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Abstract

The most comon definition of the Poset category is incorrect. Here we present a
valid categorical concept using morphisms that are “closed” and “complete”.

1 Introduction

Except for simple sets, partially ordered sets, or posets, are probably the most commonly
used discrete structures in mathematics. Yet, our knowledge of their transformational
properties is quite incomplete. For example, in both [3, 10] we read that the collection of all
posets, together with all order preserving morphisms f (that is, x ≤ y implies f(x) ≤ f(y))
constitute a category Poset. But, the image of a poset under an order preserving map need
not be a poset!

It is shown in [7] that if P
f

−→ P ′ is an order preserving function on a poset P then
its image P ′ is a poset if and only if for every point in P ′ its preimage is “convex” in P .
Only order preserving functions with this additional property can be morphisms in Poset.
However, we are getting ahead of ourselves. Let us start at the beginning.

2 Some Basic Concepts

2.1 Posets

Recall that a partial order is a relation ≤ on a set of points P such that ≤ is reflexive
(x ≤ x), weakly anti-symmetric (x ≤ y, y ≤ x imply x = y), and transitive (x ≤ y, y ≤ z

imply x ≤ z).1 The set P , together with the partial order ≤, is commonly called a poset.

1There is an abundance of differing terminology. Some authors speak simply of “antisymmetry” [11];
some do not require reflexivity. Almost any transitive relation can be regarded as a “pre-order” lacking only
the “anti-symmetric” property.
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Alternatively, the poset concept can be cast is the terminology of directed graphs where
we have a set of points, or nodes, P , a relation E on P , and a path relation ρ. A path

(x, z) ∈ ρ of length n is a sequence of points < p0, . . . pn >,n ≥ 0 such that p0 = x, pn = z,
and ∀i, 0 ≤ i < n, (pi, pi+1) ∈ E.2 Readily, the path relation ρ is just the transitive closure
of the edge relation E. A directed graph is said to be acyclic if (x, z) ∈ ρ, (z, x) ∈ ρ imply
x = z. So, acyclic graphs are completely isomorphic to discrete posets because reflexivity
and transitivity have been assured by the definition of ρ. This correspondance becomes
especially evident if one uses an infix path relation, so x ρ z ≡ x ≤ z.

We prefer to work with the path relation ρ rather than ≤, because the former being
constructed over the edge relation emphasises its discrete nature. It also distinguishes our
development from that of continuous, partially ordered domains [1]. We draw posets (or
acyclic graphs) from left to right just as one typically represents number lines. Figure 1
provides a typical example. We sometimes include arrowheads on the edges, as in this
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Figure 1: A representative poset.

illustration, to suggest the < relation.

2.2 Homomorphisms

In [2, 6], a function f : P → P ′ is said to be a homomorphism of G = (P,E) into G′ =
(P ′, E′) if (x, y) ∈ E implies (f(x), f(y)) ∈ E ′. Unfortunately, this common definition
does not necessarily imply that G and G′ have similar structure. For example, any totally
ordered chain of elements is the homomorphic (order preserving) image of the anti-chain (in
which E = Ø) on the same set of elements. We will say such an edge preserving function is
simply order preserving. We will call f a homomorphism if in addition, (x′, y′) ∈ E′

implies ∃x, y ∈ P such that (x, y) ∈ E, f(x) = x′, f(y) = y′. Now, no ordered set can be
the image of an anti-chain. Moreover, it ensures that any homomorphic monomorphism is
an isomorphism. In particular, the example shown later as Figure 4 becomes impossible.

It is easily shown that

2We define paths in terms of a sequence of points in P rather than a sequence of edges in E simply so
we can have a path of length zero from every point to itself.
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Proposition 2.1 If (P,E)
f

−→ (P ′, E′) is edge preserving then (x, z) ∈ ρ implies (f(x), f(z)) ∈

ρ′. Or equivalently (P, ρ)
f

−→ (P ′, ρ′) is order preserving.

While (P, ρ)
f

−→ (P ′, ρ′) is order preserving, we cannot conclude however that (P, ρ)
f

−→ (P ′, ρ′)
is a homomorphism. Consider the function g of Figure 2 which is a homomorphism
(P,E)

g
−→ (P ′, E′) but not a homomorphism (P, ρ)

g
−→ (P ′, ρ′), because because (a′, c′) ∈

ρ′, but there is no (a, c) ∈ ρ. We can strenghten the homomorphism concept a bit more by

a’ b’ c’
b

1
a g

cb2

Figure 2: A homomorphism w.r.t. E that is not homomorphic w.r.t ρ.

requiring that if (x′, z′) ∈ ρ′ then ∃x, z ∈ P such that f(x) = x′, f(y) = y′ and (x, z) ∈ ρ.
We call this a path homomorphism.

