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MATHEMATICAL EVOLUTION IN DISCRETE NETWORKS

JOHN L. PFALTZ

Abstract. This paper provides a mathematical explanation for the phenomenon of

“triadic closure” so often seen in social networks. It appears to be a natural con-
sequence when network change is constrained to be continuous. The concept of

chordless cycles in the network’s “irreducible spine” is used in the analysis of the

network’s dynamic behavior.
A surprising result is that as networks undergo random, but continuous, pertur-

bations they tend to become more structured and less chaotic.

1. Introduction

In this paper we explore the behavior of networks as they change under a sequence
of simple, “continuous” transformations. We will start with a random network and
apply a sequence of transformations which randomly adds edges (or connections)
to it and randomly deletes edges. Periodically we observe the resulting network.
The structure, or topology, of these show considerable similarity to that appearing
in social networks. The rather surprising conclusion will be that “random change,
provided it is continuous, leads to a less chaotic and more regular structure”. This
provides a purely mathematical basis for the presence of “triadic closure” in social
networks.

In Section 2, we formally establish criteria for edge, or link, addition and dele-
tion to be “continuous”. Then in Section 2.2, we apply these criteria to a concrete
application, the evolution of a random network. Section 3 employs two different
network properties to compare the original network with its “evolved” form.

Both “continuity” and network “structure” will be expressed in terms of closed
sets.

1.1. Closure and closed sets

The traditional approach to understanding the behavior of smooth, or continuous,
phenomena in a Euclidean world is based on real numbers and an open-set topol-
ogy [18, 21, 26]. But, we are interested in discrete systems, which by definition do
not support the kinds of limit operations found in open-set topologies [4]. The inte-
gers are one example of a discrete set. Consequently, the traditional delta/epsilon
interpretation of continuity based on open sets fails in a discrete world. To com-
pensate, this paper makes use of the concept of “closed sets” to analyze dynamic
discrete systems, such as social networks.
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Let S be any set system. An operator S ϕ−→ S is said to be a closure operator
if for all sets X,Y ⊆ S, ϕ is:

(a) expansive, or Y ⊆ Y.ϕ;
(b) monotone, or X ⊆ Y implies X.ϕ ⊆ Y.ϕ;
(c) idempotent, or Y.ϕ.ϕ = Y.ϕ.1

A set Y ⊂ S is said to be closed if Y.ϕ = Y .
A different, but equivalent definition, capitalizes on the fact that the intersection

of closed sets must be closed. We let C ⊆ S be a collection of subsets with the
property that X,Y ∈ C implies that X ∩ Y ∈ C. These then are the closed sets of
S and the operator ϕ is defined to be X.ϕ =

⋂
X⊆Y Y ∈ C.

Still, a third formulation of the closure concept is based on “path independence”
which is encountered in the economic literature [24, 31, 41, 42], particularly those
employing choice functions. An operator α is path independent if

(X ∪ Y ).α = (X.α ∪ Y.α).α
An expansive (C1), monotone (C2) operator α is a closure operator, ϕ, if and only
of it is path independent [32].

This abundance of definitions suggests the variety of applications in which clo-
sure can be employed.

A closure operator can satisfy other axioms depending on the mathematical
discipline. A topological closure is grounded and closed under finite union, that is

(C0) ∅.ϕ = ∅,
(C4) (Y ∪Z).ϕ = Y.ϕ∪Z.ϕ. The closure operator of linear systems, often called

the spanning operator, satisfies the Steinitz-MacLane exchange axiom
(C5) if x, z 6∈ Y.ϕ, x 6= z, and z ∈ (Y ∪ {x}).ϕ then x ∈ (Y ∪ {z}).ϕ.

Such closure systems are called matroids; they are generalized matrices [23, 46].
Still other closure operators may satisfy an anti-exchange axiom

(C6) if x, z 6∈ Y.ϕ, x 6= z, and z ∈ (Y ∪ {x}).ϕ then x 6∈ (Y ∪ {z}).ϕ.

These closure operators, which include the geometric convex hull operator, are
said to be antimatroid closure operators and the corresponding closure systems
are called antimatroids or convex geometries, [3,11,13]. We also have “greedoids”
which model greedy algorithms [22]. In the following sections we will employ
a closure operator that seems to be more appropriate for our study of networks;
it satisfies none of these more restrictive axioms.

