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Abstract. Discrete systems such as sets, monoids, groups are familiar categories. The internal
strucutre of the latter two is defined by an algebraic operator. In this paper we describe the
internal structure of the base set by a closure operator. We illustrate the role of such closure in
convex geometries and partially ordered sets and thus suggest the wide applicability of closure
systems.
Next we develop the ideas of closed and complete functions over closure spaces. These can
be used to establish criteria for asserting that “the closure of a functional image under f is
equal to the functional image of the closure”. Functions with these properties can be treated
as categorical morphisms. Finally, the category ClosureSys of closure systems is shown to be
cartesian closed.

1 Closure Systems

By a discrete system we mean a set of elements, points, or other phenomena which we will generically
call our universe, denoted by U. Individual points of U will be denoted by lower case letters:
a, b, ..., p, q, ... ∈ U. By 2U, we mean the powerset on U, or collection of all subsets of U. Elements
of 2U we will denote by upper case letters: S, T, X, Y, Z. A closure system, C, is any collection of
subsets X, Y, . . . Z ⊆ U, including U itself, which is closed under intersection. Subsets in C are said
to be closed. If U = {a, b, c, d, e} then the collection of closed sets

C1 = {Ø, {a}, {b}, {ab}, {bd}, {abc}, {abd}, {abce}, {abcde}, {abcdef}} (1)

is a closure system. We require the empty set Ø to be included in all closure systems; although this
will not be necessary until we define direct products in the category.

A closure system can equivalently be defined as (U, ϕ), where ϕ is a closure operator satisfying
four axioms. For all Y, Z ⊆ U,

C0: Ø.ϕ = Ø
C1: Y ⊆ Y.ϕ,
C2: Y ⊆ Z implies Y.ϕ ⊂ Z.ϕ, and
C3: Y.ϕ.ϕ = Y.ϕ.

By C1, U itself must be closed. Here we are using a suffix operator notation, as we will throughout
this paper. Read Y.ϕ as “Y closure”. A set Y is closed if Y = Y.ϕ. It is not hard to show that these
two definitions of closure are equivalent.

A closure operator/system can satisfy other axioms depending on the mathematical discipline.
A topological closure is closed under union, or

C4: (Y ∪ Z).ϕ = Y.ϕ ∪ Z.ϕ.
The closure operator of linear systems, often called the spanning operator, satisfies the Steinitz-
MacLane exchange axiom
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C5: if p, q 6∈ Y.ϕ and q ∈ (Y ∪ {p}).ϕ then p ∈ (Y ∪ {q}).ϕ.
Such closure systems are called matroids. Still other closure operators may satisfy an anti-exchange

axiom

C6: if p, q 6∈ Y.ϕ and q ∈ (Y ∪ {p}).ϕ then p 6∈ (Y ∪ {q}).ϕ.
These closure operators, which include the geometric convex hull operator, are said to define anti-

matroid closure systems. An important antimatroid property is that:

Proposition 1. Let ϕ be antimatroid. If X.ϕ = Y.ϕ = Z closed, then (X ∩ Y ).ϕ = Z.

Proof. If X∩Y = X or Y , the result is trivial. So there exists pinX−Y and q ∈ Y −X . Now, suppose
(X ∩ Y ).ϕ 6= Z, then (X ∩ Y ∪ {p}).ϕ = Z = (X ∩ Y ∪ {q}).CL (if not let X ∩ Y ∪ {p} = X ′ and
X ∩ Y ∪ {q} = Y ′ and repeat the argument) contradicting C6. ut

Let (U, ϕ) be a closure system. Containment, ⊆, forms a natural partial ordering on the closed
subsets C1 shown in (1), and it is well known that the closed sets in (U, ϕ) so ordered form a lower
semi-modular lattice.1 Figure 1 illustrates the lattice of closed sets of the closure system C1 ordered
by inclusion.

abcde

abcdef

abce

abc

abcd

abd

abbd

ab

Ø

Fig. 1. The lattice of closed sets of C1

1.1 Relative Closure

In our development of closure space functions we will also use the following concept, which has the
feeling and flavor of relative topologies. Let (U, ϕ) be any closure system and let W ⊆ U. By the
relative closure ϕ with respect to W , denoted ϕ|W , we mean

Y.ϕ|W = Y.ϕ ∩ W, ∀ Y ⊆ W .
It is not hard to see that if ϕ is antimatroid, then ϕ|W is as well.

As shown below, the restriction of a closed set will always be closed. The ability to infer that Y

is closed wrt. ϕ when its restriction is closed wrt. ϕ|W is of more interest. The following proposition
from [12] gives two sufficient conditions. Neither is necessary.

