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Abstract—There exist a variety of procedures for
identifying clusters in large networks. This paper fo-
cuses on finding the connections between such clusters.

We employ the concept of closed sets to reduce a
network down to its fundamental cycles. These cycles
begin to capture the global structure of the network by
eliminating a great deal of the fine detail. Nevertheless,
the reduced version is completely faithful to the
original. No connection in the reduced version exists
unless it was in the original network; connectivity is
preserved.

Reductions of as much as 80% can be observed in
real networks. Just reducing the size makes compre-
hension of the network much easier.

I. I NTRODUCTION

A network, or graph, is a setP of n points,
or nodes, or vertices, or individuals together with
an n × n relation A defining the associations, or
edges, between the points or individuals. Figure 1
is a representative example. Each non-zero entry,
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Fig. 1. An adjacency representation of a small 23 node network.

such as(1, 8) ∈ A, denotes an edge, or connection,
between the node, or point, 1 and the node 8. For
the purposes of this paper we will assume thatA
is symmetric, or equivalently, that the network is
undirected.

Networks play an important role in the study
of many phenomena. Social networks describe the
interactions between individuals [2], [3], [21]; the
internet is a familiar feature of our every day
computer life [11], [13]; genetic expression can be
modeled as proteins in a regulatory network [4], [9].
In these examples, and others, the structure of these

networks plays a vital role. But what is a network’s
“structure”?

Frequently, some of the nodes form “clusters”, or
“communities”, with many intra-cluster connections.
The identification of such clusters has been the
focus of considerable research; there is an immense
amount of literature in disparate fields, of which [1],
[5], [15], [17], [18] is but a small fraction. The focus
of our research, however, is the identification of
those nodes, or connections, that “go between” dif-
ferent clusters. They are often harder to discover. In
the drug trade, a “mule” is a go-between that brings
drugs from a cluster of producers to a community of
users. Hence the term “mule” in our title. In real life,
mules are equally hard to discover. To find mules we
must understand the network structure.

Possibly the most effective approach to under-
standing the overall structure of a network, when
it works, is to graphically represent it [6]. Many
times this allows a visual comprehension of its
essential features. Figure 2 is one such represen-
tation of Figure 1. Readily, this particular rendition
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Fig. 2. A graphic representation of Figure 1.

yields little insight! One can improve the picture
considerably by iteratively moving nodes and their
connections, so as to shorten the connecting edges
and thus cluster related nodes. We’ll see such a
reorganized drawing later as Figure 8 in Section III.
Unfortunately however, most interesting networks
are “large”, far too large to effectively organize
in such an iterative fashion without some prior
understanding of the underlying structure.

A common approach is to try to spatially cluster
those highly interconnected nodes and separate them



in the image. Then one should be able to spot
the connecting edges and outlier points. But, as
suggested by much of the literature cited above,
clustering is not an automatic process. For exam-
ple, many techniques must first input the estimated
number of clusters to function effectively.

The approach described in this paper involves
reducing the network to its “fundamental cycles”.
These are cycles of length greater than 3 with no
cross connections. The reduction process and the
nature of fundamental cycles is explored in Section
III. The network shown in figures 1 and 2 will be
used as a running example in this section. But, it is
far to small to be considered realistic. In Section IV
we explore this reduction process as it is applied to
larger, real life networks. In Section V, we examine
some of the underlying mathematics.

II. N EIGHBORHOODCLOSURE

A collection of setsC = {Yi} is aclosure system
on a setP provided (a)P ∈ C, and (b)Yi ∩ Yk ∈
C for all i, k. We use the neighborhood concept to
establish a closure system on a network, or graph,
N = (P,A). Non-zero entries(x, z) in A denote
some form of connection betweenx and z. They
constitute edges in a graphical representation ofN

such as figures 2 or 3.
Let Y ⊆ P , the neighborhood of Y , denoted

Y.η, is Y.η = {z ∈ P−Y | (yi, z) ∈ A for some
yi ∈ Y }. That is,Y.η consists of all points not inY
that are connected to at least one element ofY . By
the region dominated byY , denotedY.ρ, we mean
Y.ρ = Y ∪ Y.η, or Y together with its surrounding
neighborhood. Finally, we define theclosure of Y ,
denotedY.ϕη, by Y.ϕη = {z ∈ Y.η | z.η ⊆ Y.ρ},
that is, those neighborsz whose own neighborhood
is completely dominated byY . A setY is closedif
Y.ϕη = Y . The collection of sets{Yi.ϕη}, Yi ⊆ P

constitute a closure system. Readily,P.ϕη = P and
it is not hard to show thatYi.ϕη ∩ Yk.ϕη is closed.