1.2. Network closure

Graphs, or networks, constitute one class of discrete systems; we treat these terms
as synonyms. There is a ground set N of nodes, or elements, or individuals, and
a relationship between the nodes which we normally model as a set E of edges.
There are a number of different closure operators that can be associated with
discrete network systems. If a network, N , is directed, one can define {y}.ϕ1

as the set of all z reachable by a directed path from y, and then extend it so
that Y.ϕ1 =

⋃
y∈Y {y}.ϕ1. If the directed system is a partial order this closure

can be expressed as Y.ϕ1 = {z|∃y ∈ Y, y ≤ z}. Alternatively, one could define

1Because closure operators, and later network transformations, are set valued, we use suffix
notation to distinguish them from numerically valued functions.
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Y.ϕ2 = {x|∃y ∈ Y, x ≤ y}, or Y.ϕ3 = {x|∃y1, y2 ∈ Y, y1 ≤ x ≤ y2}. All three
closures are explored in [37]. Note that in this case, ϕ3 = ϕ1 ∩ ϕ2.

When the network is undirected, it would be natural to define a closure using
the concept of “convexity”, that is to define Y.ϕ4 to be the set of all nodes on
shortest paths between nodes in Y . Unfortunately, Farber and Jamison show this
to be mathematically unsound in [14].

The “neighborhood closure” which we use in this paper is applicable to either
directed or undirected networks, however all our examples will be of undirected
networks, that is (x, y) ∈ E, implies (y, x) ∈ E. Let Y.η denote the neighborhood
of Y , that is all nodes z 6∈ Y such that (y, z) ∈ E is an edge with y ∈ Y . It is
convenient to let Y.ρ denote Y ∪Y.η or the region dominated by Y .2 By the closure
of Y , we mean the set, Y.ϕ, of all z such that {z}.ρ ⊆ Y.ρ. It is not hard to show
this is really a closure operator, [38]. An equivalent, but more useful formulation
is

Y.ϕ = Y ∪ {z|z ∈ Y.η, {z}.η ⊆ Y.ρ} (1.1)

All operators, such as η and ϕ and the transformations in the next section, are
defined over sets, so an expression such as z.ϕ is technically incorrect; it should be
{z}.ϕ, as in (1.1). But, we will often use the abbreviated form when dealing with
singleton sets.

In Section 2, we use a 35 node network for a running illustration. It is large
enough to be non-trivial, but small enough to be comprehensible.

2. The evolution process

Evolution is a process which changes the structure of a discrete system S. We
model such processes by mathematical “transformations”. Let S = (S,E) and

S ′ = (S′, E′) be undirected networks. A transformation S f−→ S ′ is a function
f : P2(S)→ P2(S′) between the sets of ground sets’ subsets of the cardinality less
or equal to 2. To every subset Y of S, |Y | ≤ 2, it assigns a unique set Y.f ⊆ S ′,
|Y.f | ≤ 2. Each such function can be extended by unions of images to a mapping
P(S) → P(S′). We presume that the structure of S ′ is in some fashion different
from that of S; the functions plays a role of modification of the set of nodes (in
form of the singletons) and the edges simultaneously.

Consider a transformation S f−→ S ′. Then f is called

• an addition of the node y if y 6∈ S, S′ = S ∪{y}, E′ = E and K.f = K for
∅ 6= K and ∅.f = {y},

• an addition of the edge {x, y} if S′ = S, {x, y} 6∈ E, E′ = E ∪ {x, y} and
K.f = K for ∅ 6= K and ∅.f = {x, y},

• a deletion of the node y if y ∈ S, S′ = S \ {y}, E′ = E ∩ S × S and
K.f = K for K 63 y and K.f = ∅ for K 3 y,

• a deletion of the edge {x, y} if S′ = S, {x, y} ∈ E, E′ = E \ {x, y} and
K.f = K for K 6= {y} and {x, y}.f = ∅.

