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Abstract

A mathematical model for dynamic networks is
developed that is based on closed, rather than
open, sets. For a social network it seems appro-
priate to use a neighborhood concept to establish
these sets. We then define a rigorous concept of
continuous change, and show that it shares some
of the properties associated with the continuity
of the calculus.

We demonstrate that continuity is local in na-
ture, in that if the network change is discontinu-
ous it will be so at a single point and the disconti-
nuity will be apparent in that point’s immediate
neighborhood.

Necessary and sufficient criteria for continuity
are provided when the change involves only the
addition, or deletion, of individual nodes or con-
nections (edges).

To illustrate large scale continuous change we
choose a practical process which reduces a com-
plex network to its chordless cycles, in the course
of which most triadically closed subportions are
removed.

Finally, we explore several variants of the
neighborhood concept, and prove that a rigorous
notion of fuzzy closure can be defined.

Keywords: closed set, transformation, neigh-
borhood, continuity, chordless cycle, graph re-
duction, triadic closure

1 Introduction

Networks, or undirected graphs (which we regard
as total synonyms) are fundamental for modeling
social phenomena [5]. Yet they also abound in
both the sciences and humanities, c.f. [28] for
its excellent survey and bibliography of over 400
applications. They may be huge; the connectivity
of the world wide web is a network — they may
be tiny; the atomic bonds in a molecule are an
undirected graph. A representative example is
the 379 node network of collaborating scientists
constructed by M.E.J. Newman [29] illustrated
in Figure 1, in which each edge denotes at least
one co-authored paper.1 This will reappear in
Section 4.1.

Such networks are dynamic. Yet, even though
it is recognized that networks may arise from dy-
namic processes [6], there has been little formal
study of network change itself [3, 12]. This pa-
per focuses on how a network can change, any
network, but especially social networks. We in-
troduce the concept of network transformation in
Section 3. Typically, we are interested in those
kinds of transformations which preserve elements
of network structure. In particular, we are con-
cerned with “continuous” transformations.

The calculus of continuous functions over man-
ifolds is defined in terms of open sets. When the
domains are finite discrete structures, closed sets

1Figure reprinted with permission from
M.E.J.Newman, Phys. Rev. E 74, 036104 (2006).
Copyright (2006) by the American Physical Society.
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Figure 1: A 379 node network of collaborating scientists [29].

become a more powerful tool for their analysis.
Closure is not a new concept in the social sci-
ences. For example, it is associated with rational
choice operators in economics [20, 27, 26]. Galois
closure can be used to extract rules from data
sets for subsequent used in A.I. reasoning sys-
tems [34, 35]. When the system can be partially,
or totally, ordered the closed sets are usually in-
tervals, ideals or filters [19, 24]. In this paper
we employ the closed set structure of undirected
graphs and networks.

Much of the current mathematical analysis of
social networks is statistical [22, 40] or combina-
toric [38]. Both can provide valuable, broadbrush
properties of the entire system. In contrast, our
approach focuses on the decomposition of the sys-
tem into its constituent closed set structure. The
closed sets are created by a neighborhood closure
introduced in Section 2.1.

In Section 3, we define the concept of continu-
ous transformations of discrete systems in gen-
eral, and use it in Section 3.1 to explore the
behavior of continuous network transformations.
All of the mathematical results associated with

network closure in these two sections are origi-
nal.

Section 4.1 presents a representative graph re-
duction process that is applicable to large net-
works; it is shown to be continuous. Neighbor-
hoods play a fundamental role throughout the
paper; in section 4.2, 4.3 they are explored a bit
more fully. Lastly, Section 4.4 introduces the no-
tion of “fuzzy” closure.

2 Closure

An operator ϕ is said to be a closure operator

if for all Y, Z ⊆ P , it is:
(C1) extensive, Y ⊆ Y.ϕ,
(C2) monotone, Y ⊆ Z implies Y.ϕ ⊆ Z.ϕ,

and,
(C3) idempotent, Y.ϕ.ϕ = Y.ϕ.