2.3 Why Posets with Order Preserving Morphisms are not a Category

It is not surprising that order preserving maps, in which x R y implies f(x) R f(y), are often
introduced as early categorical examples; it is so easy to show that the composition is also
order preserving. But, all that can be guaranteed is that the image will be a pre-order,
that is reflexive and transitive. They need not be partial orders as is sometimes claimed
[3, 4, 10]. Figure 3 illustrates a homomorphism f on an acyclic graph, or poset, whose
image is not acyclic. Here, the only non-trivial pre-image subset of f is {b, h}. It is not
difficult to see that f is really edge preserving, and that (x, y) ∈ ρ implies (f(x), f(y)) ∈ ρ ′.
Even requiring f to be a path homomorphism is insufficient. Consider Figure 3. It is a
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Figure 3: An order preserving homomorphism f .

path homomorphism because if there exists a path in P ′, say (f ′, h′) ∈ ρ′, there exists a
pre-image path in P , in this case (f, b) ∈ ρ.

Considering f as just a point function on P , we see it is an epimorphism, but not a
monomorphism. However, it is easily shown that
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Proposition 2.2 The function (P,E)
f

−→ (P ′, e′) is order preserving if and only if E ⊆ E ′.

Consequently the monomorphism g on P shown as Figure 4 provides another, somewhat
simpler, example of an order preserving function failing to preserve acyclicity.

a a’ b’
g

b

Figure 4: An order preserving monomorphism g whose image is not acyclic.

3 Closure and Closure Morphisms

Closure operators, ϕ, which are defined over sets of elements, play an important role in
our development. Typically, we will be looking at the closure of subsets X ⊆ P which we
donote by X.ϕ (read this as X closure). Recall, that closure operators must satisfy the
three closure axioms (a) X ⊆ X.ϕ, (b) X ⊆ Y implies X.ϕ ⊆ Y.ϕ, and (c) X.ϕ.ϕ = X.ϕ.
We call (P,ϕ) a closure system where ϕ can be any closure operator. A subset Y ⊂ P is
closed if Y.ϕ = Y . Given any closure operator ϕ, its closed subsets, partially ordered by
inclusion, form a complete lower semi-modular lattice [5, 7].

While there exist many closure operators in the literature, we will focus on just three
path closures ϕL, ϕR and ϕC , where for all Y ⊆ P ,

Y.ϕL = {x | ∃y ∈ Y, (x, y) ∈ ρ}
Y.ϕR = {z | ∃y ∈ Y, (y, z) ∈ ρ}
Y.ϕC = {y | ∃y1, y2 ∈ Y, (y1, y) ∈ ρ and (y, y2) ∈ ρ}

Observe that ϕL is sometimes called a “downset” operator, ↓, or ideal [1], and that ϕR is
called an “upset” operator, ↑, or filter. The closed sets of ϕC are called “causal sets” by
some theoretical physicists [12]. A set Y ⊆ P is closed w.r.t. ϕC if and only if there exist
subsets X,Z ⊆ P closed w.r.t. ϕL and ϕR respectively, where Y = X ∩ Z.

Path closures particularly nice because they are anti-matroidal; that is, if x, y 6∈ Z.ϕ

and y ∈ (Z∪{x}).ϕ then x 6∈ (Z∪{y}).ϕ. In this case, the collection of all subsets partially
ordered by

X ≤ Y if and only if Y ∩ X.ϕ ⊆ X ⊆ Y.ϕ

forms a complete lattice [8].
Well-behaved functions over continuous domains are often characterized as “continuous”

or “differentiable”, where these properties are topologically defined in terms of open sets.
In discrete closure systems, the open set concept seems forced. Instead, we can describe
functions in terms of closure.
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A morphism (P,ϕ)
f

−→ (P ′, ϕ′) is said to be closed if Y closed in P with respect to ϕ

implies its image Y.f is closed in P ′ with respect to ϕ′.3 This property is clearly analogous

to that of topologically open functions. The morphism (P,ϕ)
f

−→ (P ′, ϕ′) is said to be
complete if Y.f closed in P ′ with respect to ϕ′ implies Y.ϕ.f = Y.f . That is, if Y

maps onto a closed set Z ′, then its closure must map onto Z ′ as well. It turns out that
completeness is analogous to continuity, although that is far from obvious.

Homomorphisms and order preserving maps were defined as point functions over the base
sets with order preserving properties. These morphisms over closure systems are propertly
“set-valued” maps defined over the subsets of P , or more precisely over the elements of the
power set 2P . By convention, we shall require all such morphisms to be monotone, that
is X ⊆ Y implies X.f ⊂ Y.f . Given monotonicity of f , it can be shown that [9]

Proposition 3.1 A morphism (P,ϕ)
f

−→ (P ′ϕ′) is closed if and only if ∀X ⊆ P , X.f.ϕ′ ⊆
X.ϕ.f .