In Figure 3,{a}.η = {b, c, d}. In our work, all
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Fig. 3. An undirected graph or network.

the elements are sets; thus we regard the “point”a

to be a singleton set{a}. But, repeated use of the
delimiters{, } becomes tedious, so we will normally
elide them and writea.η = bcd, unless we want to
specifically emphasize the set nature.

The region dominated byd, or d.ρ, is abcefh.
Readily h.η ⊆ d.ρ, so h ∈ d.ϕη. Similarly, a.η ⊆
c.ρ, soa ∈ c.ϕη. In the network of Figure 3,c.ϕη =
ac, d.ϕη = dh, and x.ϕη = x for all x 6= c or
d. Consequently, we see that the individual points
of a network may, or may not, be closed. If every
singleton set (i.e. point) is closed, the network is
said to beirreducible .

There is a much more detailed treatment of neigh-
borhood closure in [20] where it is used to define
continuous network change. But, we will not need
it here. Instead we focus solely on those nodesz

for which there exist a singleton nodey such that
z ∈ {y}.ϕη. We sayz is subsumedby y.

III. N ETWORK REDUCTION

In classical mathematics, open sets are used to
establish the topology of continuous manifolds. We
find closed sets are more valuable tools for under-
standing discrete structures like a network.

If y subsumesz in N , then any closed set
structure involvingz must equally includey, so
z contributes little to our understanding ofN . We
can deletez and all incident edges with almost no
loss of information. If the subsumed pointsa, h and
incident edges are removed from Figure 3 we obtain
Figure 4. The deleted nodes and edges are indicated
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Fig. 4. Figure 3, less its subsumed points.

by dashed lines. Each of the remaining nodes,e.g.

{b}, is a closed set.
We have automated this rather simple process

of removing subsumed points from a network. The
core of the reduction process, which we will denote
by ω, is the following loop: it iteratively removes

for_each y in P
{
for_each z in y.nbhd

{
if (z.nbhd contained_in y.region

{ // z is subsumed by y
for_each x in z.nbhd

remove edge (x, z)
remove z from network
}

}
}

Fig. 5. Key loop in reduction process.



subsumed points and edges until all singleton sets
(i.e. nodes) are closed and the network is reduced.

Applied to the network of Figure 2, we obtain
the network of Figure 6 with only 11 nodes and 13
edges.
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Fig. 6. The reduced network of Figure 2.

A. Fundamental Cycles

The striking characteristic of the irreducible sub-
networks of figures 4 and 6 is that the remain-
ing nodes and connecting edges form cycles. The
two cycles of Figure 4 are< b, c, d, e, b > and
< c, d, f, g, c >. A cycle < y0, y1, . . . , yn = y0 >

of lengthn ≥ 4 is said to be afundamental cycle
if yi+1 ∈ yi.η, for 0 < i < n, and yk ∈ yi.η

implies k = i + 1. That is, there are no “cross
connections”. The two cycles of length 4 in Figure
4 are fundamental. A graph/network composed only
of fundamental cycles is in many ways the antithesis
of “triadic closure” in social theory [12], [16] and
“chordal graphs” in graph theory [10], [14]. The
latter are graphs with no chordless cycles of length
greater than 3.

The cyclic structure of Figure 6 is more evident
when redrawn as Figure 7. Here, the fundamental

6

2

9

16 15 4 20

18

23

10

12

[6]

[5]

[3]

[2]

Fig. 7. The fundamental cycles of Figure 6.

cycle < 16, 15, 4, 20, 10, 12, 23, 18, 16 > of length
8 is quite prominent. Longer fundamental cycles
convey more information about the global structure
of the network.

Our program keeps a count of the numbers of
nodes subsumed directly, or indirectly, by each node.
The numbers in angle brackets,< n >, indicate this.
The number,< 5 >, of subsumed nodes associated

with node 20, and< 4 > associated with node 18
suggest that there may be small clusters attached to
the cycle at these points. The count of subsumed
nodes,< 1 > and< 2 >, associated with nodes 6
and 9 are less convincing.