A subset Y is closed if Y = Y.ϕ. In this work
we prefer to use suffix notation, in which an op-
erator follows its operand. Consequently, when
operators are composed the order of application
is read naturally from left to right. With this suf-
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fix notation read Y.ϕ as “Y closure”. It is well
known that the intersection of closed sets must
be closed. This latter can be used as the defini-
tion of closure, with the operator ϕ defined by
Y.ϕ =

⋂
Zi closed{Y ⊆ Zi}.

By a closure system S = (P, ϕ), we mean a
set P of “points” or “elements”, together with a
closure operator ϕ. By (C1) the set P must be
closed. In a social network these points are typ-
ically individuals, or possibly institutions. The
empty set, Ø, may, or may not, be closed.

A point y ∈ Y is said to be a ordinary point

of Y if y ∈ (Y −{y}).ϕ. In contrast, a point y ∈
Y is said to be an extreme point of Y if y 6∈
(Y −{y}).ϕ. (Extreme points have a central role
in antimatroid closure theory [2, 8].) A set is
said to be whole if all of its points are ordinary
points.

2.1 Neighborhood Closure

Let S = (P,A) be a set P of points, or elements,
together with a symmetric adjacency relation A.
By the neighborhood, or neighbors, of a set Y

we mean the set Y.η = {x 6∈ Y |∃y ∈ Y, (x, y) ∈
A}. Note that this is a purely formal definition
of “neighborhood”, independent of the social as-
pects often implied by the term [17]. By the re-

gion dominated by Y we mean Y.ρ = Y ∪ Y.η.2

Suppose P is a set of individuals and the re-
lation A denotes a symmetric connection, such
as mutual communication, between them. The
neighborhood y.η about a person y is the set of
individuals with which y directly communicates.
The neighborhood, Y.η, of a set Y of individuals
is the set of individuals not in Y who directly
communicate with at least one individual in Y .
The region, Y.ρ, also includes Y itself. Mem-
bers of Y may, or may not, communicate with
each other. Unfortunately, knowledge of the re-
gion Y.ρ dominated by a set Y reveals very lit-
tle about Y itself. For example, in Figure 2 we

2In graph theory, Y.η is often called the “open neigh-
borhood of Y ” and denoted N(Y ), while Y.ρ, denoted
N [Y ] has been called the “closed neighborhood of Y ”
[1, 15]. This is a rather different meaning of “closed”.

have {bd}.ρ = abcdg ⊆ abcdefgh = {cg}.ρ, yet
{bd}∩{cg} = Ø. There is an extensive literature
regarding dominating sets, c.f. [16].

We can visualize the neighborhood structure
of a discrete set of points, or individuals, as an
undirected graph such as Figure 2. The neighbors
of any point are those adjacent in the graph. In
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Figure 2: A symmetric adjacency matrix A and
corresponding undirected graph.

the graph of Figure 2 we have {a}.η = {b, c} or
more simply a.η = bc. And g.ρ = degh.

Given the neighborhood concepts η and ρ, we
define the neighborhood closure, ϕη to be

Y.ϕη = {x|x.ρ ⊆ Y.ρ} (1)

In a social system, the closure of a group Y of
individuals are those additional individuals, x, all
of whose connections match those of the group Y .
A minimal set X ⊆ Y of individuals for which
X.ϕη = Y.ϕη is sometimes called the nucleus,
core, or generator of Y.ϕη. Readily, for all Y ,

Y ⊆ Y.ϕη ⊆ Y.ρ (2)

that is, Y closure is always contained in the re-
gion dominated by Y .

Proposition 2.1 ϕη is a closure operator.

Proof: (C1) Readily, Y ⊆ Y.ϕη by definition.

(C2) Let X ⊆ Y and let z ∈ X.ϕη. By (1) z.ρ ⊆

3



X.ρ ⊆ Y.ρ hence z ∈ Y.ϕη.

(C3) Let z ∈ Y.ϕη.ϕη . Then z.ρ ⊆ Y.ϕη .ρ =⋃
x∈Y.ϕη

x.ρ ⊆ Y.ρ, hence z ∈ Y.ϕη.