1 This lower semimodularity of closed subsets partially ordered by inclusion has been repeatedly discovered
by many authors. See Monjardet [10] for an interesting summary.
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Proposition 2. In any closure system (U, ϕ)
(a) X closed wrt. ϕ implies X ∩ W is closed wrt. ϕ|W .
(b) If W is closed wrt. ϕ and X ⊆ W , then X closed wrt. ϕ|W implies X is

closed wrt. ϕ.
(c) If X is closed wrt. ϕ|W and (X.ϕ−X) ∩ (U−W ) = Ø, then X closed wrt. ϕ.

Closure systems are common in discrete applications. One encounters transitive closure in many
guises. Three important types of closure system are 1) convex geometries, 2) poset closure, and 3)
Galois closure of relations. Since Galois closure need not be antimatroid [5], we will ignore it in
this paper. The other two are worth examining in a bit more detail because they can provide many
motivating examples.

1.2 Convex Geometries

By a convex geometry we shall mean a collection of discrete points in an n-dimensional Euclidean
space. For the illustrative purposes of this paper, we always assume a 2-space. The closure operator
is the convex hull operator. A much more complete treatment can be found in [3, 4, 6]. There the
closed sets are called alignments.

A convex hull closure operator provides the quintessential example of antimatroid closure. Con-
sider Figure 2. The point q is in the convex hull of Y ∪ {p}, consequently p cannot possibly be in

Y pq

Fig. 2. Illustration of antimatroid closure

the convex hull of Y ∪ {q}.

1.3 Posets as Closure Systems

Suppose U is a poset (P,≤) such as Figure 3, where a < c < e, etc. Or, equivalently, we may think
of Figure 3 as an acyclic graph G = (P, E). Two familiar closure operators on P are

a

b

c e

f

d

Fig. 3. A 6 point poset

Y.↓ = { x | ∃y ∈ Y, x ≤ y } and
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Y.↑ = { z | ∃y ∈ Y, y ≤ z }.
“Downset closure”, ↓, on Figure 3 yields the closure system C1 introduced in Section 1 and the
closure lattice of Figure 1.2 Y.↓ is sometimes called an ideal, and Y.↑ a filter. In this paper we will
emphasize the downset closure, ↓, on posets; although others are possible.

A potentially more interesting closure operator on posets is the convex closure operator, de-
noted by ϕC , defined Y.ϕC = { x | ∃y1, y2 ∈ Y, y1 ≤ x ≤ y2}. Some authors call these closed sets
”causal sets [1]. The lattice of closed sets generated by ϕC operating on the 5 point poset of Figure
3 is shown in Figure 4. Observe how many more closed subsets of P = {a, b, c, d, e} are created by

b fedca

ab ac ad bdbc cd ce de efdf

abc abd acd ace bcd bce cde cef def

cdef

Ø

abcdef

bcdefabcde

acef bcdeabceabcd acde

acdef

Fig. 4. The lattice of closed sets formed by convex closure, ϕC on the poset of Figure 3.

ϕC than by ↓. It is easy to show that ϕC = ↓ ∩ ↑. We call ↓, ↑, and ϕC collectively path closures.
We now add two important concepts to our development of closure objects; they are the notion

of generators and an ordering of all subsets of U, not just the closed subsets.

1.4 Generators

Let Y be a closed set. A subset X ⊆ Y is said to generate Y if X.ϕ = Y . By C4, every closed set
Z generates itself. But, that tends to be uninteresting. We say a generator Y of Z is non-trivial

if Y ⊂ Z. In fact, we are really only interested in minimal non-trivial generators. And, because
ϕ is antimatroid know these minimal elements are unique (as we show immediately below). More
specifically, if X is the minimal generating set, it is called the generator of Y , and denoted by
Y.γ.3 When there is only a single generating set for any closed set Y we say that (U, ϕ) is uniquely

generated. The three path closures, ↓, ↑, ϕC , on posets are all uniquely generated.

Proposition 3. A closure system (U, ϕ) is antimatroid if and only if it is uniquely generated.

2 Since we draw partial orders from left to right, perhaps this should be called a “left set” ordering!
3 When a closed set may have more than one generator, the collection of all minimal generating sets we

denote by Y.Γ = {Y.γ1, . . . , Y.γn} [5].
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Proof. If (U, ϕ) is not antimatroid then there exists some closed set Y.ϕ with p, q 6∈ Y.ϕ such that
p ∈ (Y ∪ q).ϕ and q ∈ (p ∪ Y ).ϕ. Then p and q are members of distinct generators of (Y ∪ p).ϕ =
(Y ∪ q).ϕ. The converse is similarly shown.
This proposition can also be treated as a corollary of Prop. 1. ut

If (U, ϕ) is antimatroid, then the collection of all sets Xi with the same closure Y = Xi.ϕ

constitute a Boolean lattice with Y.γ ⊆ Xi ⊆ Y . In particular, if Xi, . . . Xk generate Y then Xi ∩
. . . ∩ Xk also generates Y .

