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Abstract

We propose that a scientific database should be
inherently different from, say a business database.
The difference is based on the nature of science it-
self, in which hypotheses, or logical implications,
form an essential part of the discipline. Empirical
observations give rise to tentative hypotheses. Indi-
vidual hypotheses are then tested, refuted or refined,
by further empirical observation.

In the paper, we propose representing the obser-
vational data of science in a lattice format that also
conveys all the logical implications that can be sup-
ported by those observations. We claim that such
a structure can be incrementally created and that
the hypotheses formed will adapt to new data. We
demonstrate its practicality by presenting two real
situations in which it has been used.

Finally, we look at the rather considerable stor-
age costs associated with this approach and discuss
other limitations that are still unresolved in this new
approach to the representation of scientific data.

1 Introduction

What constitutes a “scientific” database? For ex-
ample, it is in any way different from a “business”
database? To a large extent it depends on what
one regards as “science”. Certainly, a key aspect
of science is the observation of properties of real
phenomena and the subsequent recording of these
observations. For this, relational databases might
seem quite adequate because rows can denote phe-
nomena, or objects, and columns can denote their
attributes.

Nevertheless, the relational model as it has
evolved through SQL [8, 10] seem to be far better

suited for accounting and certain kinds of statistical
databases, than for the more general notion of sci-
entific enquiry. Consequently there have been many
extensions of SQL to better represent the needs of
the scientific community. Briefly, these may be
categorized as spatial, temporal and evolutionary
needs.

1.1 Spatial Scientific Databases

Corporate accounting and administrative phe-
nomena occur in at most a one dimensional (tempo-
ral) world. A flat tabular structure with a single join
operator to relate items in different tables is com-
pletely adequate. But scientific phenomena occurs
in a 3-dimensional universe, and mechanisms to
describe and manipulate spatial relationships have
been recognized as essential. Since the late 80’s
there have been many extensions of the relational
model to accommodate spatial data, c.f. [12, 15, 41]
Some have been more successful than others. If the
objects (tuples) themselves are spatially distributed
then it is easy to denote this with 3 coordinate at-
tributes. But, neither SQL nor the relational model
provides spatial operators and many, such as “near-
est neighbors”, are difficult to implement.

1.2 Temporal Scientific Databases

Time is easy to represent in any database through
the use of time stamps. The problem here seems
only to find operators that facilitate search and/or
use of this information. Linear temporal logic has
centered on four standard operators:
Xα denoting “next afterα”
Fα ′′ “eventuallyα”
Gα ′′ “generally (or always)α”
αUβ ′′ “α until β”
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as described in [13]. Some of these have been added
to SQL to enhance its search capabilities. [4, 45].

1.3 Evolving Scientific Databases

The need to represent and manipulate spatial and
temporal data has been a well-known difference
between “scientific” and “business” data systems.
Less frequently mentioned is the need for scientific
system to be evolutionary. The required attributes,
or columns, of a relational accounting database
have been known for years and have been standard-
ized with respect to GAAP accounting principles.
Many other business database applications, such
as inventory control, are similarly well developed.
One changes the data, but not the schema.

But in science, one often does not know in ad-
vance just what properties, or attributes, will be im-
portant. Frequently, in the course of scientific en-
quiry one realizes that other aspects of the phenom-
ena must be observed and recorded. This requires
not only changing the schemas of the database it-
self, but also dealing with the attendant “missing
values”, c.f. [39, 40, 42].

1.4 Object-Oriented Databases

Criticizing relational database systems for inade-
quately supporting scientific data is a bit like “flog-
ging a dead horse”. These problems have been
known for years and have constituted one major im-
petus for creating the object oriented model [2]. We
have only repeated the many arguments that have al-
ready been presented in order to illustrate the com-
mon belief that it is the inclusion of temporal and
spatial data, together with schema evolution that is
critical to the concept of a scientific database.