Proposition 2.2 X.ϕη ⊆ Y.ϕη if and only if
X.ρ ⊆ Y.ρ.

Proof: Let X.ϕη ⊆ Y.ϕη. ∀x ∈ X.ϕη , x.ρ ⊆ X.ρ,

so x ∈ Y.ϕη implies x.ρ ⊆ Y.ρ or X.ρ ⊆ Y.ρ.

Now suppose X.ρ ⊆ Y.ρ. Let z ∈ X.ϕη implying

z.ρ ⊆ X.ρ ⊆ Y.ρ Hence z ∈ Y.ϕη.

Corollary 2.3 X.ϕη = Y.ϕη if and only if
X.ρ = Y.ρ.

Proposition 2.4 Let ϕη be the closure operator.
If y.η 6= Ø then there exists X ⊆ y.η such that
y ∈ X.ϕη.

Proof: Readily, y.ρ ⊆ y.η.ρ, so y ∈ y.η.ϕη . Choose

a minimal X ⊆ y.η such that X.ρ ⊆ y.ρ.

So, unless y is an isolated point, every point y is
in the closure of some subset of its neighborhood.

One might expect that every point in a discrete
network must be closed, e.g. {x}.ϕη = {x}. But,
this need not be true, as shown in Figure 2. The
region c.ρ = abcdef while a.ρ = abc ⊆ c.ρ and
b.ρ = abcd ⊆ c.ρ, so c.ϕη = abc. The points a

and b are ordinary points of Y = {abc}, but Y is
not whole because c 6∈ (abc−c).ϕ = {ab}.

Equation (2) suggests an effective computer al-
gorithm to calculate the closure Y.ϕη of any set
Y . Initially, let Y.ϕη = Y ; then since Y.ρ =
Y ∪ Y.η examine only the points z in the neigh-
borhood, Y.η, of Y . If z.ρ ⊆ Y.ρ, add z to Y.ϕη.

Proposition 2.5 If ϕη is the closure operator
and y is an ordinary point of Y , then y.ρ ⊆
(Y −{y}).ρ ⊆ Y.ρ.

Proof: The first containment follows from the def-

inition of y ∈ (Y −{y}).ϕη. The second containment

is always true.

Proposition 2.6 Let ϕη be the closure operator.
If Y is whole then Y is closed.

Proof: Suppose Y is not closed, implying ∃y ∈ Y.ρ,

y.ρ 6⊆ Y.ρ. Then, by Prop. 2.5, y cannot be an

ordinary point, so Y cannot be whole.

Of course, closed sets need not be whole.

Proposition 2.7 Let ϕη be the closure operator.
If X and Y are finite whole sets and X ∩Y 6= Ø,
then X = Y .

Proof: Let z ∈ X ∩ Y , so z is an ordinary point

of both X and Y . By Prop. 2.5, z.ρ ⊆ X.ρ ∩ Y.ρ.

Consequently the iterated neighborhood z.ρ . . . ρ ⊆

Xρ . . . ρ∩Y ρ . . . ρ, and since both are finite this iter-

ation must terminate with X ⊆ X ∩ Y , Y ⊆ X ∩ Y ,

so X = Y = X ∩ Y .

It is apparent that with respect to neighbor-
hood closure, whole sets are effectively the non-
trivial connected components of the network.

3 Transformations

Social processes create corresponding social net-
works. Ongoing social precesses also transform
these networks in ways that can reveal the na-
ture of the processes themselves.

We use graph-theoretic concepts to model so-
cial networks; but graph theory provides scant
models for describing their change. Almost any
book on graph theory mentions graph homomor-
phism, that is a mapping h : (P, E) → (P ′, E′),
or a function h : P → P ′ in which (x, y) ∈ E

implies that (h(x), h(y)) ∈ E′ [1, 15].3 But, a se-
rious limitation of graph homomorphisms is that,
since h : P → P ′ is a function, the homomor-
phic “image” must always be “smaller”. We call
this the “curse of cardinality” when mathemat-
ically modelling finite, discrete systems. In the
real world, dynamic networks can both expand
and contract.