2Some graph theory texts, e.g. [1, 2, 20], use N(Y ), or “open” neighborhood, to denote Y.η,

and N [Y ], or “closed” neighborhood, to denote Y.ρ. But, they don’t define “neighborhoods” as
operators as we do here.
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In the case of transformation S f−→ S ′ we adopt the notation of the set operators
from the Section 1.2 exactly for the network S and with ′-notation for the network
S ′ (e.g., ϕ′).

2.1. Continuous transformations

A transformation, f , is said to be monotone if X ⊆ Y implies X.f ⊆ Y.f . All
transformations will be assumed to be monotone.

A transformation f is said to be continuous if for all subsets Y ⊆ S,

Y.ϕ.f ⊆ Y.f.ϕ′

If this inclusion is valid for Y = {x}, x ∈ S, we say f is continuous at x. Although
this definition of “continuity” has been well established, c.f. [10, 35, 47], it might
merit some further justification. A continuous transformation f in a Euclidean
world can be described by “for any set Y , if O′ is an open set such that Y.f ⊆ O′,
then there exists an open set O such that Y ⊆ O, and O.f ⊆ O′ ”. In a discrete
world, the notion of an “open” set is largely meaningless; but closure is not. In
a discrete world we say f is continuous if “for any set Y , if C ′ is a closed set such
that Y.f ⊆ C ′ then there exists a closed set C such that Y ⊆ C and C.f ⊆ C ′”.
The expression Y.ϕ.f ⊆ Y.f.ϕ′ encapsulates this.

Proposition 2.1. The composition (f · g) of continuous monotone transforma-
tions f and g is continuous.

Proof can be found in [36,38], where it is also shown that g must be monotone
to ensure continuity.

Monotone, continuous transformations are mathematically quite well defined.
They constitute a concrete category MCont with direct products [36]. They share
some of the characteristics of continuous functions in the real Euclidean world; for
example, the inverse image of a closed set in S ′ is closed in S, or more precisely if
Y.f is closed in S ′, then Y.ϕ.f = Y.f [38].

Suppose a transformation f is discontinuous, that is, there exists a set Y such
that Y.ϕ.f 6⊆ Y.f.ϕ′. Trying to test every such subset Y would be an exponential
task. However, it was shown in [38] for extended (i.e. union-preserving) transfor-
mations,

Proposition 2.2. If there exists Y such that Y.ϕ.f 6⊆ Y.f.ϕ′ then there exists
a singleton set {y} ⊆ Y.ρ such that {y}.ϕ.f 6⊆ {y}.f.ϕ′.

This makes testing for continuity viable when the transformation is local. The
notion of “continuity” is independent of the system S or the closure operator ϕ.
However from now on, we will assume that S is an discrete network N and that
ϕ is the neighborhood closure defined in (1.1). We will also assume that discrete,
continuous functions are “evolutionary”, that they are the “smooth”, “low energy”
transformations of the discrete world.

Proposition 2.3. Let S = (S,E) be an undirected network. Let x, y, z ∈ S and
{x, z} 6∈ E. Then the transformation f which adds the edge {x, z} is continuous
at y if and only if (y ∈ x.η and x ∈ y.ϕ) implies z ∈ y.η.



MATHEMATICAL EVOLUTION IN DISCRETE NETWORKS 157

Proof. Assume that y ∈ x.η, x ∈ y.ϕ but z 6∈ y.η. Since x ∈ y.ϕ, x.η ⊆ y.ρ.
But, because z 6∈ y.η, x.η′ 6⊆ y.ρ′ and y.ϕ.f 6⊆ y.f.ϕ′, thus f is discontinuous at y.
Conversely, assume f is discontinuous at y ∈ x.η; that is, ∃w ∈ y.ϕ such that
w 6∈ y.ϕ′, because w.η′ 6⊆ y.ρ′. Readily w is x or z. Since z 6∈ x.η ({x, z} 6∈ E),
z 6∈ y.ϕ. Hence w 6= z and w = x. After adding the edge {x, z}, x.η′ 6⊆ y.ρ′ only
if z 6∈ y.η, that is z 6∈ y.η. �

Proposition 2.4. Let S = (S,E) be an undirected network and {x, z} ∈ E.
Then the transformation f which deletes the edge {x, z} is discontinuous at x if
and only if either

(a) z ∈ x.ϕ
(b) there exists y ∈ x.ϕ, y 6= x, with z ∈ y.η.