Object-oriented databases can provide mecha-
nisms to resolve many of these deficiencies. We
can represent spatial objects, temporal objects, set
objects and use inheritance to specialize individual
varieties of these scientific concepts. The author
had created one such object-oriented system called
ADAMS [36], which easily supported schema evo-
lution and unbounded scientific subscripting [31,
35]. There have been many others, such as: EXO-
DUS [6], Gemstone [5],O2 [24], Cactis [20], ROSE
[19], ODE [1] and ObjectStore [23].

An object-oriented approach provides the facil-
ity to customize tailored scientific database sys-
tems. Yet, pure O-O systems seem to be relatively
rare in practice. The author would offer two rea-
sons for this. First, they tend to be slow. Yet, the

early relational systems were themselves abysmally
slow relative to the then dominant hierarchical and
network models. Second, and most important we
believe, O-O databases encourage complexity. As
anyone who had slugged through typical C++ code
can attest, inheritance over multiple object tem-
plates can quickly become bewildering. The great
strength of the relational model has been its utter
simplicity.

Our approach begins with just such a simple re-
lation. It then constructs another layer to model an
aspect of science that has not been considered in any
of the preceding discussion. Yet it is still a “simple”
structure.

2 Assertions in a Scientific Database

Gathering data from observations and storing it
is not, by itself, “science” — even though it is an es-
sential part of science, Most believe that the nature
of “science” requires the formulation of hypothe-
ses, or logical assertions, based on empirical obser-
vation which can be then tested against more exper-
imental evidence. This is not an original idea; oth-
ers have explored the formulation of implications
from scientific data [25, 28]. The contribution of
this paper is a “scientific database” structure that
can record both the data and the hypotheses in a sur-
prisingly uniform manner.

There can be many kinds of scientific hypothe-
ses. But, broadly speaking they will fall into two
general categories: deterministic and probabilistic.
In this paper, we shall be concerned solely with
deterministic hypotheses. We are not saying that
statistical hypotheses should not be included with
probabilistic data; rather we are only saying that we
don’t know how to do it!

Customarily, a scientific hypothesis is a univer-
sally quantified implication. Existential assertions
can be important in science, but they are not the
kind of hypothesis that requires repeated experi-
mental evidence to confirm or refute. We will as-
sume that a scientific hypothesis is an implication
of the form(∀o)[P (o) → C(o)], that is, if for any
objecto, if the premiseP (o) is true then the con-
sequent, or conclusion,C(o) must be true as well.
For example, we might assert that “ifo is a freely
falling object theno accelerates at a rate of 980 cen-
timeters/second/second”.

It is not hard to present experimental evidence
refuting this assertion as stated. For example, any
object with substantial air resistance falls more
slowly. In science, either the hypothesis may be dis-
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carded altogether or, more commonly, the premise
may be refined. In this case we might assert that
“every object freely falling in a vacuum accelerates
at a rate of 980.665 centimeters/second/second”.
(Subsequent experiment can also change the con-
sequent.) Lettingf denote the property of freely
falling, v denote presence of a vacuum,sl denote
sea level, andg denote the “gravitational constant”,
we finally rewrite the hypothesis as(∀o)[f(o) ∧
v(o) ∧ sl(o) → g(o)]. Conjunctive premises seem
to be a hallmark of scientific assertions.

We want such deterministic assertions to be
effectively represented in the same database that
records the experimental observations themselves.
It will require a rather different database structure.