1.5 Partially Ordering a Power Set with respect to Closure

In the preceding sections, we partially ordered only the closed sets by containment. Now we seek
to partially order all the subsets of U, simple containment no longer seems quite so natural. In
particular, containment does not involve the closure operator. To partially order 2U with respect to
the closure ϕ, we say

X v Z if and only if Z ∩ X.ϕ ⊆ X ⊆ Z.ϕ (2)

for all X, Z ⊆ U, It is not hard to show that v really is an ordering; only transitivity takes a bit
of thought [12]. The value of this ordering we will see as we progress.

First, we observe that if X and Z are closed in (U, ϕ) then X v Z if and only if X ⊆ Z, so
on the closed sets it coincides with the subset partial ordering. Second, if Xi and Xk generate Z

then X v Xk if and only if Xk ⊆ Xi. Third, it can be shown [12] that if U is finite and ϕ is
antimatroid then (U, v ) defines a complete lattice, L, called its closure lattice [12]. Again, we
should properly use the notation (2U, v ) since v is an ordering of the powerset, but this abuse
of notation emphasizes the role of the base set U. Figure 5 illustrates the closure lattice generated
by the downset operator ↓ on the poset of Figure 3. We had seen Figure 4 as its lattice of closed
subsets. In Figures 1 and 5, the top of the lattice has been pushed to the right to more easily draw
the Boolean generator sets in an upper left to lower right orientation. The regularity of structure
suggested by this figure really exists, c.f. [12]. The sublattice of closed sets in this figure is denoted
by set labels that are joined by solid lines that are generally inclined from the upper right to the
lower left.

The generators, d, ad, c, cd, e, de and f , are connected to the corresponding closed sets that
they generate by dashed lines generally inclined from the upper left to the lower right. Observe
that each of the lattice intervals [Y.ϕ, Y.γ] is a boolean sublattice. In the case of the 32 subsets
comprising the boolean sublattice [abcdef, f ] and the 8 subsets comprising [abcde, de] and [abce, e],
we only indicate a few of their their constituent elements and a dashed outline.

The dash-dot lines denote a few of the covering relationships between non-closed elements in
different boolean intervals. These covering relationships, which correspond to the ordering X v Z,
echo those of the closed subgraph sublattice. This pattern will be seen in all closure spaces where if
X1 is a generator of Z1 v Z2, then there exists a generator X2 of Z2 such that X2−X1 = Z2−Z1

[12].
Finally, we observe that this closure is T0, that is union preserving (C4) and antimatroid (C6)

so this order v is precisely the specialization order, vs described in [8].
When we used convex closure, ϕC , on the poset of Figure 3 we had many more closed subsets

than were in Figure 5. Consequently, we have many fewer “non-trivial” generators as shown in Figure
6. Again, dashed lines demarcate subsets with the same closure. Observe that convex closure on any
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abcde

abcdef

abceabcd

abcabd

abbd

ab

Ø

d

cd

f

de

e

c

ad ac bc

ce

cde

def

cdef

acd bcd

Fig. 5. A Closure Lattice, Lϕ with the closed sets of Figure 4.

poset is antimatroid, that | Y.γ | ≥ 2 and that any finite set closed with respect to downset ↓ or
upset ↑ will be closed with respect to ϕC .

The following proposition establishes that with posets the closure space ordering is conformant
to the poset order. This, and the following 3 results, come from [12].

Proposition 4. Let (P, ↓) be a poset. Then x ≤ y if and only if x v y.

Proof. x ≤ y if and only if x ∈ y.↓. And readily {y}∩{x}.↓ 6= Ø if and only if x = y, so {y}∩{x}.↓ ⊆
{x} ⊆ {y}.↓. ut

There are many interesting relationships between subset inclusion ⊆ and the closure space (lat-
tice) ordering v as determined by the closure operator ϕ.

Proposition 5. If P ∩ X = Ø then
(a) X v X ∪ P if and only if P ∩ X.ϕ = Ø,
(b) X ∪ P v X if and only if P ⊆ X.ϕ.

Proof. X v X ∪P iff (X ∪P )∩X.ϕ ⊆ X ⊆ (X ∪P ).ϕ, where the second containment always holds,
but the first is true iff P ∩ X.ϕ = Ø.
X ∪ P v X iff X ∪ (X ∪ P ).ϕ ⊆ X ∪ P ⊆ X.ϕ, where readily we need P ⊆ X.ϕ for the second
containment to be true. ut

Proposition 6. Let X v Z. If Z is closed then X is closed.
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b fedca

cdef

Ø

abcdef

bcdefabcde acdef

acefacdeabcd abce bcde

abc abd acd ace bcd bce cde def

ab ac ad bdbc cd ce de efdf

cef

abf

bf

adf

cdfbde

ae be cf

ade

abde af

abdf

bdef

abdef

Fig. 6. Generators of the convex closure ϕC of Figure 4

Proof. Z∩X.ϕ ⊆ X ⊆ Z = Z.ϕ. Thus X ⊂ Z and X ⊆ X.ϕ so X ⊆ X∩X.ϕ which as the intersection
of closed sets must be closed. Since X.ϕ is the smallest closed set containing X , X = X∩X.ϕ = X.ϕ.

ut

Sometimes the contrapositive, that is if X v Z and X is not closed then Z cannot be closed, is a
more useful formulation.

