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Abstract

Discrete systems such as sets, monoids, groups are familiar categories. The internal
structure of the latter two is defined by an algebraic operator. In this paper we con-
centrate on discrete systems that are characterized by unary operators; these include
choice operators σ, encountered in economics and social theory, and closure operators
ϕ, encountered in discrete geometry and data mining. Because, for many arbitrary
operators α, it is easy to induce a closure structure on the base set, closure operators
play a central role in discrete systems.

Our primary interest is in functions f that map power sets 2U into power sets 2U
′

,
which are called transformations. Functions over continuous domains are usually char-
acterized in terms of open sets. When the domains are discrete, closed sets seem more
appropriate. In particular, we consider monotone transformations which are “continu-
ous”, or “closed”. These can be used to establish criteria for asserting that “the closure
of a transformed image under f is equal to the transformed image of the closure”.

Finally, we show that the categories MCont and MClo of closure systems with
morphisms given by the monotone continuous transformations and monotone closed
transformations respectively have concrete direct products. And the supercategory Clo

of MClo whose morphisms are just the closed transformations is shown to be cartesian
closed.
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1 Discrete Systems

By a discrete system, S, we mean a set of elements, points, or other phenomena which we
will generically call our universe, denoted by U, together with a structure defined by an
arbitrary operator which we denote by α.1 Thus S = (U, α). Operators may be unary,
binary or n-ary; although in this paper we concentrate on unary operators. Individual
points of U will be denoted by lower case letters: a, b, ..., p, q, ... ∈ U. Discrete systems are
typically finite, but need not be. The integers with, say the successor operator, constitute a
discrete system. The defining characteristic is that no limit process is possible in a discrete
system; that is, there are no accumulation points.

If a finite set of points of U is given by listing them, we may not write commas between
the letters denoting these individual points and, moreover, we often omit the set-denoting
parentheses. So, for example, we may write {abcd} or even abcd instead of {a, b, c, d}. By
2U, we mean the power set on U, i.e., the collection of all subsets of U. Elements of 2U we
will denote by upper case letters: S, T,X, Y, Z.

A transformation, f , mapping one space into another should preserve at least some of
the structure of the space. But, what is its structure? One way of describing a structure
is by operators defined on the space. The transformation should preserve the operator
behavior. The homomorphisms of discrete algebraic systems are a classic example [3, 41].
In this section we review several unary operators that have been used to describe a variety
of discrete spaces. Our goal is to convey a sense of how mathematically rich the domain
of these transformations can be. The nature of such transformations, which we consider in
sections 2 and 3, has been less well studied; most of these results are original.

1.1 Operators

An operator α in a system S is a function 2U → 2U which takes subsets of U onto other
subsets of U. Operators can have many properties; for example, α can be monotone, that
is for all X,Y ⊆ U, X ⊆ Y implies X.α ⊆ Y.α. We use suffix notation to denote operators.

Two important properties are whether α is contractive, that is Y.α ⊆ Y or expansive,
that is Y ⊆ Y.α. Contractive operators may be generically called “choice” operators and
have been extensively studied in the social sciences. Expansive operators are often “closure”
operators, and will be the focus of this paper.

An operator, α, is said to be path independent if for all X,Y ⊂ U,

(X ∪ Y ).α = (X.α ∪ Y.α).α. (1)

1Specific operators will later be denoted by σ, ϕ, and γ.
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1.2 Choice Operators

The theory of choice functions was initially developed by economists, such as Arrow and Sen
[4, 39], and further expanded by mathematicians, such as Aizerman and Malishevski [2, 22].
In this section we will summarize these, and later, results for the purpose of contrasting
choice operators with closure operators in the next subsection. Closure will be the primary
mechanism by which we describe general transformations. However, closure and choice can
be closely linked [20].

Given a set Y of possible alternatives, a choice operator σ chooses one, or more, of
these alternatives. Thus for all non-empty Y ⊆ U, Y.σ 6= Ø and Y.σ ⊆ Y . Consequently, σ
is a contractive operator and one may call all such contractive operators “choice” operators.

The goal of economists has been to reconcile choice behaviors with rational behavior.
Path independence, (1), was introduced by Plott [35] to capture a key element of rational
choice, namely that choice should be independent of the order in which alternatives are
considered. Thus, regardless of whether the alternatives X and Y are presented serially or
altogether as X ∪ Y , the resultant choice should be the same [22].

Path independent choice operators have a number of elegant properties. For example,
one can define a binary operator + on U by X + Y ≡ X.σ ∪ Y.σ. If σ is path independent,

then (2U,+) is a commutative semi-group [22, 24]. Similarly, we might order a collection

of chosen sets C = {C0, . . . Cn} of 2U by Ci ≤ Ck if and only if (Ci ∪ Ck).σ = Ck. Readily
C, so ordered, is a join semi-lattice. If σ is path independent, then C is a convex geometry
as described in Section 1.4 [17, 20].

1.3 Closure Operators

A closure system, S, is a pair (U, C) where C is any family of subsets of U, including
U itself, which is closed under arbitrary intersections. Subsets in C are said to be closed.
Since the universe U is contained in C, C itself will be often be regarded as the closure
system. In this case, C is said to be a closure system on U and U is said to be the base
universe of C. For example, if U = {a, b, c, d, e} then the collection of closed sets

CU = {Ø, {a}, {b}, {ab}, {bd}, {abc}, {abd}, {abce}, {abcde}, {abcdef}} (2)

is a closure system.
A closure system, S, can equivalently be defined as a pair (U, ϕ), where ϕ is a closure

operator on U, i.e., a self-mapping of 2U, satisfying the following three axioms: For all
Y,Z ⊆ U,

C1: Y ⊆ Y.ϕ,
C2: Y ⊆ Z implies Y.ϕ ⊆ Z.ϕ, and
C3: Y.ϕ.ϕ = Y.ϕ.
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Read Y.ϕ as “Y closure”. A set Y is closed if Y = Y.ϕ. By C1, U itself must be closed.
It is well known that these two definitions of closure are equivalent; the closed sets given
by a closure operator on U form a closure system on U and, conversely, given a closure
system (U, C), the closure operator on U is obtained by assigning to every subset A ⊆ U

the intersection of all members of C that contain A as a subset.
Still a third characterization of closure systems can be found in [25]. We repeat their

proof because it is not as widely known.