Proposition 3.2 A morphism (P,ϕ)
f

−→ (P ′ϕ′) is complete if and only if ∀X ⊆ P , X.ϕ.f ⊆
X.f.ϕ′.

So readily it follows that

Proposition 3.3 A morphism (P,ϕ)
f

−→ (P ′ϕ′) is closed and complete if and only if ∀X ⊆
P , X.ϕ.f = X.f.ϕ′.

Closure and completeness were introduced in [9] as necessary and sufficient properties for
the diagram of Figure 5 to commute.

P

(P,ϕ)

P ′

(P ′, ϕ′)

-

-

? ?

ϕ ϕ′

f

f

Figure 5: f regarded as a closure system transformation

If (P, ρ)
f

−→ (P ′, ρ′) is an order preserving function we can “lift” it to subsets in the
usual way4

3We prefer to use suffix functional notation when representing set valued morphisms such as these. It
facilitates arrow chasing in categorical diagrams. We reserve more conventional prefix functional notation
for point functions. The change of notation hopefully alerts the reader to the paradigm shift.

4This notation f+ and f− for set mappings that habe been lifted from functions is found in [13]. The
maps f− and f−1 are identical.
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Y.f+ = {y′ ∈ P ′ | ∃y ∈ Y, y′ = f(y)}
Y ′.f− = {y ∈ P | ∃y′ ∈ Y ′, f(y) = y′}

In [2], the sets {y′}.f− = f−1(y′) = {y | f(y) = y′} are called the fibers of f , and the
pre-image partition induced on P is called the kernel of f .

Proposition 3.4 A function (P,≤)
f

−→ (P ′,≤′) is order preserving if and only if the lifted

function (P,ϕ)
f+

−→ (P ′, ϕ′) is complete with respect to a path closure.5

Proof: Let ϕ be downset closure ϕL. Let f be a homomorphism and let Y ⊆ P . For all y ∈ Y , if

x ≤ y then x.f ≤ y.f So Y.ϕL.f+ ⊆ Y.f+.ϕL and by Prop. 3.2 f+ is complete.

Conversely, assume f+ is complete and that x ≤ y. Then x ∈ y.ϕL and x.ϕL ⊆ y.ϕL. Again by

Prop. 3.2, {x}.ϕL.f+ ⊆ {y}.f+.ϕL or x.f ≤ y.f .

The proof when the closure is ϕC or ϕR is similar. 2

So “complete” and “order preserving” are effectively synonyms. We use “order preserv-
ing” and “homomorphism” to describe point functions on P that also preserve the partial

order. “Complete” describes a set-valued morphism 2P f
−→ 2P ′

, which may have been lifted
from a point function. The following proposition suggests why completeness is analogous
to continuity. Both preserve closed sets under inverse maps.

Proposition 3.5 Let (P,E)
f

−→ (P ′, E′) be order preserving. If Y ′ is closed in (P ′, ϕ′)
w.r.t. any path closure ϕ′, then Y = Y.f− is closed w.r.t ϕ.

Proof: Since f+ is order preserving, f+ is complete. Since Y.f+ is closed Y.ϕ.f+ = Y.f+ implying

Y.ϕ = Y . 2

Proposition 3.6 Let (P,≤)
g

−→ (P ′,≤). If (P,ϕ)
g+

−→ (P,ϕ′) is closed with respect to a

path closure then g is a path homomorphism.

Proof: Assume that ϕL is the closure ϕ. Let x ≤ y or x ∈ y.ϕL, so x.g+ ∈ y.ϕL.g+. Since y.ϕL is

closed, y.ϕL.g+ is closed, so x.g+ ∈ y.ϕL.g+.ϕL or x.g ≤ y.g. g is a homomorphism.

Now let x′ ≤ y′ in P ′, and let {y′}.g−1 = Y . Y.g+ = {y′} so x′ ∈ Y.g+.ϕL ⊆ Y.ϕL.g+ implying

there exists yk ∈ Y and xi ∈ Y.ϕL so xi ≤ yk where xi.g = x′ and by definition of Y , yk = y′. So

g+ is a path homomorphism.

Again, the proof is similar when the closure is ϕC or ϕR. 2

Proposition 3.7 Let (P, ρ) be finite, acyclic. Let (P,ϕ)
f+

−→ (P ′, ϕ′) be closed with respect

to any path closure. Then (P ′, ϕ′) is acyclic.