In a discrete closure space, covering relationships take on a special importance, just as the
existence of individual edges can be important in graph theory even though the transitive relationship
is the path relation. Recall that a lattice element (subset) Z covers the element X in L if X v Z

and if X v Y v Z implies X = Y .

Proposition 7. If ϕ is antimatroid and Z is closed, then for all pk ∈ Z.γ, Z covers Yk if and only
if Yk = Z−pk.

Proof. Let Yk = (Z.γ−pk).ϕ ⊂ Z. Readily pk 6∈ Yk, hence Yk ⊆ Z 6 pk ⊂ Z. Since Z 6 pk does not
generate Z, Z covers X−pk in L, so by Prop. 6, Yk = Z−pk is closed.
The converse is similar. ut

It is worth verifying this relationship in Figure 5, as well as all other antimatroid closure spaces. A
more general relation between the generators of a closed set Z and the closed sets that it covers can
be found in [5].

1.6 Generators in Convex Geometries and Concept Lattices

A closed convex hull is generated by elements of its boundary. The minimal generating set is precisely
the vertices of the boundary. Since, in a discrete geometry, these must be unique, convex hull closure



8

is antimatroid. The efficiency of the Simplex method for solving linear inequalities [2] is based on
this principle. In Figure 7 there is a small 6 point geometry. Every singleton point or doubleton pair
is a trivial closed set. This is reflected in the “busy” structure of the closure lattice to the right.
The non-trivial generating sets are {abcd, abcf, abdf , acde, bcde, abc, abd, abf, acd, bcd, cde}. In [3, 4,

a b
e

f

d

c

cdefabde abef adef bdefbcdfacef acdfbcef

defbdfabe bef cefbde cdface bce acf ade aef adf bcf

efdfdecfbcafaeadacab be cdbdbfce

Ø

a b c d e f

bcdefacdefabdefabcef
abd abf acd

abcdef
abcf abdf acde bcde

abcdf abcde

abcd

cde

abce

abc bcd

Fig. 7. A small 6 point convex geometry

6] they are called extreme points. The set of points abcd generate the entire space (U, ϕ). Following
Proposition 7, deletion of any generating (extreme) point, say b, from Z = abcdef must create a new
closed set Y = acdef . In [9], this repeated deletion of generating/extreme points is called “shelling”
where they use it to define antimatroid behavior.

2 Functions on Closure Systems

A function f mapping a closure system C into another C ′ is a function taking the power set of U

into that of U′. To simplify notation, we denote these functions by U
f

−→ U′ instead of the more

correct 2U
f

−→ 2U
′

.

Functions, or morphisms, taking 2U to 2U
′

can be arbitrarily complex. To reduce the complexity
somewhat, we consider only monotone functions f for which X ⊆ Y in U implies X.f ⊆ Y.f in
U′.

Let U
f

−→ U′ be a function between the power sets of U and U′. Now, consider U
f

−→ U′ as a
function between the closure systems (U, ϕ) and (U′, ϕ′). Does the function f preserve the closure
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structure of U in U′? More particularly, does the following diagram commute, that is ∀X ⊆ U does
X.f.ϕ′ = X.ϕ.f?

U

(U, ϕ)

U′

(U′, ϕ′)

-

-

? ?

ϕ ϕ′

f

f

Fig. 8. f regarded as a closure system transformation

2.1 Complete and Closed Functions

A function (U, ϕ)
f

−→ (U′, ϕ′) is said to be complete if ∀X ∈ U, X.f closed in (U′, ϕ′) implies
X.ϕ.f = X.f .

In a discrete space, “completeness” has some of the characteristics more commonly associated
with “continuity”. In particular, it provides an analog to the notion that “the inverse image of closed
sets is closed”. To get a sense of why we might want a function to be “complete” consider the simple
function f which maps a linear order on the 3 points, a, b, and c shown in Figure 9 onto a linear
order on just 2 points a′, c′, where a.f = a′, c.f = c′ and b.f can be either a′ or c′. This f is clearly

a b c
f

a’ c’

Fig. 9. A “complete” function

“order preserving” and could be regarded as an epitome of a “well-behaved” discrete function. The
subset a′c′ is closed with respect to any of the closure operators that we normally associate with such
partial orders, while ac ∈ {a′c′}.f−1 is closed with respect to none of them. Clearly, we can’t require
every pre-image set to be closed; but by requiring that whenever the image is closed, the closure of a
pre-image set must also map onto this image set, we believe we have captured an essential property.
The next sequence of propositions provide additional confirmation of this.

Properly, Y ′.f−1 is a collection of sets that map onto Y ′. However, it is more convenient to let
Y ′.f−1 denote

⋃
Y { Y : Y.f = Y ′ }.