Proposition 1.1 An expansive operator ϕ is a closure operator if and only if ϕ is path
independent.

Proof: Let ϕ be expansive and let X,Y ⊆ U. Assume ϕ is a closure operator. Since X,Y ⊆ X∪Y ,

X.ϕ∪Y.ϕ ⊆ (X ∪Y ).ϕ. And because X ⊆ X.ϕ and Y ⊆ Y.ϕ, we have (X.ϕ∪Y.ϕ).ϕ ⊆ (X ∪Y ).ϕ ⊆

(X.ϕ ∪ Y.ϕ).ϕ, so (X ∪ Y ).ϕ = (X.ϕ ∪ Y.ϕ).ϕ.

Conversely, if ϕ is path independent (1), then X ⊆ Y implies X.ϕ ⊆ X.ϕ ∪ Y.ϕ ⊆ (X.ϕ ∪ Y.ϕ).ϕ =

(X ∪ Y ).ϕ = Y.ϕ. So ϕ is monotone. Finally, Y.ϕ.ϕ = (Y.ϕ ∪ Y.ϕ).ϕ = (Y ∪ Y ).ϕ = Y.ϕ, so ϕ is

idempotent. 2

Let Y ⊆ U be a closed set. A subset X ⊆ Y is said to generate (or to be a generating

set of) Y if X.ϕ = Y . By C3, every closed set Y generates itself. But, that tends to be
uninteresting. We say a generating set X of Y is non-trivial if X ⊂ Y . In fact, we are
really only interested in minimal non-trivial generating sets. More specifically, if X is a
minimal generating set, it is called a generator of Y . A generator of Y will be denoted
by Y.γ.2 To define the generator operator γ on all subsets Y ⊆ U, we let Y.γ ≡ Y.ϕ.γ.
Readily, Y.γ ⊆ Y . When there is just a single minimal generator for any closed subset of U,
we say that (U, ϕ) is uniquely generated. A closure system (U, ϕ) is said to be finitely

generated if for all closed subsets of U, their generators are finite. Since for all Y ⊆ U,
Y.γ ⊆ Y , γ can also be regarded as a choice operator.

A closure operator/system can satisfy other axioms depending on the mathematical dis-
cipline. A topological closure is grounded and closed under finite union, i.e., satisfying

C0: Ø.ϕ = Ø,
C4: (Y ∪ Z).ϕ = Y.ϕ ∪ Z.ϕ.

The closure operator of linear systems, often called the spanning operator, satisfies the
Steinitz-MacLane exchange axiom

C5: if p, q 6∈ Y.ϕ, and q ∈ (Y ∪ {p}).ϕ then p ∈ (Y ∪ {q}).ϕ.
Such closure systems are called matroids. Still other closure operators may satisfy an anti-
exchange axiom

2When a closed set Y has more than one generator, the collection of all of them we denote by Y.Γ =
{Y.γ1, . . . , Y.γn} [15].
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C6: if p, q 6∈ Y.ϕ, p 6= q, and q ∈ (Y ∪ {p}).ϕ then p 6∈ (Y ∪ {q}).ϕ.
These closure operators, which include the geometric convex hull operator, are said to be
antimatroid closure operators and the corresponding closure systems are called antima-

troids or convex geometries. An important antimatroid property is the following.

Proposition 1.2 Let (U, ϕ) be an antimatroid, let Z ⊆ U be a closed subset and let X,Y
be generating sets of Z. If each of the sets X and Y contains a finite subset generating Z,
then X ∩ Y is also a generating set of Z.

Proof: We have X.ϕ = Y.ϕ = Z. Let A ⊆ X and B ⊆ Y be finite generating sets of Z and

suppose that X ∩ Y does not generate Z, i.e., that (X ∩ Y ).ϕ ⊂ Z. Put C0 = X ∩ Y . Then

A 6⊆ C0.ϕ. Let x1 ∈ A − C0.ϕ be an arbitrary point and put C1 = C0 ∪ {x1}. If C1.ϕ ⊂ Z, then

A 6⊆ C1.ϕ. Let x2 ∈ A − C1.ϕ be an arbitrary point and put C2 = C1 ∪ {x2}. Repeating this

construction, after a finite number k of steps we get a set Ck = Ck−1 ∪ {xk} such that Ck−1.ϕ ⊂ Z,

xk 6∈ Ck−1.ϕ and Ck.ϕ = Z. Put Ck−1 = D0. Then B 6⊆ D0.ϕ. Let y1 ∈ B − D0.ϕ be an

arbitrary point and put D1 = D0 ∪ {y1}. If D1.ϕ ⊂ Z, then B 6⊆ D1.ϕ. Let y2 ∈ B − D1.ϕ be

an arbitrary point and put D2 = D1 ∪ {y2}. Repeating this construction, after a finite number l

of steps we get a set Dl = Dl−1 ∪ {yl} such that Dl−1.ϕ ⊂ Z, yl 6∈ Dl−1.ϕ and Dl.ϕ = Z. Thus,

since (Dl−1 ∪ {yl}).ϕ = Z, we have xk ∈ (Dl−1 ∪ {yl}).ϕ. But (Dl−1 ∪ {xk}).ϕ = Z holds too