In Figure 8 we have reconstituted the original
network around the two fundamental cycles of Fig-
ure 7. It is similar to one found in [17]. This is

6

2

9

16 15 4 20

18

23

10

12

[6]

[5]

[3]

[2]

19

11

7

3

21

13

22

8

1

17 14

5

Fig. 8. Figure 2 reconstituted around its fundamental cycles.

accomplished by iteratively expanding each point on
a fundamental cycle. For example, nodes 13 and 21
were the two points subsumed by node 9. Node 6
subsumed 22.

In Figure 8 we have circled the small clusters
with dashed lines. In the program they are simply
denotes as sets of nodes. It is fairly obvious that 4
and 12 are the “mules” in this small network. The
cross connection between 16 and 18 may also be of
interest.

IV. N ETWORK REDUCTION IN REAL L IFE

A more striking example is the reduction of
the 379 node network of collaborating scientists
constructed by M.E.J. Newman [18]. The reader
is encouraged to view an annotated version at
www.umich.edu/ m̃ejn/centrality .

After 3 iterations identifying and removing sub-
sumed points, our program produced the graph of
Figure 9. There are 65 points in this reduced net-
work. This network is much more comprehensible,
both visually and algorithmically, than the original.
Values < n > denote the number of points sub-
sumed by each node.

Our graph reduction algorithm removes the pen-
dant chordal subgraphs that were present in the
original. Basically, only the key fundamental cycles
remain, together with those triangles all of whose
points lie on some chordless cycle of length≥ 4.
But the information loss is minimal. As seen above,
the subsumed portions can be regenerated if neces-
sary. Of more significance to us are those retained
nodes, and paths in Figure 9, which “connect” the
communities of intellectual activity.
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Fig. 9. The reduced version of Newman’s 379 node collaboration network.

In his book [8], Malcolm Gladwell talks of con-
nectors which are the central nodes of communities,
or clusters, comprised of many connections. What
we see in Figure 9 are those singular “connectors”
between clusters which are rarer, and harder to find
in A by more usual numerical methods. For exam-
ple, there is a connection/edge between the node
at the top, denoting a cluster of< 23 > individuals
with a node representing< 18 > persons. Similarly,
there is a path towards the lower left through nodes
labeled < 1 > and < 2 > to a community of
< 17 > individuals. These two nodes are likely
candidates to be mules.

Because of the arbitrary order in which nodes are
subsumed, which was exhibited to some extent in
the expansion of Figure 8, the values< n > should
not be taken too literally. For example, one could
argue that the nodes encircled with the dashed line
actually comprise a single community. But, the node
< 18 > would be a natural candidate for automatic
re-expansion, subject to whatever independent com-
munity criteria is appropriate for the application.

A. Process Performance

We have not had the opportunity to process
enough large networks to accurately measure the
performance of our reduction algorithm. But, it
appears to be essentially linear in the number,n,
of nodes of the network.

First, all operations are performed on sets, or col-
lections of sets. We use a C++ software package that
represents every set, or collection, as a simple bit
string. Individual points and edges are only involved
in conversion to/from singleton sets and neighbor-
hoods during input and output. Consequently, an
operation such as

if (z.nbhd contained_in y.region)

involves only the intersection (logical and) of two
bit strings followed by a test for equality. The code
does not loop over either set.

Next, we observe that the process of Figure 5
loops over alln nodes,y, of the network. And then
the inner loop runs over its neighborhood,y.η. If N

is a complete graph then|y.η| = n−1 and the order
of ω would appear to ben2 in this worst case. But,
since nodes are removed fromP within the loop,
all of the nodes ofY.η will be subsumed and the
outer loop will execute but once. It still appears to
be linear.

In practice, the size of neighborhoods is bounded,
say |y.η| ≤ k, and average neighborhood size is
quite a bit smaller. Consequently execution of the
reduction loop in Figure 5 is bounded byk · n.

