliasing error (as it
should) with any choice of positive coefficients. We have found that assign-
ing an equal weight to the bottleneck error and aliasing error produces nice
results.

5. Computing the Errors for a Projective Transformation

A projective (perspective) transformation can be written as:

x(u, v) =
au+ bv + d

mu+ nv + p
y(u, v) =

eu+ fv + h

mu+ nv + p
(11)

The mapping is valid for the unit square only if mu + nv + p W= 0 for all
0 ≤ u, v ≤ 1.

5.1. Computing the Bottleneck Error

Elementary calculus yields

∂y/∂u

∂x/∂u
=
(en− fm)v + ep− hm
(an− bm)v + ap− dm . (12)

If the sign of the denominator at v = 0 differs from the sign at v = 1, (or if
either value is zero,) then the ratio is unbounded; otherwise its maximum for
0 ≤ v ≤ 1 is attained either at v = 0 or at v = 1 (proof at the web site listed
at the end of this article). The rows-first bottleneck error is therefore infinite
if (ap− dm)(an− bm+ ap− dm) ≤ 0. Otherwise, the error is

max

Feeeeen− fmap− dm
eeee , eeeeen− fm+ ep− hman− bm+ ap− dm

eeeek . (13)

Similarly, the column-first bottleneck error is

∂x/∂v

∂y/∂v
=
(bm− an)u+ bp− dn
(fm− en)u+ fp− hn. (14)

It is unbounded if (fp− hn)(fm− en+ fp− hn) ≤ 0. Otherwise, the error is

max

Feeee bp− dnfp− hn
eeee , eeee bm− an+ bp− dnfm− en+ fp− hn

eeeek . (15)

The errors in the prerotation cases are obtained by switching and inverting
these ratios. Thus, for rows-first with prerotation, the error is unbounded if
(bp− dn)(bm− an+ bp− dn) ≤ 0. Otherwise, the error is

max

Feeeefp− hnbp− dn
eeee , eeeefm− en+ fp− hnbm− an+ bp− dn

eeeek . (16)
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For columns-first with prerotation, the error is unbounded if (ep− hm)(en−
fm+ ep− hm) ≤ 0. Otherwise, the error is

max

Feeee ap− dmen− fm
eeee , eeee an− bm+ ap− dmen− fm+ ep− hm

eeeek . (17)

5.2. Computing the Aliasing Error

Unlike the bottleneck error, the maximum of our theoretical aliasing error
for projective transformations is not proven to be attained of at the corners
of the image for projective transformations. But a reasonable approximation
for the maximum of a product is the product of the maxima of its factors,
which is a conservative estimate. Since the product of maximal stretching
and maximal slanting does attain its maximum at the corners for projective
transformations, it is our choice as an approximate aliasing error for projective
transformations. w

max

eeee∂y∂v
eeeeWwmax eeee∂x∂v

eeeeW , (18)

It is based on maxima of partial derivatives, and these attain their maxima
at the corners (proof on the web site listed at the end of this article). This
approximate aliasing error is obtained from four corner-values of simple ex-
pressions. For example,

∂x

∂u
=
(an− bm)v + ap− dm

(mu+ nv + p)2
(19)

hence, max
ee∂x
∂u

ee =
max


eeeap−dmp2

eee eee ap−dm(m+p)2

eeeeeean−bm+ap−dm(n+p)2

eee eeean−bm+ap−dm(m+n+p)2

eee
 . (20)

The other maxima are found in a similar fashion from

∂y

∂u
=
(en− fm)v + ep− hm

(mu+ nv + p)2
, (21)

∂x

∂v
=
(bm− an)u+ bp− dn
(mu+ nv + p)2

, and (22)

∂y

∂v
=
(fm− en)u+ fp− hn

(mu+ nv + p)2
. (23)
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Web Information:
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pseudocode of the improved two-pass algorithm are availble online at
http://www.acm.org/jgt/papers/KallayLawrence03
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