5Note that we use the traditional notation f : U → U
′ for point functions on U, and U

f+

−→ U
′ for

functions between the power sets.
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Proof: Let (X ′, y′), (y′, x′) ∈ ρ, x′ 6= y′ constitute a directed cycle. Let X = {x′}.f− and

Y = {y′}.f− be distinct subsets in the kernel of f . Since f+ is closed with respect to ϕ, but

X.f+ = x′ is not, X cannot be closed. In particular, there exists x0 ∈ X, y0 ∈ Y such that

x0 ∈ {y0}.ϕ. Since {y0}.f
+ = y′ is not closed, ∃x ∈ {y0}.ϕ, x ∈ X . Call it x1. Since (P, ρ) is

acyclic, x1 6= x0.

Next we find y1 ∈ {x1}.ϕ, y1 6= y0, and so forth. Since (P, ρ) is finite, this process must terminate,

leading to a contradiction. 2

Although closed homomorphisms must be path homomorphisms, in general homomor-
phims that preserve acyclicity need not be closed w.r.t all path closures, as illustrated by
f in Figure 6. The subset {d, b, a} is closed with respect to ϕL, but its image {d′, b′, a′} is

a

b

c

d

e

f
a’

b’

c’

d’

Figure 6: A homomorphism that is not closed w.r.t. ϕL.

not.
Even path homomorphisms that preserve acyclicity need not be closed as shown in

Figure 7. g is a path homomorphism because (x′, y′) ∈ ρ′ implies ∃(x, y) ∈ ρ in P . But, g is

a’ b’ c’
b

1
g

c

a

b2

Figure 7: A path homomorphism that is not closed w.r.t. ϕL.

not closed. For instance, {b2} is closed with respect to ϕL in P but b′ = f(b2) is not closed
w.r.t. ϕL in P ′.

By Prop. 3.7, we can create a Poset category by simply requiring its morphisms to be
complete (e.g. order preserving) and closed. It is not hard to show that the composition of
closed (complete) morphisms is closed (complete) [9]. But, as shown above, such a category
would exclude many order preserving morphisms that also preserve acyclicity. We need to
be more careful and concentrate on the ϕC closure operator.

If Y ⊂ P is closed with respect to ϕC then every path < p0, p1, . . . , pn > with p0, pn ∈ Y

lies completely within Y . That is, for all i, pi ∈ Y . For this reason ϕC has been called a
convex closure and its closed subsets called convex [7].

Proposition 3.8 Let (P, ρ)
f

−→ (P ′, ρ′) be order preserving. Its image (P ′, ρ′) is acyclic if

and only if ∀y′ ∈ P ′, {p′}.f− is closed with respect to ϕC .
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Proof: That (P, ρ′ must be acyclic if f is closed follows from Prop. 3.7. Let (P ′, ρ′) be acyclic.

We claim that f+ must be closed w.r.t. ϕC . It is sufficient to show that the fiber {y′}.f− of

any y′ ∈ P ′ is convex in P . If not, there is a path (y0, y1) ∈ ρ, y0, y1 ∈ Y and x 6∈ Y such that

(y0, x) ∈ ρ, (x, y1) ∈ rho. Now f order preserving implies (y′, x′), (x′, y′) ∈ ρ′ contradicting acyclicity.

2

4 The Category Poset

The category Poset consists of the collection Obj of all finite partially ordered sets, (P,≤)

together with the collection Mor of all morphisms (P,≤)
f

−→ (P ′,≤′) that are complete and
closed with respect to convex closure ϕC . Proposition 3.4 assures us that such morphisms
are order preserving; Proposition 3.7 assures us that the codomains are all partial orders
(acyclic) and that, moreover, every order preserving function g whose image is a poset
(acyclic) is an element of Mor.6

Let F ⊆ Mor denote the family of all morphisms (P,≤)
f

−→ (P ′,≤′). Since the mor-
phims of Poset are properly functions defined on the powerset 2P , we can define a new
morphism f ∩ g by Y.(f ∩ g) = Y.f ∩ Y.g, ∀Y ⊆ P .

Proposition 4.1 Let F be the family of all complete, morphisms (P,≤)
f

−→ (P ′,≤′) then

f ∩ g ∈ F .

Proof: Readily, f ∩ g maps 2P into 2P
′

. We need only show it is closed and complete.

If Y is closed, then Y.f and Y.g must be closed, so Y.(f ∩ g) = Y.f ∩Y.g is closed. Moreover, f ∩ g is

complete because any edge (x, y) ∈ E is preserved by both f and g (which are complete) and hence

by f ∩ g. 2

Proposition 4.2 Let F be a family of all closed, complete morphisms (P,≤)
f

−→ (P ′,≤′).
F is a partially ordered set in Obj.

Proof: Let f, g ∈ F . Define f ≤ g if f ∩ g = f . 2
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