2.1 Formal Concepts and Galois
Closure

The approach we have followed is similar to For-
mal Concept Analysis (or FCA) that was first de-
veloped by Rudolf Wille and is best presented in
[17]. FCA begins with a relationR between two
sets, say a setO of objects and a setA of object
attributes, or predicates. Using standard relational
terminology, each objectoj ∈ O can be regarded
as a row inR and each attributeak ∈ A is a col-
umn. Each attributeak is a binary, logical property,
i.e. true or false. A conceptCn is a pair of subsets
Cn = (On, An) whereOn ⊆ O, An ⊆ A with the
propertyT that for everyoi ∈ On, everyak ∈ An is
true. Each concept is assumed to be maximal, that
is for the setOn there is no larger subsetA′

n ⊃ An

satisfying propertyT , and forAn there is no larger
subsetO′

n ⊃ On satisfyingP .
The collectionC of all conceptsCn, so defined,

forms a closure system; that is, the intersection of
any two concepts inC is a concept. Consequently,
the collectionC of concepts forms a lattice when
partially ordered with respect to the attribute sets
An by containment.1 An example of a relationR
and corresponding latticeL is shown in Figure 1.
Each node is labelled with a closed set of attributes
and a closed set of objects — the concept pair. For
example, the combination of attributesadf is found
in rows, or objects, 5, 6 and 8.

For any closure systemC defined in terms of be-
ing closed under intersection as we have done, there
will be a closure operatorϕ satisfying the three clo-
sure axioms:
C1: ∀X ∈ C, X ⊆ ϕ(X),

1Ganter and Wille [17] prefer to order with respect to object
set containment yielding the dual lattice.
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Figure 1. Relation R (a) and concept
lattice L (b).

C2: ∀X, Y,∈ C, X ⊆ Y implies ϕ(X) ⊆ ϕ(Y ),
C3: ∀X , ϕ(ϕ(X)) = ϕ(X)
that yields the same system. In the case of FCA,
the closure operator is called the Galois closure be-
tweenO andA, and has been well studied [7, 9, 30]
In this paper we emphasize the closure aspect as de-
noted byϕ, rather than the concept aspect devel-
oped in [17].

2.2 Closed Sets, Generators and
Logical Implication

Let C denote a closed set. Then there is some
setA ⊆ C such thatϕ(A) = C. If A is a minimal
such set, w.r.t. set inclusion, we call it a generator
of C denoted byγ(C), or by A → C [32]. The
latter symbolism is not accidental. Ifϕ is a Galois
closure, then closed set generation and logical im-
plication are identical.

The issue now becomes: “given a lattice of
closed concepts, such as Figure 1(b), how does one
derive the generating sets?” For example, what
is the generator of the closed setacde in Figure
1(a)? In [21] it is shown that “ifC1 coversC2 in
a closure latticeL2 thenγ(C1) ∩ (C1−C2) 6= Ø.”
With this theorem, one can construct the genera-
tor of any closed setC as a combination of ele-
mentsei ∈ (C−Ci) whereC coversCi in L. The

2C1 coversC2 if we do not haveC2 ⊂ C ⊂ C1, C closed.
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nodeacde covers only one nodeacd in the lattice
L, soC−C1 = {e}. Thus, using the result above
we can show that the generatorγ(acde) = {e}, or
e → acde. That this is true is evident from Fig-
ure 1(a). Attributee is only found in observation 7,
wherea, c, andd were also seen. So the property
e, in this case, trivially implies propertiesa, c and
d. With the result above, the derivation of generat-
ing sets is an inexpensive, local construction whose
details can be found in [37]. One may choose to ex-
plicitly represent the generating sets of each node in
L, or simply reconstruct them “on the fly”.

2.3 Updating the Data Lattice

The nature of any working data base is that new
data will be constantly added; this is certainly true
of on-going scientific enquiry. Given an entire rela-
tion R, as in Figure 1(a), there exist algorithms to
construct its closed set latticeL, [16, 17]. However
we, and others [18, 46], find it preferable to con-
structL incrementally, one row or observation, at a
time. This is certainly similar to real data acquisi-
tion.