(because (Ck−1 ∪ {xk}).ϕ = Z and Ck−1 ⊆ Dl−1), so we have yL ∈ (Dl−1 ∪ {xk}).ϕ. Suppose

that xk ∈ Dl−1.ϕ. Then {xk} ∪ Dl−1 ⊆ Dl−1.ϕ, hence ({xk} ∪ Dl−1).ϕ ⊆ Dl−1.ϕ. It follows that

Dl−1.ϕ = Z, which is a contradiction. Hence, xk 6∈ Dl−1.ϕ. This contradicts the assumption that

(U, ϕ) is an antimatroid. Therefore, (X ∩ Y ).ϕ = Z and the proof is complete 2

To see why the existence of finite generating subsets of X and Y is required in the
previous statement, consider U = Z (the set of integers) and let ϕ be the downset closure
on the (naturally) ordered set Z (see section 1.5). Let X be the set of even integers and Y
be the set of odd integers. Then both X and Y generate U but X ∩ Y does not because
(X ∩ Y ).ϕ = Ø.ϕ = Ø.

Proposition 1.3 Let (U, ϕ) be a finitely generated closure system. Then (U, ϕ) is an
antimatroid if and only if (U, ϕ) is uniquely generated.

Proof: If (U, ϕ) is not an antimatroid, then there exists some closed set Y.ϕ with p, q 6∈ Y.ϕ, p 6= q,

such that p ∈ (Y ∪ q).ϕ and q ∈ (p ∪ Y ).ϕ. Then p and q are members of distinct generators of

(Y ∪ p).ϕ = (Y ∪ q).ϕ. The converse is a corollary of Prop. 1.2. 2

Most closure systems occurring in applications are finite, and thus finitely generated..
If (U, ϕ) is a finite antimatroid, then the collection of all sets Xi with the same closure

Y = Xi.ϕ constitute a Boolean lattice with Y.γ ⊆ Xi ⊆ Y [6, 25, 30]. In particular, if
Xi, . . . Xk generate Y then Xi ∩ . . . ∩Xk also generates Y by Proposition 1.1.
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Closure systems are common in discrete applications, one encounters them in many
guises. Three important types of closure operators are 1) convex hull operators, 2) poset
closures, and 3) Galois closure of relations.

1.4 Convex Geometries

By a convex geometry we envision a collection of discrete points in an n-dimensional Eu-
clidean space. For the illustrative purposes of this paper, we used a 2-space. The closure
operator is the convex hull operator. A much more complete treatment can be found in
[11, 12, 16]. There the closed sets are called alignments and their generators are called
extreme points. The term “extreme points” is frequently use as a synonym for “generating
set” in the literature.

A convex hull closure operator provides the quintessential example of antimatroid clo-
sure. Consider Figure 1. The point q is in the convex hull of Y ∪{p}, consequently p cannot

Y pq

Figure 1: Illustration of antimatroid closure

possibly be in the convex hull of Y ∪ {q}.
A closed convex hull is generated by elements of its boundary. The minimal generating

set is precisely the vertices of the boundary, or its extreme points. Since, in a discrete
geometry, these must be unique, convex hull closure is antimatroid. (Some authors treat
any antimatroid closure space as a “convex geometry”.) The efficiency of the Simplex
method for solving linear inequalities [8] is based on this principle.

1.5 Posets as Closure Systems

Suppose U is a poset (P,≤) such as Figure 2, where a < c < e, etc. Or, equivalently, we
may think of Figure 2 as an acyclic graph G = (P,E). Two familiar closure operators on

a

b

c e

f

d

Figure 2: A 6 point poset
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P are
Y.ϕ↓ = { x | ∃y ∈ Y, x ≤ y } and

Y.ϕ↑ = { z | ∃y ∈ Y, y ≤ z }.
“Downset closure”, ϕ↓, on Figure 2 yields precisely the closure system CU introduced in

Section 1.3 as (2).3 Y.ϕ↓ is sometimes called an ideal, and Y.ϕ↑ a filter.
A potentially more interesting closure operator on posets is the convex, or interval,

closure operator, denoted by ϕC and defined by Y.ϕC = { x | ∃y1, y2 ∈ Y, y1 ≤ x ≤ y2}.
Some authors call these closed sets, which play a role in quantum theory, “causal sets”
[5, 36, 40]. Because, for all Y ⊆ U, Y.ϕC ⊆ Y.ϕ↓ we sometimes call ϕC a finer closure
operator. It is easy to show that ϕC = ϕ↓ ∩ ϕ↑. We call ϕ↓, ϕ↑, and ϕC collectively path

closures. All of the path closures ϕ↓, ϕ↑ and ϕC are antimatroid closures, and ϕ↓ and ϕ↑
are, in addition, topological closures.

It is common to partially order the closed sets of any closure operator ϕ with respect to
inclusion, thus creating a lattice Lϕ. If ϕ is antimatroid, Lϕ is lower semi-modular [23] or
meet distributive [11]. We can also partially order all the subsets of U with respect to the
closure ϕ, by

X ⊑ Z if and only if Z ∩X.ϕ ⊆ X ⊆ Z.ϕ (3)

for all X,Z ⊆ U. It is not hard to show that ⊑ really is an ordering; only transitivity
takes a bit of thought [30]. The following proposition can be found in [25, 30].

Proposition 1.4 Let (U, ϕ) be an antimatroid and Y,Z ⊆ U subsets, Z closed. Then Z

covers Y with respect to ⊑ if and only if Y = Z−p for some p ∈ Z.γ.

By Proposition 1.4, deletion of any generating (extreme) point, say f , from Z = abcdef

in Figure 2 must create a new closed set Y = abcde. In [19], this repeated deletion of
generating/extreme points is called “shelling” where they used it to define antimatroid
behavior.