Proof. Suppose (a), z ∈ x.ϕ. Since {x, z} is being deleted z 6∈ x.η′. Conse-
quently, {x}.ϕ.f 6⊆ {x}.f.ϕ′.
Suppose (b) and negation of (a). Hence ∃y ∈ x.ϕ, y 6= x, with z ∈ y.η and since
z 6∈ x.ϕ we have y 6= z. Hence y.η = y.η′. Then z 6∈ x.η′ and z ∈ y.η′ implies
that y.η′ 6⊆ x.η′, hence y 6∈ x.ϕ′ = x.f.ϕ′. Now, {x}.ϕ.f 6⊆ {x}.f.ϕ′, and f is
discontinuous at x.
Conversely, suppose f is not continuous at x, i.e., x.ϕ 6⊆ x.ϕ′. Hence there exists
y ∈ x.ϕ \ x.ϕ′. Hence y 6= x and either y = z or y 6= z. In the former case we get
z ∈ x.ϕ (the condition (a)) and in the latter we have y ∈ x.ϕ such that z ∈ y.η
(the condition (b)) since the edge {x, z} makes the only difference of the networks
and hence of their closures. �

Formal proofs of propositions 2.3 and 2.4 can also be found in [38]; how-
ever, understanding their content is more easily achieved by example. Suppose
in Figure 1(a) that f introduces a new edge/relationship denoted by the dashed
line. Here, y1 ∈ x.η and x ∈ y1.ϕ, but z 6∈ y1.η, so the condition for con-

u y x z v

y

2

1

u y x z v

y

2

1

(a) (b)

Figure 1. Two discontinuous transformations.

tinuity in Proposition 2.3 is not satisfied. We see that y1.ϕ = {x, y1} since
x.η = {y1, y2} ⊆ {x, y1, y2} = y.ρ. But, if f adds {x, z} then y1.f.ϕ

′ = {y1}
since x.f.η′ = {y1, y2, z} 6⊆ {x, y1, y2} = y1.f.ρ

′. So y1.ϕ.f 6⊆ y1.f.ϕ
′ and f is not

continuous.
Now suppose in Figure 1(b) that f deletes the edge {x, z}. By Proposition

2.4(b), f should be discontinuous. We verify by observing that x.ϕ = {x, y1} while
x.f.ϕ′ = {x} because y1.η = {x, y2, z} 6⊆ {x, y1, y2} = x.ρ. So x.ϕ.f 6⊆ x.f.ϕ′.
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2.2. An evolutionary example

By a random network, we mean one in which the probability of any pair of nodes,
x and z, being connected by an edge {x, z} is uniform. This is the Gilbert’s classic
definition [16]. Other definitions can be found in [5,6]. We consider such a random
network to be the archetype of a chaotic network. While random networks are
“chaotic”, there can be chaotic networks that were not randomly generated.

To simulate evolutionary transformation we first generate a random network,
N , on n nodes with e edges. Figure 2 is a small such network with 56 randomly
generated edges. We will use this network as a running example in the rest of this
section. Given an initial random network, we then invoke a procedure E which
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Figure 2. A randomly generated initial 35 point network N 0.

deletes a randomly chosen edge {u, v} and inserts a new edge {x, z} between two
randomly chosen points — subject only to the constraint that the addition and
the deletion be continuous. If addition/deletion of the random edge would be
discontinuous, as defined in propositions 2.3 and 2.4, another random edge is se-
lected. Thus, both the number of points and number of edges always remains

constant. This process, E , defines a transformation, N E−→ N ′, which, by con-
struction and Proposition 2.1, is continuous. By E i, we mean E applied i times,
that is N .E i = N .E .E . . . . .E .

In Figure 3 (a) and (b), we show our running example, N 0 after iterating E 5
times and then 15 times.

To get a sense of this process, the five edges that have been deleted in the
previous 5 iterations are dashed, and the five edges that have been added are
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Figure 3. (a) N 0.E
5; (b) N 0.E

15; in both figures, recent additions are bold, recent deletions

are dashed.

bolder. Node positions have been kept unchanged, even though the resulting
diagrams have become less visually pleasing.