By the nature of Galois closure each new row,
or observation properties, is closed. So it either al-
ready exists as a node inL, or will constitute a new
node. First, one must find its location inL using
set inclusion in a search down from the top (or up
from the bottom) ofL. If the observation has no
new properties and so already exists we simply in-
crement the set of occurrences. Otherwise, the new
set of properties is inserted as a closed setC, cov-
ered by some existing setC′, which is the small-
est set containingC. UsuallyC′ will be covering
other closed setsCi in L. Because of the intersec-
tion property of closed set lattices described in Sec-
tion 2.1, we must now calculateC ∩Ci for eachCi

covered byC′. If C∩Ci already exists inL, nothing
more needs be done; otherwiseC∩Ci must itself be
recursively entered intoL as well. This can create a
recursive cascade of insertions, but as noted later in
Section 5.2. this is fortunately rather rare.

In Figure 2 a new observation, labeled 9, has
been entered with the propertiesa, b and e. The
nodeabe has been entered intoLwhere it is covered
by the top node consisting of all attributes. Now we
must check the intersection of this closed setabe

with all others covered by the top ofL. We have
abe∩abcdf = ab, abe∩acde = ae, abe∩acghi = a

andabe ∩ abcgh = ab. Of these, onlyae is new. It
must be recursively entered as indicated in Figure
2(b) by the dashed lines.
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Figure 2. Modified relation R (a) and
Resulting lattice L (b).

Becauseabe covers bothae and ab in L and
abe−ae = {b}, abe−ab = {e}, its generator must
be be. Of more interest is how the generator of
acde has changed. Initially we hade → acde

becauseacde only coveredacd. Now we have
ce ∨ de → acde becauseacde−acd = {e} and
acde−ae = {cd}. This can be more formally ex-
pressed as(∀o ∈ O)[(c(o)∧e(o))∨ (d(o)∧e(o) →
a(o) ∧ c(o) ∧ d(o) ∧ e(o)]. As more information is
entered the generators, or premises, of many closed
sets, or conclusions, are expanded in this way while
others may be simplified.

Observation and new data can change our under-
standing of the world.

3 Two Implemented Examples

A fundamental question is “can this lattice struc-
tured database be practical?” Does it really work?
It does; and we offer the two following working ex-
amples to simply demonstrate proof of concept.

3.1 The MUSHROOM Database

Using precisely the mechanisms described in the
preceding section, we took as input the physical
properties of 8,124 different mushrooms as given
in the “The Audubon Society Field Guide to North
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American Mushrooms” [26]. Figure 3 illustrates
representative values of the first 6 (of 22) attributes
used to characterize mushrooms in [26] Each at-

Attr-0  edibility:

attr-1  cap shape:
  e=edible, p=poisonous 

  b=bell, c=conical, f=flat, k=knobed, s=sunken,
x=convex

attr-2  cap surface:
  f=fibrous, g=grooved, s=smooth, y=scaly
attr-3  cap color:
  b=buff, c=cinnamon, e=red, g=gray, n=brown,
p=pink, r=green, u=purple, w=white, y=yellow 

  t=bruises, f=doesn’t bruise
attr-5  odor: 
  a=almond, c=creosote, f=foul, l=anise, m=musty,

attr-4  bruises?:

  n=none, p=pungent, s=spicy, y=fishy

  a=attached, d=descending, f=free, n=notched
attr-6  gill attachment:

Figure 3. The first 6 attributes of the
MUSHROOM data set, with nominal val-
ues.

tribute was encoded as one, or more, separate pred-
icates. For example, we have the predicatese0 for
“edible”,p0 for “poisonous”,a6 for “attached gill”
andn6 for “notched attachment”. Encoded this way
the attributes of Figure 3 yield 42 effective predi-
cates.3 The lattice generated by the8, 124 × 42 re-
lation R consists of 2,641 closed concepts4; and,
because some concepts have multiple generators,
3,773 distinct implications, or rules.