1.5.1 Neighborhood Closure

Social relationships are often represented by undirected graphs, (U,A), such as Figure 3,
where A is a reflexive, symmetric adjacency relation. Here, the neighborhood operator,
η is defined by, Y.η = {x|(x, y) ∈ A, y ∈ Y }. By the neighborhood closure operator,
ϕη , we mean

Y.ϕη = {z|z.η ⊆ Y.η} (4)

3If we draw partial orders from left to right, as in Figure 2, perhaps this should be called a “left set”
ordering!
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k

Figure 3: An undirected graph.

Readily, for all Y , Y ⊆ Y.ϕη ⊆ Y.η, and U.ϕη = U. In Figure 3, the set Y = cgi

generates the entire closed system (U, ϕη). It is not difficult to show that ϕη really is a
closure operator [33]. This neighborhood closure operator can be iterated to approximate
a discrete convex hull, as in [37], where it was used to “clean” discrete binary data; and it
can be used to reduce a network to its fundamental, non-chordal cycles [32].

Neighborhood closure need not be antimatroid.

1.5.2 Galois Closure

Galois closure has a long history [13, 26]; but has now entered the main stream of applied
mathematics with [9, 43]. Of particular interest to the social sciences has been the devel-
opment of formal concept analysis as introduced by Wille [14, 44]. “Concepts” constitute
natural clusters of individuals and their attributes. Partially ordered by containment, these
closed concept clusters form a “concept lattice” which has been used in a variety of appli-
cations ranging from data mining [28, 42] to analyzing legacy codes [21] to extracting rules
for AI systems [31].

Galois closure need not be antimatroid.

1.5.3 Koshevoy Closure

Gleb Koshevoy [20] established a fundamental duality between choice and closure operators.
The generators γ (extreme points) of an antimatroid closure ϕ constitute a path independent
choice function σ on U, and conversely. More precisely he showed that

Proposition 1.5 If ϕ is an antimatroid closure operator, then for all X,Y ⊆ U,
(X ∪ Y ).γ = (X.γ ∪ Y.γ).γ.

(Recall that for all Y , Y.γ = Y.ϕ.γ.) By Proposition 1.1, every closure operator ϕ must
itself be path independent, but the generating operator γ will have this property only if ϕ
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is antimatroid.
To establish this relationship Koshevoy created the operator κα which is now called the

Koshevoy operator. Specifically, given any operator α on U then

Y.κα =
⋃

{X ⊆ U,X.α = Y.α} (5)

Readily κα is a kind of inverse operator, similar to what we will consider in Section 2.2,
and if the operator α is path independent then the union on the right side of (5) is well
behaved and Y.κα.α = Y.α. Because κα is expansive, we have from [25] that

Proposition 1.6 κα is a closure operator, that is monotone and idempotent, if and only
if α is path independent.

Consequently, in light of Proposition 1.1, κα is path independent if and only if α is path
independent. More importantly, we have [6, 20]

Proposition 1.7 σ is a path independent choice operator if and only if for all Y Y.σ = Y.γ

where γ is the generating operator of an antimatroid closure.

In summary, provided U is finite or finitely generated, all closure operators ϕ are path
independent (Prop. 1.1); ϕ is antimatroid if and only if γ is path independent (Prop. 1.7);
or equivalently γ is a single valued operator (Prop. 1.3).

If S = (U, α) is any system in which α is path independent, we may use the Koshevoy
operator κα to induce a closure structure on S. Associative binary operators are path
independent. Since we will define transformations in the next section in terms of closure,
the Koshevoy operator extends the relevance of that development to many more discrete
systems.

The duality between antimatroid closure and path independent choice operators, ex-
pressed in Proposition 1.7, has been well explored [6, 20, 25]. If the choice operator has the
additional properties of “concordance” (X.σ ∩ Y.σ ⊆ (X ∪ Y ).σ) and “heritage” (X ⊆ Y

implies Y.σ ∩ X ⊆ X.σ) it is said to be “rationalizable” [2, 24].4 A rationalizable choice
operator Y.σ can be represented as the maximal elements of Y in a partial order. That is,
the dual can be the generators of a path closure such as ϕ↓ on Figure 2.

With an abundance of closure operators5 whether the duals of choice operators, whether
induced by the Koshevoy operator, or simply defined in their own right, it seems natural to
let the closed sets of discrete spaces assume much the same role as open sets in continuous
domains. In the next section we define continuous and closed transformations of discrete
spaces with respect to the behavior of the closed sets.

4Choice operators may also have the “outcast” property (X ⊆ Y, Y.σ ⊆ X implies X.σ = Y.σ). “Concor-
dance”, “heritage” and “outcast” are independent properties [2, 24].

5On a set U of n > 10 elements, there are many more than nn distinct antimatroid closure systems.
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2 Transformations on Discrete Systems

A transformation f of a closure system C into another C′ is a function taking the power set

of U into that of U′. To simplify notation, we denote these functions by U
f

−→ U′ instead

of the more correct 2U f
−→ 2U′

and we call these functions “transformations” to emphasize
their “set valued” nature. If U′ = U then the transformation f is usually called an operator,
α. Closure, ϕ, and choice, σ, can thus be regarded as transformations. To emphasize the
distinction, we use the greek alphabet to denote operators and the latin alphabet to denote
transformations. A focus of this paper is the behavior of operators under transformations.

A transformation U
f

−→ U′ is said to be monotone if ∀X,Y ⊆ U, X ⊆ Y implies
X.f ⊆ Y.f .6

It is evident that the identity transformation is monotone and that the composition of
monotone transformations is monotone.

2.1 Continuous and Closed Transformations

A transformation f simply maps subsets of U into subsets of U′. We ask “what happens
to the closure properties of U under f”. To emphasize this, we will usually denote a

transformation by (U, ϕ)
f

−→ (U′, ϕ′). The question we address in this section is “can we
characterize those transformations which preserve the closure structure?”, that is for which
Y.ϕ.f = Y.fϕ′.