However, the subsumption loop of Figure 5 may
have to be iterated. A pointz may not be subsumed
until after other points in its neighborhood,z.η,
have been subsumed and removed. This is dependent
on the order in which the pointsy of the outer
loop are accessed. We are convinced, but have no
example, that there exists a worst case ordering of
the points such that only one node is subsumed in
each iteration. Thus the worst case behavior could
be of ordern2.

However, in practice, no network reduction has
required more than 3 iterations, and each iteration is
over a setP of decreasing size. As indicated above,
we believe this process is effectively linear and thus
scalable.



V. M ATHEMATICAL DETAILS

Although network reduction is a process that
largely speaks for itself, its mathematical underpin-
nings can be of interest. We explore these details
here.

A graph, or subgraph, is said to bechordal
if it contains no cycles of length greater than 3
without a chord (edge) joining two of its points
[10], [14]. Any complete graph,Kn, is chordal.
Every tree is chordal. In fact, chordal graphs can be
regarded as tree-like structures of point connected,
or edge connected, complete graphsKn. A cycle
C =< y0, . . . yn = y0 > is chordless if no subset
of its points{yi, . . . yk}, 0 ≤ i, k ≤ n forms a cycle.
We will call a chordless cycle, such asC, an n-
cycle, wheren denotes both the number of points
and number of edges. Thus, a graph is chordal if it
contains non-cycles,n ≥ 4.

An n-cycle C is fundamental if for all yi ∈ C,
{yi} is closed. The key elements of Figure 8 are
its fundamental 4-cycle< 2, 6, 9, 16, 2 > and its
8-cycle < 16, 15, 4, 20, 10, 12, 23, 18, 16 >. These
fundamental cycles define the topology of the net-
work in much the same manner that 1-cycles can be
used to define the topological structure of manifolds
[7].

Proposition 5.1:Let G be a finite network and
let G′ = G.ω be a reduced version, thenG′ is
irreducible.

Proof: Suppose{y} is not closed. Then∃z ∈
y.ϕη implying z.ρ ⊆ y.ρ or thatz is subsumed byy
contradicting termination of the reduction code.

Proposition 5.2:Let G be a finite network with
G′ = G.ω an irreducible version. Ify ∈ G′ is not
an isolated point then either

(1) there exists a fundamentaln-cycle C, n ≥ 4
such thaty ∈ C, or

(2) there exist fundamentaln-cyclesC1, C2 each
of length≥ 4 with x ∈ C1 z ∈ C2 andy lies on a
path fromx to z.

Proof: Let y1 ∈ PG′ . Sincey1 is not isolated,
let y0 ∈ y1.η, so (y0, y1) ∈ A. With out loss
of generality, we may assumey0 ∈ C1 a cycle
of length ≥ 4. Since y1 is not subsumed byy0,
∃y2 ∈ y1.η, y2 6∈ y0.η, and sincey2 is not subsumed
by y1, ∃y3 ∈ y2.η, y3 6∈ y1.η. Since y2 6∈ y0.η,
y3 6= y0.
Supposey3 ∈ y0.η, then < y0, y1, y2, y3, y0 >

constitutes an-cycle n ≥ 4, and we are done.
Supposey3 6∈ y0.η. We repeat the same path exten-
sion. y3.η 6⊆ y2.η implies ∃y4 ∈ y3.η, y4 6∈ y2.η. If
y4 ∈ y0.η or y4 ∈ y1.η, we have the desired cycle.
If not ∃ y5, . . . and so forth. BecauseG is finite,
this path extension must terminate withyn ∈ yi.η,
where0 ≤ i ≤ n − 3. Let x = y0, z = yn.

The points of those chordal subgraphs still remain-
ing in Figure 8 such as the triangle< 9, 15, 16 >,
are all elements of other fundamental cycles as
predicted by Proposition 5.2.

Proposition 5.3:Let G′ = G.ω be an irreducible
version of a finite networkG. A path (possibly of
length 0) exists betweenw′ = w.ω andx′ = x.ω in
G′ if and only if there exists a path betweenw and
x in G.