To provide some sense of this data set we list in
Figure 4 all those rulesP → C in which a sin-
gleton predicateP impliesp0, or poisonous. We

1597 s5  ->  p0, f4, f6
1687 y5  ->  p0, f4, f6

2562 c1  ->  p0, n5, f6
2022 m5  ->  p0, y2, f4

1401 g2  ->  p0, w3, t4, n5
924 f5  ->  p0, f6
668 c5  ->  p0, x1, f4, f6

IMPLICATIONCONCEPT

 576
 576

   4
  36

   4
2160
 192

SUPPORT

Figure 4. All implications in MUSHROOM

with |P | = 1 and p0 ∈ C.

have added the concept number to the left to indi-
cate where this rule was uncovered in the observa-
tions and the number of times the implications has
be observed, or its support, to the right.

Are there simple combinations of attributes that
also denote poisonous? Figure 5 illustrates those

3Encoding all 22 physical attributes yields 85 distinct predi-
cates.

4The entire8, 124 × 85 relation R generates a lattice of
104,104 closed concepts.

non-trivial conjunctive implicationsP → C for
which |P | = 2 andp0 ∈ C.

1495    b1, b3 -> p0, t4, n5, f6
1567    b1, p3 -> p0, t4, n5, f6
2081    y3, n5 -> p0, f4, f6

2181    y2, a6 -> p0, f4, m5
2372    c3, a6 -> p0, y2, f4, m5
2470    e3, a6 -> p0, y2, f4, m5
2561    c1, y3 -> p0, y2, f4, n5 
2561    c1, f4 -> p0, y2, y3, n5
2563    c1, y2 -> p0, n5, f6

2177    e3, f4 -> p0

 696    f2, p3 -> p0, x1, f4, c5
 667    p3, f4 -> p0, x1, c5, f6

CONCEPT IMPLICATION

  12
  12
  24
 876
  18
   6
   6
   2
   2
   3

  32
  64

SUPPORT

Figure 5. Rules with two predicate
precedents that denote poisonous
mushrooms.

A more detailed description of this application
can be found in [37].

3.2 Analysis of Software Trace Data

An important concept in science is that of deter-
ministic causality in which the occurrence of some
event, or conjunction of events, must necessarily
“cause” a consequent event. Indeed, this was the
holy grail of Newtonian physics and much of19th

century science. “Causality” implies necessity, or
logical implication. But, it also assumes a tempo-
ral aspect. The consequent event must temporally
follow all assumed antecedent events. One arena
where we expect deterministic causality is software
execution. It is a reasonable place to test our ideas.

The application of FCA to re-engineering of
legacy software has been explored by others [3, 27].
They used closed concepts to reveal significant clus-
ters of code modules. Our interest instead has been
to uncover “likely” causal dependencies between
such modules.5 To do this we examine trace se-
quences of procedure invocations, which we regard
as events. (Each procedure invocation, or event, can
be assigned an integer identifier for easier display,
as in Figure 6.) The first step is to find which events
logically imply other events, that is, which events
ei, if they occur in a sequence, must imply the oc-
currence of eventsek within the same sequence. To
do this we treat the occurrence of an event as if it
were an attribute of the sequence and create the clo-
sure lattice as in Section 3.1.

5Michael Ernst coined the term “likely” in his search for code
invariants [14]. It seems extremely appropriate here as well.
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As we noted above, logical implication denoted
by → need not mean deterministic causality, which
we will denote by⇒. If P → C then we can assert
P ⇒ C only if for eachek ∈ C, it has been pre-
ceded in the trace by everyei ∈ P .6 Each trace can
be treated as a temporally ordered set. We are then
looking for events that temporally dominate other
events.

To test this approach on real trace data,
the author examined an open source, profes-
sional statistical package available fromJBoss at
www.jboss.com. All of the method entrance
events of the transaction management module in
JBoss 1.4.2 were instrumented by my colleagues,
Jinlin Yang and David Evans [47]. They then ran
the entireJBoss regression test suite to collect
1,227 trace sequences consisting of 498,489 events
of which 144 were distinct. By an “event” in these
traces we mean the invocation of a method. The
shortest trace consisted of only 6 events; the longest
involved 1,405 events.