The most commonly accepted definition of “continuity” in discrete closure spaces is that

a transformation (U, ϕ)
f

−→ (U′, ϕ′) is continuous if ∀Y ⊆ U, Y.ϕ.f ⊆ Y.f.ϕ′ [27, 43].

We will say a transformation (U, ϕ)
f

−→ (U′, ϕ′) is closed if f takes closed sets in (U, ϕ)
onto closed sets in (U′, ϕ′).

Clearly, the identity transformation of a closure system is continuous and closed.
The transformation properties of monotonicity, continuity and closedness are indepen-

dent, as shown by the following Figure 4. Here U = {a, b}, U′ = {x, y, z}, Cϕ = {ab},
Cϕ′ = {xy, xyz}. In the first three cases each fi satisfies one property, but not the other
two. The f4 transformation is monotone and closed (as can be easily verified), but it is not
continuous.

It is obvious that the composition of closed transformations is a closed transformation.
On the other hand, the same is not true for continuous transformations as the following
example shows:

Let (U, ϕ)
f

−→ (U′, ϕ′), (U′, ϕ′)
g

−→ (U′′, ϕ′′) be the transformations where U = {a, b},
CU = {Ø, ab}; U′ = {x, y, z}, CU′ = {Ø, y, z, yz, xyz}; and U′′ = {p, q}, CU′′ = {Ø, p, pq}.

6Since operators are transformations, this is identical to the definition of monotonicity in Section 1.1.
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Y ∈ U Y.f1 Y.f2 Y.f3 Y.f4

Ø Ø Ø Ø Ø
a xy y xy x

b xyz y xyz y

ab x yz xy xyz

Cont ¬Cont ¬Cont ¬Cont
¬Mono Mono ¬Mono Mono

¬Clos ¬Clos Clos Clos

Figure 4: Four transformations, U
fk−→ U′

We define f by Ø.f = Ø, {a}.f = {x}, {b}.f = U.f = {x, y} and g by Ø.g = Ø, {x.y}.g =
U′′ and A.g = {p} whenever A ⊆ U′ is a subset with Ø 6= A 6= {x, y}. Then both f and g
are continuous but f · g is not because {a}.ϕ.(f · g) = U′′ while {a}.(f · g).ϕ′′ = {p}.

But we have

Proposition 2.1 Let (U, ϕ)
f

−→ (U′, ϕ′), (U′, ϕ′)
g

−→ (U′′, ϕ′′) be transformations and let

g be monotone. If both f and g are continuous, then so is U
f · g
−→ U′′.

Proof: We haveX.ϕ.f ⊆ X.f.ϕ′ for anyX ∈ U and Y.ϕ′.g ⊆ Y.g.ϕ′′ for any Y ∈ U′. Consequently,

as g is monotone, X.ϕ.f.g ⊆ X.f.ϕ′.g ⊆ X.f.g.ϕ′′. This means that f · g is continuous. 2

As illustrated by Proposition 2.1, monotonicity is often required for a transformation, or
operator, to be well behaved. In the remainder of this paper we will consider only monotone
transformations.

Proposition 2.2 A monotone transformation (U, ϕ)
f

−→ (U′, ϕ′) is closed if and only if
∀X ⊆ U, X.f.ϕ′ ⊆ X.ϕ.f .

Proof: Let f be closed. By monotonicity, X ⊆ X.ϕ implies X.f ⊆ X.ϕ.f . But, because X.ϕ is

closed and f is closed, X.f.ϕ′ ⊆ X.ϕ.f

Conversely, let all subsets X ⊆ U fulfill X.f.ϕ′ ⊆ X.ϕ.f and let X be a closed subset of (U, ϕ).

Then X.f.ϕ′ ⊆ X.f . But, readily X.f ⊆ X.f.ϕ′, so equality holds. 2

Theorem 2.3 A monotone transformation (U, ϕ)
f

−→ (U′, ϕ′) is closed and continuous if
and only if, for all X ⊆ U, X.ϕ.f = X.f.ϕ′.

Proof: Proposition 2.2 and the definition of continuity 2

Theorem 2.3 provides necessary and sufficient conditions on a monotone transformation
f to ensure that f commutes with the closure operator ϕ as in Figure 5.
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U

(U, ϕ)

U′

(U′, ϕ′)

-

-

? ?

ϕ ϕ′

f

f

Figure 5: f regarded as a closure system transformation

2.2 Transformation Inverse Properties

An important property of “continuity” is that the inverse image of closed sets ought to be
closed. Unfortunately, this is not a property of continuity by itself. Consider f1 in Figure 4
which is continuous. The set {xy} is closed in U′, but {xy}.f−1

1 = {a} which is not closed.
However, for monotone continuous transformations we have

Proposition 2.4 Let (P,ϕ)
f

−→ (P ′, ϕ′) be monotone, continuous and let Y ′ = Y.f be
closed. Then Y.ϕ.f = Y ′.

Proof: Let Y.f be closed in P ′. Because f is continuous Y.ϕ.f ⊆ Y.f.ϕ′ = Y.f , since Y.f is closed.

By monotonicity, Y.f ⊆ Y.ϕ.f , so Y.ϕ.f = Y.f . 2

The proposition does not assert that for any closed set Y ′ ⊆ U′ that Y ′.f−1 will exist,
even if U.f = U′, but if the pre-image of a closed set does exist, it must also be, in a sense,
closed since Y.ϕ.f = Y.f .

A common way of defining a transformation (U, E)
f

−→ (U′, E′) is to first define {y}.f
for all singleton sets in U, i.e. as a function on U, and then extend this to all Y ⊆ U by
Y.f+ =

⋃
y∈Y {y}.f .7 We call f+ an extended transformation, provided U.f+ = U′.

Any extended transformation is by construction, monotonic.