Proposition 8. Let (U, ϕ)
f

−→ (U′, ϕ′) be complete. If Y ′ is closed in U′, then Y ′.f−1 is closed in
U.

Proof. Since Y ′.f−1.f = Y ′, which is closed, by completeness we have Y ′.f−1.ϕ.f = Y ′ or Y ′.f−1.ϕ =
Y ′.f−1. ut
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Thus the inverse image of a closed set is indeed closed.

Proposition 9. A function (U, ϕ)
f

−→ (U′, ϕ′) is complete if and only if ∀X ⊆ U, X.ϕ.f ⊆ X.f.ϕ′.

Proof. X.f ⊆ X.f.ϕ′. Let Y ′ = X.f.ϕ′, so Y ′ is closed. Let Y = Y ′.f−1 Since X ⊆ Y , by complete-
ness, X.ϕ.f ⊆ Y.f = X.f.ϕ′.
Conversely, let X.f be closed. Then X.ϕ.f ⊆ X.f.ϕ′ = X.f . Now X ⊆ X.ϕ, so X.f ⊆ X.ϕ.f and
equality holds. X.f.ϕ′ = X.f and f is complete. ut

We will say a function (U, ϕ)
f

−→ (U′, ϕ′) is closed if f takes closed sets in (U, ϕ) onto closed
sets in (U′, ϕ′)

Proposition 10. A function (U, ϕ)
f

−→ (U′, ϕ′) is closed if and only if ∀X ⊆ U, X.f.ϕ′ ⊆ X.ϕ.f .

Proof. Let f be closed. X ⊆ X.ϕ implies X.f ⊆ X.ϕ.f . But, because X.ϕ is closed and f is closed,
X.f.ϕ′ ⊆ X.ϕ.f

Conversely, let X be closed in (U, ϕ). X.f.ϕ′ ⊆ X.ϕ.f = X.f . But, readily X.f ⊆ X.f.ϕ′ so equality
holds. ut

Theorem 1. A function (U, ϕ)
f

−→ (U′, ϕ′) is closed and complete if and only if for all X ⊆ U,
X.ϕ.f = X.f.ϕ′.

Proof. Propositions 10 and 9. ut

Theorem 1 provides necessary and sufficient conditions on a monotone function f so that f commutes
with the closure operator ϕ as in Figure 8.

Proposition 11. Let U
f

−→ U′,U′ g
−→ U′′ be complete (closed) then U

f · g
−→ U′′ is complete (closed).

Proof. That the composition of closed functions is closed is trivial.
Let f and g be complete and let Y.(f · g) = Y.f.g = Y ′′ ∈ U′′ be closed. We must show that
Y.ϕ.(f · g) = Y ′′. Since g is complete, (Y.f.ϕ′).g = Y ′′ and f complete implies first that Y.ϕ.f ⊆
Y.f.ϕ′ and then that Y.ϕ.f = Y.f.ϕ′. Thus, Y.ϕ.f.g = Y.f.ϕ′.g = Y ′′. ut

2.2 Homomorphisms of Posets

Just as one normally defines a closure system by an operator ϕ on the base set U rather than by
enumerating the closed sets, so too one commonly defines functions between the power sets 2U and
2U

′

by means of a point function f : U → U′. We then lift f is the usual way to X.f+ = {y′ ∈
U′ | ∃x ∈ X, x.f = y′}. Similarly, Y ′.f− = {x ∈ U | ∃y′ ∈ Y ′, x.f = y′}. Observe that f− is identical
to f−1 we have been already using. The lifting notation f+ and f− seems to be due to G.Q. Zhang
[14, 15].

A lifted function f must be monotone, as described at the beginning of Section 2. They provide
an excellent source of examples and counter examples. In this section we examine homomorphisms
on posets.

Recall that f : P → P ′ is a homomorphism of the poset P into P ′ if x ≤ y in P implies
x.f ≤ y.f in P ′. Since an anti-chain can be the pre-image of any ordered set under a homomorphism,
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it would be an exaggeration to call them “structure preserving”. Often one wants the structure of
the domain to have some resemblence to its image. For this reason some authors prefer “strong
homomorphisms” where a homomorphism is called strong if in addition x′ ≤ y′ in P ′ implies
∃x, y ∈ P such that x.f = x′, y.f = y′ and x ≤ y.

Proposition 12. A function f : (P,≤) → (P ′,≤′) is a homomorphism if and only if the lifted

function (P, ϕ)
f+

−→ (P ′, ϕ′) is complete with respect to a path closure.4

Proof. Let f be a homomorphism and let Y ⊆ P . For all y ∈ Y , if x ≤ y then x.f ≤ y.f So
Y.↓.f+ ⊆ Y.f+.↓ and by Prop. 9 f+ is complete.
Conversely, assume f+ is complete and that x ≤ y. Then x ∈ y.↓ and x.↓ ⊆ y.↓. Again by Prop. 9,
{x}.↓.f+ ⊆ {y}.f+.↓ or x.f ≤ y.f .
The proof when the closure is ϕC or ↑ is similar. ut

In an early application of this principle [11] it was shown that if f : G → G′ was any graph
homomorphism, the G′ would be acyclic if and only if the inverse image of every point in G′ was a
convex (in the sense of ϕC of Section 1.3) set in G.