In Figure 4(a), we display the
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Figure 4. (a) N 0.E
50; (b) N 0.E

50 redrawn for greater clarity.

final version after 50 iterations; now the bolder edges denote those that were
present in Figure 2, the original random network. Of the original 56 edges, only
25 remain.3 It suggests the total amount of change. The degree, d(y), of a node
y is the number of incident edges. Since all versions of this graph have 56 edges,
the expected d(y) = (56/35)× 2 = 3.2. The degree of node 2, d(2), has increased
from 3 to 11; that of node 5 has dropped from 5 to just 1.

Figure 4(b) is a simpler rendition of the same graph. Only the nodes have been
re-arranged for greater clarity. It can be difficult to verify that Figure 4(b) is
identical to Figure 4(a); yet it is the clearer representation. In the next section we
consider other methods for assessing network change.

3Some edges have been added and deleted multiple times. For example, (13, 33) has been
deleted in E5 and re-instated in E15, then deleted again in E50!
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3. Two network properties

Transformations, especially those which leave the number of nodes and connections
unchanged, must in some way alter the internal structure of the network. In this
section we consider two network properties that can reveal this change. They are
the number of embedded triangles and the network’s irreducible spine.

3.1. Triangle counts

A characteristic feature of random networks is the number of embedded triangles.
Counting embedded triangles in networks has a rich literature, e.g. [43, 45]. As
can be seen from Table 1, the expected number of embedded

e/n 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
n

35 1.25 2.00 3.10 5.85 7.70 10.65 13.85 17.60 22.55
100 0.90 1.45 3.30 4.25 7.05 9.40 12.15 16.45 21.35
500 1.36 2.45 3.50 5.73 8.16 11.55 14.50 19.25 24.40

1000 1.20 2.50 3.25 4.20 6.75 9.20 13.55 16.75 20.60

Table 1. Expected number of embedded triangles, exp(τ(N )), in random networks.

triangles, τ(N ), is essentially a function of the ratio e/n.4 For relatively sparse
networks, with 1 ≤ e/n ≤ 2, we have 1 ≤ exp(τ(N )) ≤ 10, apparently independent
of n. For these sparse networks, 2 ≤ exp(d(y)) ≤ 4. When e/n ≥ 2, exp(d(y)) ≥ 4,
so every node is expected to be connected to at least 4 others, and exp(τ(N ))
begins to climb rather sharply. This is a familiar property of random graphs; below
a certain threshold the probability of each additional edge introducing a specific
property is low, after the threshhold it becomes high [6].

We observe that there are no triangles in the random graph of Figure 2, and
that, after 5 iterations of the evolutionary process, one appears in Figure 3(a). It
is {10, 13, 14}. After 15 iterations, we have 2 triangles in Figure 3(b); they are
{10, 13, 14} and {27, 28, 34}. There are 15 triangles in Figure 4(b), which shows
the configuration after 50 iterations.

This is not an isolated phenomena. As shown in Table 2, as a network evolves
continuously, it appears that the number of triangles strongly tends to increase,
even though e/n remains constant. As Table 2 also shows, triangles can decrease
during random evolution. But this seldom occurs since the edge {x, z} in a triangle
{x, y, z} can be continuously deleted only if {y, z} ⊂ {x}.η, {x, z} ⊂ {y}.η, and
{x, y} ⊂ {z}.η, which is relatively uncommon, because all three containments must
be strict.

Each line of Table 2 denotes the behavior of a single randomly generated net-
work. Consequently, we see the considerable variance natural in such random
processes. Averaging over multiple executions, as in Table 1 would mask this vari-
ance. The key observation is that any process, continuous or not, which increases

4Entries in this table were created using a small sample size, s = 20. There was considerable
variance. It is not definitive; it is only meant to be illustrative.
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the number of edges, or connections, would be expected to increase the number of
triangles. However, here the number of edges has been held constant, so it must
be the constraint of continuity that induces the triangle increase.