Proposition 2.5 If (U, E)
f+

−→ (U′, E′) is an extended transformation, then for all y′ ∈
Y ′ = Y.f+ there exists y ∈ Y such that y′ ∈ {y}.f+.

Proof: Let y′ ∈ Y ′. By the extended construction Y ′ =
⋃

y∈Y {y}.f , hence y′ ∈ {y}.f+ for some

y ∈ Y . 2

Note that this is quite different from asserting a true inverse existence, that for all y′ ∈ Y ′,
there exists some y ∈ Y such that y.f = y′. To get some sense of the import of this “weak
inverse existence” proposition, consider the simple transformation f of Figure 6. If we define

7f+ is sometimes said to be “lifted” from f [38].
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x y
x’ y’

z’
f

Figure 6: A simple transformation f with multiple definitions.

f on U by x.f = x′ and y.f = y′, then by extension {xy}.f+ = x′y′ and z′ has no pre-image;
so U.f 6= U′. However, if we let x.f = {x′z′}, y.f = {y′z′} then {xy}.f+ = x′y′z′. Now
U.f = U′, so f+ is an extended transformation, and Proposition 2.5 is clearly satisfied. We
now have z′ ∈ x.f as well as z′ ∈ y.f , but z′.f−1 6= {xy}.

2.3 Homomorphisms of Posets

Recall that f : P → P ′ is a homomorphism of the poset P into P ′ if x ≤ y in P implies
f(x) ≤ f(y) in P ′.8 Since an anti-chain can be the pre-image of any ordered set under a
homomorphism, it would be an exaggeration to call them “structure preserving”. Often one
wants the structure of the domain to have some resemblance to its image. For this reason
some authors prefer “strong homomorphisms” where a homomorphism is called strong if in
addition x′ ≤ y′ in P ′ implies ∃x, y ∈ P such that f(x) = x′, f(y) = y′ and x ≤ y.

Proposition 2.6 A function f : (P,≤) → (P ′,≤′) is a homomorphism if and only if the

extended transformation (P,ϕ)
f+

−→ (P ′, ϕ′) is continuous with respect to a path closure.

Proof: Let f be a homomorphism and let Y ⊆ P . Let x′ ∈ Y.ϕ↓.f
+. Then ∃x, y,∈ Y.ϕ↓

where x ≤ y and x′ = f(x). Consequently, f(x) ≤ f(y). Therefore, x′ = f(x) ∈ Y.f+.ϕ↓. So

Y.ϕ↓.f
+ ⊆ Y.f+.ϕ↓.

Conversely, assume that f+ is continuous and x ≤ y. Then x ∈ y.ϕ↓ and x.ϕ↓ ⊆ y.ϕ↓. {x}.f ⊆

{x}.ϕ↓.f
+ ⊆ {y}.ϕ↓.f+ ⊆ {y}.f+.ϕ↓. Thus f(x) ≤ f(y).

The proof when the closure is ϕC or ϕ↑ is similar. 2

In an early application of this principle [29] it was shown that if f : G → G′ was any
poset homomorphism, then G′ would be acyclic if and only if the inverse image of every
point in G′ was a convex (in the sense of ϕC of Section 1.5) set in G.

Poset homomorphisms need not be closed. In Figure 7, {a, b, d} is closed (assuming ϕ↓
closure), but {a′, b′, d′} is not. Even strong homomorphisms need not be closed, as shown
by Figure 8, because {b2} is closed but {b2}.g = {b′} is not. However, we can show

8Note that we use the traditional prefix notation f : U → U
′ for point functions on U, and U

f+

−→ U
′

for extended transformations between the power sets.
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Figure 7: A homomorphism f that is not closed.

a’ b’ c’
b

1

g
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2

Figure 8: A strong homomorphism g that is not closed.

Proposition 2.7 Let g : (P,≤) → (P ′,≤) be a surjective homomorphism. If (P,ϕ)
g+

−→
(P,ϕ′) is closed with respect to a path closure, then g is a strong homomorphism.

Proof: Let g+ be closed, let x′ ≤ y′ in P ′ and let {y′}.g−1 = Y . Then Y.g+ = {y′}, so

x′ ∈ Y.g+.ϕ↓ ⊆ Y.ϕ↓.g
+ implying there exists yk ∈ Y and xi ∈ Y.ϕ↓ such that xi ≤ yk where

xi.g = x′ and by definition of Y , yk.g = y′. So g+ is strong. 2

Combining Prop. 2.6 with Prop. 2.7 we readily have that if g+ is closed, then g is a
homomorphism so g+ must also be continuous. But, only in this special case where we
have extended transformations over poset closures need this be true. It is not a general
implication.

2.4 Intersection of Transformations

Given a family fi, i ∈ I, of numeric functions (with the same domain and range), one
can define the operators

∑
i∈I fi of sum and

∏
i∈I fi of product of this family in a pointwise

fashion; that is
∑

i∈I fi and
∏

i∈I fi are defined ∀x to be the sum
∑

i∈I fi(x) and the product∏
i∈I fi(x), respectively. Since domains of our transformations are power sets, we may define

the intersection,
⋂

i∈I fi, or meet, of a family U
fi−→ U′, i ∈ I, of transformations in a “set-

wise” fashion, i.e., as Y.
⋂

i∈I fi =
⋂

i∈I Y.fi for each Y ⊆ U. Earlier we had observed that
ϕC = ϕ↓ ∩ ϕ↑.

Proposition 2.8 If (U, ϕ)
fi−→ (U′, ϕ′), i ∈ I is a family of monotone transformations,

then
⋂

i∈I fi is monotone.

Proof: Let fi, i ∈ I, be monotone and let X,Y ⊆ U be a subsets. Then Y.
⋂

i∈I fi =
⋂

i∈I Y.fi ⊆⋂
i∈I Z.fi = Z.