But, poset homomorphisms need not be closed. In Figure 10, {a, b, d} is closed (assuming ↓

a

b

c

d

e

f
a’

b’

c’

d’

Fig. 10. A homomorphism f that is not closed.

closure), but {a′, b′d′} is not. Even strong homomorphisms need not be closed, as shown by Figure
11, because {b2} is closed but {b2}.g = {b′} is not. However, we can show

a’ b’ c’
b

1
g

c

a

b2

Fig. 11. A strong homomorphism g that is not closed.

Proposition 13. Let g : (P,≤) → (P ′,≤). If (P, ϕ)
g+

−→ (P, ϕ′) is closed with respect to a path
closure then g is a (strong) homomorphism.

Proof. Assume that ↓ is the closure ϕ. Let x ≤ y or x ∈ y.↓, so x.g+ ∈ y.↓.g+. Since y.↓ is closed,
y.↓.g+ is closed, so x.g+ ∈ y.↓.g+.↓ or x.g ≤ y.g. g is a homomorphism.

4 Note that we use the traditional notation f : U → U′ for point functions on U, and U
f+

−→ U′ for
functions between the power sets.
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Now let x′ ≤ y′ in P ′, and let {y′}.g−1 = Y . Y.g+ = {y′} so x′ ∈ Y.g+.↓ ⊆ Y.↓.g+ implying there
exists yk ∈ Y and xi ∈ Y.↓ so xi ≤ yk where xi.g = x′ and by definition of Y , yk = y′. So g+ is
strong. ut

Combining Prop. 12 with Prop. 13 we readily have that if g+ is closed, then g is a homomorphism
so g+ must also be complete. But, only in this special case where we have lifted functions over poset
closures need this be true. It is not a general implication.

2.3 Intersection of Functions, f ∩ g

One can define the operators +,−,× and ÷ on numeric functions in a pointwise fashion; that
is, f + g is defined ∀x to be x.f + x.g. Since the domain of our functions is a power set, we
define the intersection, ∩, or meet, of two functions on a closure system in a “set-wise” fashion as,
X.(f ∩ g) = X.f ∩ X.g. Earlier we had observed that ϕC = ↓ ∩ ↑.

Our next step is to show that the meet of closed (complete) functions is closed (complete).

Proposition 14. If (U, ϕ)
f

−→ (U′, ϕ′) and (U, ϕ)
g

−→ (U′, ϕ′) are closed functions then (U, ϕ)
f∩g
−→

(U′, ϕ′) is a closed function.

Proof. Let Y be closed. Since f and g are closed functions, Y.f and Y.g are closed sets in U′ and
since (U′, ϕ′) is a closure system, Y.(f ∩ g) = Y.f ∩ Y.g is closed. ut

Proposition 15. If (U, ϕ)
f

−→ (U′, ϕ′) and (U, ϕ)
g

−→ (U′, ϕ′) are complete functions then (U, ϕ)
f∩g
−→

(U′, ϕ′) is a complete function.

Proof. Suppose Y.(f ∩ g) is closed in U′. Either Y.f.ϕ′ = Y.g.ϕ′ or not. If Y.f.ϕ′ 6= Y.g.ϕ′ then by
Prop. 14, Y.(f∩g) = Y.f.ϕ′∩Y.g.ϕ′. By completeness of f and g, Y.ϕ.f = Y.f.ϕ′ and Y.ϕ.g = Y.g.ϕ′.
So Y.ϕ.(f ∩ g) = Y.ϕ.f.ϕ′ ∩ Y.ϕ.g.ϕ′ = X.f.ϕ′ ∩ Y.g.ϕ′ = Y.(f ∩ g).
If Y.f.ϕ′ = Y.g.ϕ′ it’s a bit more direct, Y.(f ∩ g) = Y.(f ∩ g).ϕ′ = (Y.f ∩ Y.g).ϕ′ = Y.f.ϕ′. ut

Let F be a family of functions (U, ϕ)
f

−→ (U′, ϕ′). We say the family F is closed if for all
f, g ∈ F , f ∩ g ∈ F . This is a standard definition using “closure under intersection”. (There are
entirely too many common mathematical meanings of the term “closed” and “closure”. A set is
“closed” if ...; a function is “closed” if ...; an operator is “closed” if ... We count on context to
disambiguate them.) We now define a closure operator ϕ in the “usual way”.

Let [U → U′] denote the universe of all functions (U, ϕ)
f

−→ (U′, ϕ′), or all such functions sat-
isfying specific properties, such as completeness or closure. Let F be any subset of [U → U′] then
F .ϕ = { g ∈ [U → U′] | g =

⋂
i fi, where fi ∈ F }.