E i i = 0 10 20 30 40 50
n e/n
35 1.2 1 3 4 7 9 18
35 1.4 4 5 8 15 17 17
35 1.6 6 3 10 16 17 18
35 1.8 4 9 14 12 15 17
35 2.0 11 13 18 19 25 26

E i i = 0 20 40 60 80 100
n e/n

100 1.2 1 3 9 14 16 18
100 1.4 3 5 6 9 11 13
100 1.6 4 5 13 15 14 20
100 1.8 8 12 18 20 21 24
100 2.0 6 11 14 13 19 21

E i i = 0 200 400 600 800 1000
n e/n

1000 1.2 3 3 6 9 18 22
1000 1.4 0 3 4 8 12 11
1000 1.6 5 5 7 9 12 19
1000 1.8 6 13 11 12 14 21
1000 2.0 14 17 19 18 20 19

Table 2. Observed numbers of embedded triangles, τ(N ), n = 35, 100, 1000, after E i iterations.

3.2. Irreducible spines

A reduction process R was introduced in [38, 39] as a way to eliminate local well-
structured portions of a network, especially triangles, while retaining its global

properties of connectivity. It is a transformation N R−→ N ′ composed of iterative
steps in which, for some chosen node y, all elements from y.ϕ \ {y} are deleted.
After such a process we end up with an “irreducible” sub-network I = N .R ⊆ N .5

A network is irreducible if every node y is closed, that is {y}.ϕ = {y}. In Figure
4(b) node 29 is not closed because {29}.ϕ = {11, 29, 32}. Node 29 is said to
subsume 11 and 32; both of which will be deleted. In [39], it is shown that
for all N , its irreducible spine, I, obtained by the reduction R is unique, upto
isomorphism.

In Figure 5, the nodes x and z subsume each other. If y1, y2 ∈ I then either x
or z will be in I, but not both. Consequently, if I1 and I2 are both irreducible

5In [28], Lin, Soulignac and Szwarcfiter, speak of a ”dismantling of a graph G as a graph H

obtained by removing one dominated vertex of G, until no more dominated vertices remain”.
This is equivalent to R.
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Figure 5. Mutual subsumption of two nodes.

spines of N , then x ∈ I1, x 6∈ I2 implies z ∈ I2.η. Where not identical, they are
“close”, as are x and z in Figure 5. Thus I can be regarded as a true surrogate of
N .

An important property of the irreducible spine is that if < x, . . . , y, . . . , z > is
a path from x to z through y in N then there exists a path < x′, . . . , y′, . . . , z′ >
in I, and conversely. Because of this, it can be shown in [40] that, subject to
reasonable constraints, the centers of the network, whether defined with respect
to shortest path distance, or to betweenness, c.f. [7, 8, 15] will be located in I.

So the irreducible spine of a network can convey considerable information about
its global structure. But, not if N is chaotic. The nodes connected by dotted
edges have been removed, the remaining solid lines of Figure 6(a) illustrate the
irreducible spine of our running example as initially generated, see Figure 2. Figure
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Figure 6. Irreducible spines of the initial random network of Figure 2, and evolved network of
Figure 4(b). Dashed lines denote deleted sub-networks.

4(b) shows the network resulting from 50 iterations of the evolutionary process,
and Figure 6(b) shows its irreducible spine, I. The bolder portions of each figure
denote a cycle of maximal length. In the former case the irreducible spine consists
of almost the entire network.

One way of interpreting the irreducible spine of a network is by means of its cycle
structure. A cycle C is chordal if for every path sequence < . . . , w, x, y, z, . . . >
in C, either {w, y} or {x, z} ∈ E. Chordal graphs support simplicial ordering and
greedy algorithms [1, 27, 29]. Our interest, however, is in “chordless” cycles. All
nodes in an irreducible spine lie on a chordless cycle Ci of length k ≥ 4, or on
a unique path between two such cycles. The bold cycle of length 17 in Figure 6(a)
is a chordless cycle of maximal length. There are 3 such cycles. The bold cycle of
length 6 in Figure 6(b) is also maximal. Again, there happen to be three 6-cycles.
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The increase in triangles reveals change in the “local structure” as a consequence
of evolution. If we use the irreducible spine to represent global connectivity, then
the change created by evolution is shown by comparing the resulting chordless cycle
distributions. Figure 7 compares two histograms depicting the cycle structures of
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Figure 7. Distribution of chordless cycles in the irreducible spines of Figure 6(a) and Figure 6(b).