The representation of these 1,272 trace se-
quences as a closed set lattice consisted of 1,804
nodes. For simplicity we extracted the 79 logical
implications that had only singleton antecedents,
similar to Figure 4. These we ran against a tem-
poral filter yielding 43 likely causal dependencies.
An even smaller subset of 17 of these is shown in
Figure 6. From what we know of theJBoss sys-

support
concept size causal dependencies (likely)

1733 1,099 {12}=>{13...24}
445 1,100 {17}=>{22,23}

{20}=>{21}=>{22,23}
251 966 {25}=>{26}=>{27}=>{28}=>{29}

{28}=>{30}=>{31}=>{32}
391 962 {35}=>{36}=>{37}=>{38}
443 977 {41}=>{42}=>{43}=>{44}
945 852 {46}=>{47,48,49,60,62}
458 1,077 {47}=>{48}=>{49}=>{51}=>{60}=>{62}
448 1,098 {50}=>{53}=>{54}=>{55}=>{58}=>{61}
53 1,091 {56}=>{57}

375 28 {66}=>{67,69,70}
1754 28 {68}=>{69,70,71,72}
1745 65 {73}=>{74}=>{75}
725 3 {84}=>{117}=>{118}
575 62 {86}=>{87}=>{88}=>{25...44,45,63}
272 1 {89}=>{33,34,90...100)

Figure 6. Some likely causal depen-
dencies.

tem, without having the actual source code, these
all seem to be true dependencies. For example, the

6Since events may occur multiple times in a trace, we actually
ensure that thefirst occurrence ofek is preceded by allei ∈ P .

underlying stack architecture is apparent from se-
quences such as35=>36=>37=>38. More details
can be found in [34].

Although the creation of closed set lattices, as
described in section 2.2 and 2.3, together with the
real life examples of this section may seem impos-
sibly complex, this lattice structured representation
of data based on closed sets is really rather simple.
Precisely the same code (which is available from
the author) was used to represent both mushroom
attributes and software events. And in both cases
there has been a clear “value added” by providing
logical rules that can be exploited by working sci-
entists,c.f. [29, 44].

4 Numeric Data

The vast majority of scientific data is numeric.
Unfortunately, FCA works well with boolean pred-
icates, but is problematic when the predicates are
numeric. Our more recent research has shown that
by treating each observation as a tuple of antima-
troid closure spaces, rather than just a set of true
predicates (as in Sections 3.1 and 3.2), we can rep-
resent a wide range of numeric assertions as well.

Now, each observed predicate, or entry in a row,
of the relationR will be regarded as representing
a single closed setZi in a closure space,Ci. The
entire row then denotes a single closed set,Z1 ×
. . .×Zn in the direct product spaceC1 × . . .× Cn.
A formal justification of this approach can be found
in [17, 38].

A closure space is said to be antimatroid if ev-
ery closed set has a unique generating set. Every
boolean space, comprised of just two closed sets
{false}, {true, false}, is antimatroid. The Galois
closure used to define the lattice of closed sets is
not antimatroid; but we can require that each com-
ponent spaceCk of C1 × . . . × Cn must be. The
reason for this is that then any closed setZi can be
represented by just its generating set,γ(Zi), rather
than the entire set. For example the geometric con-
vex hull operator is antimatroid [11]. Thus if spatial
objects are encapsulated by their convex hulls, these
objects can be represented inL by their generating
verticies. Representation of spatial data by genera-
tors looks interesting but has not yet been explored.

It is with numeric data that this representation
of closed sets by their generators can really payoff.
LetS denote any partially ordered set, such as time,
operator precedence, or the real numbers. A useful
closure operator onS is downset, or ideal, closure
ϕ↓, whereϕ↓(Y ) = {x|x ≤ y ∈ Y }. Readily,
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the maximal elements ofY generateϕ↓(Y ). When

S is numeric, the generatorγ(Z) of any closed set
Z = ϕ↓(Y ) is precisely its single maximum value.