3Because homomorphisms are point functions, not set
valued operators, we employ prefix notation.
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For this reason we introduce the notion of a
graph, or network, transformation which is a
function mapping the power set, 2P , of P into the
the power set, 2P ′

, of P ′. That is, every subset
of P has a unique image subset in P ′. The oper-
ators η, ρ, and ϕη are therefore transformations
of a network (P, E) into itself, since every subset
has a unique image. To emphasize this difference,
a transformation f is denoted by our suffix nota-
tion, e.g. Y.f , rather than the customary prefix
notation of functions and homomorphisms. In
neighborhood notation, a graph homomorphism
h would be characterized by y.ρ.h ⊆ y.h.ρ′.

We denote transformations of network sys-

tems by (P, E)
f

−→ (P ′, E′), or possibly by (P, ϕ)
f

−→ (P ′, ϕ′), since we are often interested in the
closure structure induced by the neighborhood
system. Note that a transformation f may only
change the neighborhood system of P and hence
ϕ′.

In this paper we require that all transforma-
tions f be monotone, that is

X ⊆ Y implies X.f ⊆ Y.f (3)

as seems to be normally the case in real applica-
tions. Note that “monotone” in this sense only
preserves set containment relationships; it does
not mean that the transformation is “increasing”
or “decreasing”. A transformation f is said to be
surjective if for every closed set Y ′ in P ′ there
exists a subset Y ⊆ P such that Y.f = Y ′. Y

need not be closed.
By convention [31, 32, 42], a transformation f

is said to be continuous if for all Y ⊆ P

Y.ϕ.f ⊆ Y.f.ϕ′ (4)

Readily, (4) holds for all closed sets Y because
Y.ϕ.f = Y.f ⊆ Y.f.ϕ′.

If one visualizes ϕ to be an operative force that
causes social cohesion, then “continuity” assures
that cohesion observed in the pre-image network
will be contained in the cohesion modeled in the
resulting image network. These first propositions
are true for all closure operators, ϕ. In Section
3.1 we specifically address ϕη.

Proposition 3.1 Let (P, ϕ)
f

−→ (P ′, ϕ′),

(P ′, ϕ′)
g

−→ (P ′′, ϕ′′) be transformations and let
g be monotone. If both f and g are continuous,

then so is P
f.g
−→ P ′′.

Proof: We have X.ϕ.f ⊆ X.f.ϕ′ for any X ∈ P

and Y.ϕ′.g ⊆ Y.g.ϕ′′ for any Y ∈ P ′. Consequently,

as g is monotone, X.ϕ.f.g ⊆ X.f.ϕ′.g ⊆ X.f.g.ϕ′′.

Thus f · g is continuous.

Continuous transformations of discrete spaces
exhibit many of the properties of continuous real
functions with which we are more familiar. For
example, let f be a function f : R → R′; if (a)
f is onto, then for all y′ ∈ R′ there exists y ∈ R

such that f(y) = y′; if (b) f is continuous and X ′

is open/closed in R′, then f−1(X ′) is open/closed
in R.

Proposition 3.2 Let (P, ϕ)
f

−→ (P ′, ϕ′) be
monotone, continuous and let Y ′ = Y.f be
closed. Then Y.ϕ.f = Y ′.

Proof: Let Y.f be closed in P ′. Because f is con-

tinuous Y.ϕ.f ⊆ Y.f.ϕ′ = Y.f , since Y.f is closed.

By monotonicity, Y.f ⊆ Y.ϕ.f , so Y.ϕ.f = Y.f .

Or, in effect, if the pre-image of a closed set exists
it must also be, in a sense, closed. However, if a
continuous f is also surjective then every closed
set Y ′ in P ′ has at least one closed set, Y , such
that Y.f = Y ′, and f−1 is well defined over the
closed sets of P ′.

One can also consider ϕ-preserving transfor-
mations which map closed sets in P onto closed
sets in P ′.4 It is apparent that the composition
of ϕ-preserving transformations is ϕ-preserving.