Proposition 16. Let C1, C2 be closure systems. The family of all closed, complete functions [U1

f
−→ U2]

is a closure system.

Proof. It is sufficient to just observe that f ∩ g ∈ [C1

f
−→ C2]. Alternatively, one can define the

closure operator ϕ as above. It is not hard to show that the 3 closure axioms, C1, C2, and C3, are
satisfied. ut
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3 The Category ClosureSys

Because we have composition (Prop. 11), the collection of all closure systems together with all
complete, closed functions as its morphisms can be easily shown to constitute a category, say
ClosureSys.

Let C ∈ ClosureSys. The empty set, Ø, is the unique terminal object of C because the
morphism f defined X.f = Ø, ∀X ∈ C is unique. Observe that in the category Set, Ø is the initial
object and individual elements are terminal objects [13]. The difference is that in a closure system
Ø is literally a singleton element, not shorthand for the “absence” of any elements.

Let C1 and C2 be closure systems over the base sets U1 and U2. (For simplicity, we assume that
U1 and U2 are disjoint, else we employ uniquely named copies.) We let the disjoint union U1 ]U2

be the base set of the direct product C1 × C2, and say that for all closed Xi ∈ C1, Yj ∈ C2,
Xi ] Yj = Zk is closed in C1 × C2.

Proposition 17. The closure system (U1, ϕ1)× (U2, ϕ2) = 2U1]U2 is a categorical direct product.

Proof. First, C1 ×C2 so defined really is a closure system because if Z1, Z2 are closed sets in C1 ×C2,
Z1 ∩Z2 = (X1 ∩X2) ] (Y1 ∩ Y2) = (X1 ] Y1) ∩ (X2 ] Y2) ∈ C1 ×C2. We can now define projection

morphisms C1 × C2

π1−→ C1, C1 × C2

π2−→ C2, by Z.πi = Z ∩ Ui. By Proposition 2, Z ∩ Ui is
closed. And if Ø ∈ Ci, then πi is a surjective morphism onto Ci because Z1 ∩ Ø2 = Z1 ∈ C1 and
Ø1 ∩ Z2 = Z2 ∈ C2.

Finally, if C is any closure system with morphisms C
f

−→ C1 and C
g

−→ C2, we let h be the morphism,
∀Z ∈ C Z.h = Z.f ] Z.g ∈ C1 × C2. Thus, f = h · π1 and g = h · π2. ut

Consequently, ClosureSys is a category with direct products and unique terminal objects.
It is interesting to note that products in closure systems “feel” very much like the disjoint unions

(or co-products) in Set or Matroid. However, it cannot be a co-product in ClosureSys, even
though defining injections is trivial, because the arrow h needed to make the appropriate diagram
commute need not be unique.

Proposition 18. Let C1, C2, C3 be closure systems, and let C1 × C2

f
−→ C3. (I.e. f is a function of

two variables.) Then f is closed (complete) if and only if f is closed (complete) on each of C1 and
C2.

Proof. Let Z be closed in C1. Then Z.f = (Z ∪ Ø2).f = (Z × Ø2).f which is closed in C3.
Completion and the converse are demonstrated analogously. ut

The power of category theory appears to arise from situations where the morphisms on the
category can be also regarded as objects in the category. Examples are linear spaces (matroids)
where the linear operators can be treated as linear spaces themselves; or algebraic groups where the
homomorphisms also exhibit group properties. We have the same phenomena with directed complete

partial orders, or dcpo’s, where it is shown [7] that the set of (Scott)-continuous functions D
f

−→ E,
where D and E are dcpo’s is itself a dcpo. This appears to be the essential step in showing that a
category is cartesian closed.

With Proposition 16, which establishes that a collection of closed, complete functions can be
regarded as a closure system, we have provided a basic motivation for the possibility of treating sets
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of morphisms as objects in ClosureSys. By making a slight notational change, we can make this
embedding more evident.

All objects in ClosureSys will be represented by collections of ordered pairs (X, Y ) of sets
with X ∈ 2U, Y ∈ 2U

′

where possibly U = U′. We say < U,U′ > is the type of the element in
ClosureSys. The category ClosureSys can then be defined by a single axiom:

A1: Let (X1, Y1), (X2, Y2) ∈ ClosureSys both be of type < U,U′ >,
if X1 = X2 then (X1, Y1 ∩ Y2) ∈ ClosureSys.

Now, we consider the consequences of this notational change. Let C denote some closure system
over U, then C consists of a collection of 2|U| elements of type < U,U >. If Z is a closed set
of U, that is Z ∈ C, we represent Z by the pair (U, Z). If Y is not closed, it is represented by
(Y.ϕ.γ, Y ), that is the left side is the generator of Y ’s closure. We can verify that these pairs satisfy
the categorical axiom, A1. If Z1 and Z2 are closed in U, and so denoted (U, Z1), (U, Z2), they force
(U, Z1 ∩ Z2) to be closed as well. This, of course, is the basic property of all closure systems. If
Y1, Y2, denoted by (X, Y1), (X, Y2), are not closed, then Y1 and Y2 are both in the boolean interval
[X.ϕ, X ] generated by X , and because ϕ is antimatroid by Proposition 1 Y1 ∩ Y2 ∈ [X.ϕ, X ] as well,
and so (X, Y1 ∩ Y2) ∈ ClosureSys as required by A1.

