Motivation

Drug Trials
- Every drug seeking FDA approval must go through Phase II and III clinical trial periods (on human participants) to determine safety and effectiveness [1].
- Drugs compared against other drugs and placebos to determine effectiveness.
- Must compare participants with similar features to eliminate bias due to:
 - Age
 - Gender
 - Ethnicity.
- Consider the following example, with Tylenol and Advil compared with a placebo. Each participant is plotted in terms of weight and age.

Problem Statement

- Given a set of points, K_i partitioned into k sets of colors, K_1, K_2, \ldots, K_k, with $|K_i| = \frac{n}{k}$.
- Define a match $m = \{p_i, p_{j} \in K_i\}$ where $m = k$
- Each color has one point from each color.
- Find the smallest n matches such that each point is only used once.

Smallest Match Definition

- Order-independent for up to 3 colors in d dimensions $O(n)$ to compute.
- Equivalent to Traveling Salesman in 2D as number of colors increases.
- Not well defined in higher dimensions.

Algorithm

Create Matches
- Creates the kd-trees.
- Calls the addPutativeMatches subroutine for each first color point.
- Possible matches are added to sorted PriorityQueue.
- Matches are pulled in order.

- If a match is invalid, and the first-color point no longer has matches in the queue, re-call addPutativeMatches for it.

Algorithm Analysis

Worst Case
- Occurs when first $k-1$ colors are coincident with each other and color k points asymptotically converge to a point within the search area of any match.

$$T_{\text{worst case}} = O((k-1)(\log n + \log(k-1) + n) + \log(n))$$

Expected Case
- On average, we assume that:
 - \exists such that ν-sized areas, there are ν/n point in that region.

In other words, the points are evenly distributed and the number of points in any region is proportional to the size of the region.
- Therefore, we consider the number of points in any small region to be constant.

$$T_{\text{expected case}} = O(k \log n + \log n)$$

Results

3 colors in 2 dimensions
- kd-tree algorithm outperforms brute force in expected case.

Brute Force: $O(\nu^2 \log \nu)$ with $O(\nu^2)$ space complexity.

Our Algorithm: $O(\nu^2)$ with $O(\nu)$ space complexity.

) Arbitrary colors and dimensionality
- kd-tree algorithm outperforms brute force in expected case.

Brute Force: $O(d\nu^2 \log \nu)$ with $O(\nu^2)$ space complexity.

Our Algorithm: $O(kd\nu)$ with $O(\nu)$ space complexity.