Figure 6 (a) and (b). We know of no way to quantify this change; but it is striking
nevertheless.

For Figure 8, we first generated a random 100 node network with 140 edges.
As expected, it had 3 embedded triangles; after 100 iterations the evolved network
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Figure 8. Distribution of chordless cycles in a 100 node network with 140 edges as originally

generated and after executing E100.

had 16 embedded triangles, while its irreducible spine had 6. Figure 8 then il-
lustrates its cycle structure histograms. The distinctive, strongly unimodal initial
distribution appears to be a characteristic feature of “chaotic” networks.

While it is not clear how to compare the cycle structures of the irreducible
spine of a network, they do possess a curious mathematical property. Consider
the nodes in a cycle Ci as a set. Since the cycles are chordless, Ci 6⊆ Cj , for all i 6= j.
Consequently, the collection C = {C1, . . . , Cn} of chordless cycles comprising an



164 J. L. PFALTZ

irreducible spine constitute an antichain. Anti-chains have been related to chains
in a partially ordered set by Dilworths’s theorem [5,12].

We have been illustrating this “evolution” transformation with a small 35 node
network, because it is hard to visualize in any detail the larger thousand node
networks to which we have applied our procedure. To partially compensate for
this, we present in Figure 9 the irreducible spine of a 200 node network with 320
edges that had initially been generated by our random process, then transformed
by E 1000. The nodes removed by the reduction process, R, have been denoted
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Figure 9. The irreducible spine of a random 200 node network after E1000.

by a smaller font and connected by dashed lines. Neither the original random
network, nor the evolved network, N .E 1000, were connected; but only one main
component had chordless k-cycles, k ≥ 4. The other five components reduced to
single points. As initially generated this network had 3 triangles, slightly fewer
than the 4 to 5 suggested by Table 1. After E 1000, it had 99 triangles.

4. Discussion

The preceding sections describe a small experiment which, first, defines a non-
trivial continuous network transformation, and second, seeks to establish some
measures of its effect. We now reflect on its results.
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The network structures we see around us are dynamic. There is no way of
knowing whether the “evolutionary” process, E , which alternately adds and deletes
connections, or edges, actually corresponds to any real such process. However, the
resulting structures have a similarity to some social network structures. We have
seen that when creating a relationship, or edge {x, z}, the existence of y ∈ x.η with
y ∈ z.η is sufficient to ensure continuity, that is x and z are already related through
y. This is commonly known as triadic closure. Triads were studied by Granovetter
in [17], although he did not use the term “closure”. It is not truly a closure operator
(it is not idempotent); however, it appears to be a frequently occurring process in
dynamic social systems [19,25,30,34]. The concept of continuity appears to provide
a mathematical basis for this common observation. It should be contrasted with
the approach of Newman, in [33], where a statistical generating function is used
to model this kind of phenomena.

There is some literature on social network evolution [9,19,25]. It seems evident
that in real life, much of an evolving social network may be shaped by external
considerations, e.g. “proximity” or “social pressure”. Nevertheless, the closure
conditions of continuity may have real social significance.

Random neuronal activity is highlighted in the survey article “Perchance to
Prune” [44]. The authors claim that such random neuronal firing while we sleep
helps to better organize memory by weakening some connections and strengthening
others. It appears to be similar to the “evolutionary” processes we have been
exploring here.

The term “random” appears throughout this paper; we have random networks,
random connections, additions and deletions. But, although we use a reasonably
good linear congruence random number generator with various seeds to make
these decisions, we make no pretense of ever achieving a uniform distribution.
Our method of selecting edges to delete by first selecting a node, x, and then
another node, z, within its neighborhood, is manifestly non-uniform over the set
of all connections. Perhaps a better, if less euphonious, word would have been
“unpredictable”. At no point in the paper do we claim to make true probabilistic
assertions.

Nevertheless, we believe that we have established that closure and continuity are
interesting network concepts that provide a different approach to discrete network
analysis.

Acknowledgement. The author would like to thank an anonymous referee
for a number of insightful comments which were valuable additions to this paper.
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