⋂
i∈I fi). 2

14



Proposition 2.9 If (U, ϕ)
fi−→ (U′, ϕ′), i ∈ I is a family of closed transformations, then⋂

i∈I fi is closed.

Proof: Let fi, i ∈ I, be closed and let Y ⊆ U be a subset. Then Y.ϕ.
⋂

i∈I fi =
⋂

i∈I Y.ϕ.fi ⊇⋂
i∈I Y.fi.ϕ

′ ⊇ (
⋂

i∈I Y.fi).ϕ
′ = Y.(

⋂
i∈I fi).ϕ

′. 2

However, continuity is not closed under (i.e., preserved by) intersections as the following
example shows:

Let U = {a, b} and U′ = {x, y, z}. Let {a}.ϕ = U and {b}.ϕ = {b}. Let, {x}.ϕ′ =
{x, z}, {y}.ϕ′ = {y, z}, {x, y}.ϕ′ = U and X.ϕ = X for all the other subsets X ⊆ U. Let

(U, ϕ)
f,g
−→ (U′, ϕ′) be the transformations given by {a}.f = {x}, {b}.f = {z}, Ø.f = Ø,

U.f = {x, z}, and {a}.g = {y}, {b}.g = {z}, Ø.g = Ø, U.g = {y, z}. Then both f and g

are continuous, {a}.ϕ.(f ∩ g) = {z} but {a}.(f ∩ g).ϕ′ = Ø. So, f ∩ g is not continuous.
Even requiring the transformations to be monotone and continuous does not help because
both f and g are monotone.

The transformations from U into U′ may be identified with the disjoint unions
∐

Y ⊆U Z
′
Y

=
⋃

Y ⊆U ({Y }×Z ′
Y ) where Z ′

Y ⊆ U′ for all Y ⊆ U. Namely, every such a disjoint union gives

the transformation U
f

−→ U′ with Y.f = Z ′
Y for all Y ⊆ U and conversely. Given a pair

f, g of transformations from U into U′, we clearly have f ⊆ g if and only if Y.f ⊆ Y.g for
each subset Y ⊆ U. The smallest (with respect to the set inclusion) of all transformations

from U into U′ is the transformation U
O
−→U′ given by Y.O = Ø for each Y ⊆ U, i.e.,

O =
∐

Y ⊆U Y.f where Y.f = Ø for each Y ⊆ U. Thus, we have O = Ø. On the other hand,

the greatest of all transformations from U into U′ is the transformation U
I

−→ U′ given
by Y.I = U′ for each Y ⊆ U, i.e., I =

∐
Y ⊆U Y.f where Y.f = U′ for each Y ⊆ U. Of

course, both O and I are monotone transformations. Note that the points of I coincide

with the transformations U
f

−→ U′ for which there exists a subset Y0 ⊆ U such that Y0.f

is a singleton and Y.f = Ø for all Y ⊆ U , Y 6= Y0. Obviously, each transformation from U

to U′ may be obtained as the disjoint union of some of these “atomic” transformations.
Given a pair C∞, C∈ of closure systems, we denote by [C1, C2] the set of all closed

transformations from C1 into C2. Clearly, the transformation I (from C1 into C2) belongs
to [C1, C2]. Now, Proposition 2.9 results in

Proposition 2.10 Let C1, C2 be closure systems. Then [C1, C2] is a closure system on the

universe C∞
I

−→ C∈.

Transformations of discrete closure systems have so many intriguing properties that it
is natural to ask about their categorical properties. This we do in the next section.
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3 Categories of Closure Systems with Transformations as

Morphisms

For the categorical terminology used see [1] and [34].
The category of grounded closure systems and continuous (point) functions has been

studied by many authors, see e.g. [7] and [10]. Since this category is not cartesian closed, in
[7] the authors construct its cartesian closed extension by adding new objects and morphisms
between them. In our approach, instead of point functions, transformations are used as
morphisms between closure systems. As described in Section 2, all point functions can be
simply lifted to become transformations, so that transformations can be considered to be
extensions of point functions. Using this kind of extension, we will find a cartesian closed
category whose objects are just the closure systems.

All categories considered in this section will have all closure systems as the class of
objects and certain transformations as morphisms. Thus, these categories may be given by
just specifying the transformations that are their morphisms. By results of Section 2, all
monotone continuous transformations constitute a category - we denote it by MCont - and
also all monotone closed transformations constitute a category - we denote it by MClo.
Clearly, both MCont and MClo are concrete categories over Set with the underlying
functor F given by F (U, ϕ) = 2U for objects and Ff = f for morphisms. The closure
system C0 with the empty universe is the unique terminal object in both MCont and
MClo because the transformation f defined by X.f = Ø,∀X ∈ C is a unique monotone,
continuous and closed transformation from C into C0. Observe that in the category Set,
the empty set is the initial object and singletons are terminal objects [34]. The difference
is that, in the category of closure systems, morphisms act on power sets of universes and
not on the universes themselves.

Let Ci, i ∈ I (I a set), be a family of closure systems on the base sets Ui. We let the
disjoint union

∐
i∈I Ui be the base set of the direct product

∏
i∈I Ci whose closed sets are

defined to be just the sets of the form
∐

i∈I Xi where Xi ∈ Ci are closed sets for each i ∈ I.
Thus, if

∏
i∈I Ci = (

∐
i∈I Ui, ϕ) and Ci = (Ui, ϕi), we have ϕi = ϕ|Ui

(for each i ∈ I). If
I = {i1, i2}, we write Xi1 ⊎Xi2 and Ci1 × Ci2 instead of

∐
i∈I Xi and

∏
i∈I Ci, respectively.

Proposition 3.1 The direct product is a concrete product in both MCont and MClo.