Proposition 3.3 A monotone transformation

(P, ϕ)
f

−→ (P ′, ϕ′) is ϕ-preserving if and only if
∀X ⊆ P , X.f.ϕ′ ⊆ X.ϕ.f .

Proof: Let f be ϕ-preserving. By monotonicity,

X ⊆ X.ϕ implies X.f ⊆ X.ϕ.f . But, because X.ϕ is

4The topological term “closed” is traditional for struc-
ture preserving maps, whether expressed in terms of open
sets or closed sets. But, it is most unfortunate in this con-
text, where the multiple meanings can lead to confusion.
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closed and f is ϕ-preserving, X.f.ϕ′ ⊆ X.ϕ.f

Conversely, let all subsets X ⊆ P fulfill X.f.ϕ′ ⊆

X.ϕ.f and let X be a closed subset of (P, ϕ). Then

X.f.ϕ′ ⊆ X.f . But, readily X.f ⊆ X.f.ϕ′, so equal-

ity holds.

Consequently,

Proposition 3.4 A monotone transformation

(P, ϕ)
f

−→ (P ′, ϕ′) is ϕ-preserving and continu-
ous if and only if, for all X ⊆ P , X.ϕ.f =
X.f.ϕ′.

A common way of defining a graph transfor-

mation (P, E)
f

−→ (P ′, E′) is to first define {y}.f
for all singleton sets in P and then extend this
to all Y ⊆ P by Y.f =

⋃
y∈Y {y}.f . We call

f an extended transformation if P.f = P ′.
Any extended transformation is by construction,
monotonic.

Proposition 3.5 If (P, E)
f

−→ (P ′, E′) is an
extended transformation, then for all y′ ∈ Y ′ =
Y.f there exists y ∈ Y such that y′ ∈ {y}.f .

Proof: Let y′ ∈ Y ′. By the extended construction

Y ′ =
⋃

y∈Y
{y}.f , hence y′ ∈ {y}.f for some y ∈ Y .

Note that this is quite different from asserting
a true inverse existence, that for all y′ ∈ Y ′,
there exists some y ∈ Y such that y.f = y′. To
get some sense of the import of this “weak in-
verse existence” proposition, consider the simple
transformation f of Figure 3. If we define f on

x y
x’ y’

z’
f

Figure 3: A simple transformation f with multi-
ple definitions.

P by x.f = x′ and y.f = y′, then by extension
{xy}.f = x′y′ and z′ has no pre-image; so P.f 6=
P ′. However, if we let x.f = {x′z′}, y.f = {y′z′}
then {xy}.f = x′y′z′. Now P.f = P ′, so f is an
extended transformation, and Proposition 3.5 is

clearly satisfied. Whether or not this f is surjec-
tive depends on the closure structures of P and
P ′.

Unless otherwise explicitly stated, all remain-
ing examples of this paper will be extended trans-
formations.

3.1 Network Transformations

The preceding mathematical assertions are true
for all closure systems. Now we focus specifically
on network transformations. It is the neighbor-
hood, y.η, which is central.

Proposition 3.6 Let x ∈ y.η, then x ∈ y.ϕη if
and only if x.ρ ⊆ y.ρ if and only if x.η−{y} ⊆
y.η.

Proof: The first equivalence is simply a restatement

of the definition of neighborhood closure. The second

equivalence follows because if x.ρ ⊆ y.ρ then ∀z 6= y,

z ∈ x.η implies z ∈ y.η. The converse is similar.

Proposition 3.7 Let (P, E)
f

−→ (P ′, E′) be ex-
tended. If f is not continuous, there exists Y ⊆
P , and y ∈ Y.η such that either

(1) y′ 6∈ Y.f.η′

or
(2) y.η ⊆ Y.η and y′.η′ 6⊆ Y.f.η′

Proof: Since f is not continuous, there exists Y

such that Y.ϕη.f 6⊆ Y.f.ϕ′

η′ . Thus, ∃y′ ∈ Y.ϕη.f, y′ 6∈

Y.f.ϕ′

η′ . By, Prop. 3.5, ∃y ∈ Y.ϕη such that y′ ∈ y.f .

y 6∈ Y else y′ ∈ Y.f . Consequently, y ∈ Y.η and

y.η ⊆ Y.η. Now, since y′ 6∈ Y.f.ϕ′

η′ we know that

either y′ 6∈ Y.f.η′ or y′.η′ 6⊆ Y.f.η′. Y is technically

unspecified, but by Prop. 3.6 y ∈ y.η.ϕη; hence we

can assume {y} ⊆ Y ⊆ y.η.