Proof: First, let there be a path fromw to x in
G. If z is on some path betweenw and x, and z

has been subsumed byy in the reduction process,
then z.η ⊆ y.η implies there exists a path between
w andx throughy.
Now, assume there exists a path betweenw′ = w.ω

and x′ = x.ω in G′. Supposew′ = x′ thenw and
x have been subsumed by some single point, sayy.
Since subsumption, of sayw, requiresw ∈ y.η, and
similarly for x, y must lie on a path betweenw and
x in G.
Now, supposew′ 6= x′. The reduction process never
adds an edge, so the edges in the path betweenw′

andx′ in G′ are edges inG, and there exists a path
from w in the tree-like chordal graphs that mapped
ontow′ and similarly a path fromx in the tree that
mapped on tox′; thus a path betweenw and x in
G.

Corollary 5.4: If a finite networkG is connected
then its reduced networkG′ = G.ω is connected.

Note, however, that the reduced graphG′ may be
a single point. In particular, this will be the case
wheneverG is a tree, or a chordal graph.

If x andy can mutually subsume each other inP ,
thenx.η = y.η. But the converse need not be true as
illustrated by Figure 10. The graph (a) is irreducible,
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Fig. 10. Mutual subsumption illustrated by two graphs.

all singleton pointsz are closed. The graph (b) will
become irreducible with the deletion of eitherx or y.
In graph (b)x.ρ = y.ρ, the necessary and sufficient
condition for mutual subsumption.

Two graphs, or networks,G = (P,A) andG′ =
(P ′,A′) are said to beisomorphic, or G ∼= G′, if
there exists a bijection,i : P → P ′ such that for all
x, y ∈ p, (i(x), i(y)) ∈ A′ if and only if (x, y) ∈ A.
That is the mappingi precisely preserves the edge
structure, or equivalently its neighborhood structure,
that is i(y) ∈ i(x).η′ if and only if y ∈ x.η.



As indicated by Figure 10, the order in which
points, or more accurately the singleton subsets,
of G are encountered can alter which points are
subsumed and subsequently deleted. Nevertheless,
the reduced graphG.ω will be unique, upto isomor-
phism.

Proposition 5.5:Let G.ω andG.ω′ be irreducible
images of a finite networkG, thenG.ω ∼= G.ω′.

Proof: Let y0 ∈ G.ω, y0 6∈ G.ω′. Then y0 is
subsumed by some pointy1 in G.ω′ andy1 6∈ G.ω

else becausey0.ρ ⊆ y1.ρ implies y0 ∈ {y1}.ϕη so
G.ω would not be irreducible.
Similarly, sincey1 ∈ G.ω′ and y1 6∈ G.ω, there
exists y2 ∈ G.ω such thaty1 is subsumed byy2.
Now we have two possible cases; eithery2 = Y0,
or not.
Supposey2 = y0 (which is most often the case),
then y0.ρ ⊆ y1.ρ and y1.ρ ⊆ y0.ρ or y0.η = y1.η.
Hencei(y0) = y1 is part of the desired isometry,i.
Now supposey2 6= y0. There existsy3 6= y1 ∈ G.ω′

such thaty2.ρ ⊆ y3.ρ, and so forth. SinceG is finite
this construction must halt with someyn. The points
{y0, y1, y2, . . . yn} constitute a complete graphYn

with {yi}.ρ = Yn.ρ, for i ∈ [0, n]. In any reduction
all yi ∈ Yn reduce to a single point. All possibilities
lead to mutually isomorphic maps.

Proposition 5.6:Let G′ = G.ω be an irreducible
image of a finite networkG. For all Y ⊆ PG,
Y.ϕη.ω ⊆ Y.ω.ϕη

′.
Proof: Let z ∈ Y.ϕη. We must show that either

z ∈ Y or z ∈ Y.ω or z ∈ Y.ω.ϕη
′.

If z 6∈ Y , then∃y0 ∈ Y, z ∈ y0.η. If z 6∈ Y.ω, then
∃x ∈ z.η, x 6∈ y0.η so ∃y1 ∈ Y, x ∈ y1.η. Whether
y0, z, x, y1 are distinct inG.ω or not, by Prop. 5.3,
x ∈ Y.ω.η′ so z ∈ Y.ω.ϕη

′.
An operator, such asω, satisfying the containment

property of Proposition 5.6 is said to becontinuous
[19], [20]. Continuous operations on discrete spaces
have a number of interesting properties; but they
are not relevant to this paper. Nevertheless, that this
reduction process is a continuous transformation of
the networkN onto its irreducible versionN.ω is
quite satisfying.
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