Proof: Let Ci, i ∈ I, be a family of closure systems. Of course, if I = Ø, then
∏

i∈I Ci is the
terminal object. So, we may suppose that I 6= Ø. First, we will show that

∏
i∈I Ci is a closure

system. Let Zj, j ∈ J , be closed sets in
∏

i∈I Ci. Then, for each j ∈ J , Zj =
∐

i∈I X
(j)
i for some

X
(j)
i ∈ Ui, i ∈ I. We have

⋂
j∈J Zj =

⋂
j∈j

∐
i∈I X

(j)
i =

∐
i∈I

⋂
j∈J X

(j)
i , hence

⋂
j∈J Zj is closed

in
∏

i∈I Ci. We can now define projection morphisms
∏

i∈I Ci
πi−→ Ci, i ∈ I, by Z.πi = Z ∩ Ui.

Clearly, πi is a monotone transformation for each i ∈ I. But πi is also continuous for each i ∈ I

because, given a subset Z ⊆
∐

i∈I Ui, we have Z.ϕ.πi = Z.ϕ ∩ Ui = Z.πi.ϕi.
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Now, let C = (U, ψ) be a closure system and let C
fi

−→ Ci, i ∈ I, be morphism in MCont. Let

C
h

−→
∏

i∈I Ci be the transformation given by ∀Z ∈ C : Z.h =
∐

i∈I Z.fi ∈
∏

i∈I Ci. Clearly,
fi = h · πi for each i ∈ I and h is a unique transformation having this property. It is obvious
that h is monotone (because fi, i ∈ I, are monotone). For every subset Z ⊆ C we have Z.ψ.h =∐

i∈I Z.ψ.fi ⊆
∐

i∈I Z.fiϕi ⊆ (
∐

i∈I Z.fi).ϕi = Z.h.ϕi. Therefore, h is continuous. We have shown
that

∏
i∈I Ci is a product in MCont.

Obviously, given a family Ci, i ∈ I of closure systems, the projections
∏

i∈I Ci
πi−→ Ci are closed for

all i ∈ I. Further, let C = (U, ψ) be a closure system and C
fi

−→ Ci, i ∈ I, be closed morphisms. Let
Z ⊆ C be a closed subset. Then Z.h =

∐
i∈I Z.fi and, since fi (i ∈ I) are closed, Z.fi (i ∈ I) are

closed too. Consequently, Z.h is closed. Thus, with respect to the above considerations,
∏

i∈I Ci is
a product in MClo.

It is clear that
∏

i∈I Ci is a concrete product in each of the categories MCont and MClo because

F(
∏

i∈I Ci) = 2
∐

i∈I
Ci ∼=

∏
i∈I 2Ci =

∏
i∈I F (Ci). 2

Since the direct product
∏

i∈I Ci in MCont and MClo is a concrete product over Set, it is
clear now why its universe is a coproduct of the universes of the individual closure systems
Ci, i ∈ I.

Of course, it immediately follows from Proposition 3.1 that
∏

i∈I Ci is a concrete product
also in MCont ∩ MClo, i.e., in the category of closure systems with monotone continu-
ous and closed transformations as morphisms (see Theorem 2.3). While this category is a
subcategory of MClo, there is a supercategory Clo of MClo obtained by omitting the re-
quirement of monotonicity of the morphisms. Thus, Clo has just the closed transformations
as morphisms. It is clear from the proof of Proposition 3.1 that the direct product

∏
i∈I Ci

is a concrete product also in Clo. The category Clo is especially interesting because we
will show now that it is a so-called cartesian closed category.

Recall that a category C is cartesian closed [18, 34] if it has finite products and for any
two objects A,B ∈ C there exists an object BA in C and a morphism BA ×A

ev
−→ B with

the property that for each C × A
f

−→ B there exists a unique morphism C
g

−→ BA such
that (g × ida) · ev = f , i.e., such that the diagram on Fig. 12 commutes. The morphism
ev is then said to be the evaluation morphism and the object BA is called the exponential
object.

Thus, in addition to finite multiplication, cartesian closed categories have also the opera-
tion of exponentiation on objects and these two operations are well behaved, i.e., they fulfill
analogies of the usual laws which are valid for multiplication and exponentiation of natural
numbers (the most important of them is the so-called first exponential law (AB)C ∼= AB×C).
Because of the existence of this natural arithmetic, cartesian closed categories have many
applications in different branches of mathematics and informatics. For example, cartesian
closed categories play an especially important role in logic because it is well known that
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Figure 9: Exponential diagram.

they form models of the so-called typed lambda-calculus, which is an important formal
programming language.

Theorem 3.2 The category Clo is cartesian closed with exponential objects given by CC1

2 =
[C1, C2] for all closure systems C1, C2.

Proof: We have seen that Clo has (not only) finite products given by direct products. Let C1, C2 be

closure systems and let [C1, C2]×C1
ev
−→ C2 be the transformation given by (h⊎Y ).ev = Y.h whenever

h ⊆ |[C1, C2]| (i.e., C1
h

−→ C2 is a transformation) and Y ⊆ C2. If h is a closed transformation and

Y is a closed subset, then Y.h is closed too, which means that ev is a closed transformation. Let

D be a closure system and D × C∞
{

−→ C∈ be a closed transformation. Let D
}

−→ [C∞, C∈]

be the transformation given by Y.(Z.g) = (Z ⊎ Y ).f for all Z ⊆ |D| and all Y ⊆ |C1|. Then

(Z ⊎ Y ).(g × idC1
).ev = (Z.g ⊎ Y ).ev = Y.(Z.g) = (Z ⊎ Y ).f . Thus, we have found a unique

transformation g for which the diagram from the definition of a cartesian closed category commutes.

To complete the proof, we are to show that g is closed. To this account, let Z ⊆ |D| be a closed subset.

Then, whenever Y ⊆ |C1| is a closed subset, also Y.(Z.g) ⊆ |C2| is closed because Y.(Z.g) = (Z⊎Y ).f

where f is closed. 2
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