In Figure 7, we have arbitrarily distributed el-
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Figure 7. A scattering of points.

ements(xi, yi) in a 2-dimensional space. Using
downset closure,ϕ↓, we get the lattice shown as

Figure 8. Each element(xi, yi) constitutes a closed
set inL. Extra nodes that are forced by intersection
have been underlined. Notice its rather tall, narrow
structure in comparison to that of Figures 1 and 2.

(19, 12)

(18, 8)

(19, 9)

(16, 9)

(15, 9)

(15, 8)

(10, 8) (13, 7)

(10, 5)

j:h:

k:

m:l:

n:

o:

(10, 7) i: (12, 5)

(9, 6)f:

(9, 5) g: (10, 3)

(6, 2)(5, 3)

(5, 2)

(4, 1)b:

(3, 1)

(9, 3)

(6, 3)d:

(5, 5)c:
(8, 2)e:

(3, 3)a:

(3, 2)

(16, 8)

Figure 8. The lattice L formed of points
from Figure 7

In order to derive logical implications for the nu-
meric elements of a lattice such asL, we turn our
thinking around somewhat. In Section 2.2 we used
the lattice covering relation to make assertions of
the form(∀o)[p(o) → c(o)], or “if p is true for all
o ∈ O, then the consequentc must be true as well”.
Now, we will interpret this as “ifp is not false for
all o ∈ O thenc cannot be false either”. This will
make more sense with an example.

Consider the nodec:(5,5) which covers(5, 3) in
L. The generator ofc is a valuey that is not less
than or equal 3, that isy > 3. In this casex cannot
be less that 5, so we have(y > 3) → (x ≥ 5).
Comparison with Figure 7 shows this to be a valid
implication. Nodei:(12,5) covers node(10, 5), so
using this same covering principle we have(x >

10) → (y ≥ 5) which again is seen to be valid in
Figure 7.

Discovering just which kinds of numerical in-
equalities can be involved in scientific hypotheses is
a rather exciting component of our current research.

5 Discussion

In the preceding sections we have demonstrated
that by recording empirical data consisting of ob-
served properties and observation identifiers in a
lattice rather than a flat relational file, one also im-
plicitly records all the logical implications that are
derivable from that data. This offers impressive po-
tential benefits; but there are also significant unre-
solved problems as well. In this section we will dis-
cuss both.

5.1 Storage Overhead

In our implementations, all sets of attributes,
of predicates, of events, of observations, of lattice
node links are represented by bit strings with one
bit per element.7 Besides compressing the repre-
sentation, this technique permits the encoding of set
operators as fast logical bit string operations. Nev-
ertheless the representation of sets and links in the
lattice structure adds to storage overhead.

However, more important is the creation of ad-
ditional nodes in the lattice. Each distinct obser-
vation creates a node in the lattice. But, because
the lattice models a closure system, non-empty in-
tersections of nodes must be added to the lattice
— as if they had been observed. For example, al-
though there are only 8,124 items in the complete

7No upper limit on set size is assumed.
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relationalMUSHROOMdata set, the lattice represen-
tation expands to 104,104 nodes. The 95,980 addi-
tional nodes represent a huge increase in storage in
this case. Other applications may require more, or
less, storage overhead depending on the degree of
redundancy in the input data.8

Thus a lattice representation extracts a hefty
price in storage overhead. But, storage has be-
come increasingly cheap. Moreover, when we con-
sider the additional overhead involved in storing
wysiwyg documents, such asWORD, compared to
flat ASCII text files, or formatable text files, such as
LaTex, this price does not seem so extraordinary.