Now, let (X, Y ) have type < U,U′ >,U 6= U′. Then (X, Y ) ∈ 2U
f

−→ 2U
′

. If there exists

another element (X, Z) with type < U,U′ > then (X, Z) ∈ 2U
g

−→ 2U
′

and by the axiom A1,

(X, Y ∩ Z) ∈ 2U
f∩g
−→ 2U

′

in ClosureSys.

Lastly, for every X ∈ 2U we must throw into ClosureSys the pair (X, X) of type < U,U >

corresponding to the morphism idU. It is easy to verify that this addition completely conforms to
the categorical axiom.

Consequently the category ClosureSys is a massive collection of typed ordered pairs. Those of
type < U,U > denote a closure system over U, or else the identity morphism idU.5 Different closure
systems over the same base set U are distinguished by creating a disjoint copy of U, denoted U′, as
we did when defining direct products.

Any collection f of 2|U| elements of type < U,U′ > can be treated as a morphism U
f

−→ U′,
provided ∀X ⊆ U, ∃(X, Y ) ∈ f (i.e. f is a total function) and the collection satisfies monotonicity,
completeness and closure.6 The ability to define a morphism/function in this element-wise fashion
is a significant advantage of working with discrete spaces.

Recall that a category C is cartesian closed [7, 13] if
(1) there is a terminal object T in C such that for any object A ∈ C there is exactly

one morphism A
f

−→ T ;
(2) for any two objects A, B ∈ C there exists an object A × B ∈ C with morphisms

A × B
πA−→ A, A × B

πB−→ B having the property that for any object C and morphisms

C
f

−→ A, C
g

−→ B, there is a unique morphisms C
h

−→ A × B such that
h · πA = f and h · πB = g (i.e. C has products); and

(3) for any two objects A, B ∈ C there exists an object BA in C and a morphism

BA × A
ev
−→ B such that for each C × A

f
−→ B there exists a unique morphism

5 If |U| = n, there exist precisely 2n+1 such elements, half denoting the sets in the powerset, half denoting
the identity morphism.

6 Instead of monotonicity, closure, and completeness, one can have any set of characteristic properties
provided only that they are preserved under composition.
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C
g

−→ BA such that (g × ida) · ev = f .
(The object BA is called the exponential object).

B  x A B

C x A

f

ev

g x id

A

A

Fig. 12. Exponential diagram.

Since objects in ClosureSys are appropriate collections of typed ordered pairs, to show ClosureSys

is cartesian closed we must show that these objects/collections exist.

Theorem 2. The category ClosureSys is cartesian closed.

Proof. Since Ø is the terminal object and by Prop. 17 direct products exist, we need only show (3).

Let CA, CB , CC be closure systems over base sets UA,UB ,UC and suppose that CC × CA
f

−→ CB .
We must show there exists a unique morphism g into BA = [A → B] (or a collection of category
elements of type < UA,UB >) such that (g × idA) · ev = f .
Consider an element (X ]Y, Z) of type < UC ]UA,UB > in the collection that is the morphism f .
Let (X ] Y ).idA = Y ∈ CA, and let X.g be the element (Y, Z) of type < UA,UB >∈ BA. With this
construction, for any X ] Y ∈ C ×CA, (X ] Y ).(G× idA).ev = (X.g × Y ).ev = Z = (X ] Y ).f . The
only problem is to show that the collections of pairs (Y, Z) ∈ BA denoting X.g really constitutes
a monotone closed, complete function. This almost follows from Prop. 18, but it takes a bit more.
We illustrate by demonstrating the monotonicity of X.g. Let Y1 ⊆ Y2 ∈ CA. Then, for any X ∈ CC ,
X ] Y1 ⊆ X ] Y2 in CC × CA, and since f is monotone, Z1 ⊆ Z2. ut

This construction is most easily visualized by its analog, the discrete Cartesian product of the
integers I × J. Let f be a function over I × J, then for any i ∈ I < [i][J].f denotes the “column” in
the Cartesian array, which can be regarded as a function fi of one integer variable. And fi would
be constructed analogously to Theorem 2, by collecting all function values (i, k).f, k ∈ J. If f is,
for example, non-decreasing using a city block metric then one can show that fi is non-decreasing.
This is important, because it is not the closure systems themselves that are “cartesian closed”, but
rather their morphisms.

The author wishes to acknowledge the valuable criticism of earlier drafts by G.Q. Zhang followed
by stimulating conversations at Dagstuhl.
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