5.2 Computational Cost

Because, in the worst case, one may have to
sweep through the entire lattice to find the loca-
tion of, and to insert, each new input node which
can then force many new intersection nodes, the
construction algorithm can be shown to beO(n3)
over the entire data set. However, for two reasons
this is not the case in practice. The effective con-
struction cost seems to be closer toO(n1.5), be-
cause one normally finds the insertion site in lin-
ear time, where actual insertion is typically local
with few additional intersection nodes [33]. More-
over, scientific data tends to trickle in rather grad-
ually. Because this representation supports incre-
mental creation, whatever construction costs exist
can be amortized over days, or even months.

5.3 Limited Data Representation

This is by far the most serious unresolved lim-
itation with the representation as it stands today.
In Section 1, we criticized the relational model be-
cause it failed to adequately represent temporal and
spatial data, both of which can be fundamental to
scientific enquiry. Yet, our examples of Section 3
only represent nominal data!

The entire approach employing concept lattices
is based on closed sets and closure operators. It is
essential that each observation value be a closed set.
Ordered sets, such as numeric data, support the fa-
miliar less than, greater than, andinterval clo-
sures [32]. Indeed, numeric assertions in careful
scientific discourse are typically characterized by
numeric intervals, not equality. Section 4 has be-
gun exploration of these opportunities.

8In the reduced case shown in Section 3.1 for illustrative pur-
poses, only 176 of the 8,124 input rows are distinct. They gener-
ated the 2,641 nodes cited in the text.

Of the operators of linear temporal logic,
X, U, F, G, only the firstX (or next) is not a clo-
sure operator. Given the ease with which we could
integrate temporal events in the analysis of software
trace data, in Section 3.2, we believe that with some
modification we may be able to make temporal as-
sertions as well.

Spatial data is probably the hardest to represent
in any system [43]. The generators of antimatroid
closure can be valuable in the representation of spa-
tial objects [22]. But, implementation of “cover-
ing”, and “intersection” concepts are at this point
still difficult.

5.4 Logical Feedback

The formulation of scientific hypotheses and em-
pirical observation do not occur as distinct, sepa-
rable events. Instead, they represent an on-going
feedback process. Empirical observation stimulates
scientific hypotheses, which are then used to direct
more empirical research which may subsequently
modify, or refute, them. By the same token, rea-
sonably well established hypotheses, or assertions,
may be used to question empirical observation. We
have described in Section 2.3 how new data can be
used to completely alter the generators, or premises,
of an existing node or consequent. But, in our
software, when that occurs to a well-established
rule the observed data is temporarily rejected and
flagged for special attention. The observation may
be wrong. But, if the existential data is correct,
as for example “an egg laying mammal”, then it is
clearly important and should still be singled out for
special treatment.

These kinds of rare and unusual occurrences can
be important. We return to Figure 4 which doc-
uments 7 different ways of identifying poisonous
mushrooms on the basis of a single attribute. The
five implications with support of at least 30 in-
stances are invariably found by frequent set mining.
But, we see thatc1 andg2 also indicate poisonous;
and with a support of only 4 instances, they are un-
likely to be found. But, eating any of the 4 kinds of
mushroom with a conical cap or grooved cap cover
could have serious consequences.

6 Conclusion

The title of this paper is “what is constitutes a
scientific database?” It’s a good question. Provi-
sion for storing and retrieving spatial and temporal
data, we would contend, are hallmarks of a good

8



“technical” database. Our city planning department
operates a first rate spatial database, as do many en-
gineering and architectural firms. Few are engaged
in “science”. The actual hallmark of a scientific
database is the ease with which the underlying hy-
potheses, scientific assertions, rules or implications
(call them what you may) can be obtained from the
observed data. We have shown that representation
of this data as a lattice of Galois closed sets facili-
tates precisely this capability.

But, as we have carefully pointed out, the rep-
resentation of scientific data as a lattice of closed
sets is not without its problems. It is storage inten-
sive and still incapable of representing temporal and
spatial data. But, if its problems seem large, so does
its potential. It offers a unified way of interactively
involving scientific observations with scientific hy-
potheses as evidenced by our two real life applica-
tions.
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