This proposition establishes that if f is discon-
tinuous anywhere, then it will be discontinuous
at, or near, a point y. One need not consider all
subsets of 2P . Just as is the case with classical
function theory, discontinuity, and thus continu-
ity, is a local phenomena. Secondly, it provides
conditions (1) and (2) which are are necessary,
but not sufficient to demonstrate discontinuity.
If for a point y ∈ P neither condition (1) nor (2)
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holds, we say f is continuous at y. If either
condition holds, other criteria must be used, c.f.

propositions 3.8, 3.9 or 3.12.

We have said that a transformation P
f

−→ P ′

is monotone if ∀X, Y , X ⊆ Y implies X.f ⊆ Y.f .

Let (P, E)
f

−→ (P ′, E′) be a transformation be-
tween two neighborhood systems. The transfor-
mation f is said to be neighborhood mono-

tone if X.ρ ⊆ Y.ρ implies X.f.ρ′ ⊆ Y.f.ρ′. A
transformation that is monotone need not be
neighborhood monotone, and conversely.

Proposition 3.8 Let (P, E)
f

−→ (P ′, E′) be
monotone, then f is continuous if and only if f

is neighborhood monotone.

Proof: Let f be continuous and let X.ρ ⊆ Y.ρ.

By Prop. 2.2, X ⊆ X.ϕρ ⊆ Y.ϕρ. Thus, X.f ⊆

Y.ϕρ.f ⊆ Y.f.ϕ′

ρ by continuity. So X.f.ρ′ ⊆ Y.f.ρ′.

Conversely, let f be neighborhood monotone. By def-

inition Y.ϕη = Y ∪ {x 6∈ Y |x.ρ ⊆ Y.ρ}. Since for

all y ∈ Y , y′ ∈ Y.f ⊆ Y.f.ϕη
′, we need only con-

sider x 6∈ Y , but x.ρ ⊆ Y.ρ. Since f is neighborhood

monotone, x.ρ ⊆ Y.ρ implies x′.ρ′ = x.f.ρ′ ⊆ Y.f.ρ′

so x′ ∈ Y.f.ϕη
′.

3.2 Network Growth

Unfortunately, both propositions 3.7 and 3.8 can
be awkward to use in practice. We look for a
more local criteria.

A network can grow by adding points and/or
edges. Any transformation which just adds an
isolated point z′ will be continuous, since if X is
closed in (P, ϕ), X ′ and X ′ ∪ {z′} will be closed
in (P ′, ϕ′). But, if continuity is important, care
must be taken when adding edges or connections.

Proposition 3.9 An extended network transfor-
mation f , which adds an edge (x′, z′) to A′ at x,
will be continuous at x if and only if x ∈ Y.ϕη,
Y ⊆ x.η‘ implies z ∈ Y.η.

Proof: First we note that unless x is isolated, by

Prop. 2.4, there does exist a set Y ⊆ x.η such that

x ∈ Y.ϕη .

If the condition does not hold, i.e. z 6∈ Y.η then z′ ∈

x′.η′ ensures that x 6∈ Y.f.ϕη
′ so Y.ϕη.f 6⊆ Y.f.ϕη

′.

f is not continuous.

Conversely, if z ∈ Y.η then x′ ∈ Y.f.ϕη
′ and Y.ϕ.f ⊆

Y.f.ϕη
′ and f will be continuous.

Readily, the same conditions must apply to z as
well.

If the connections/edges are between individ-
uals, as in social networks, then Proposition 3.9
asserts that creating a connection (x, z) between
two persons, x and z where x is closely bound
to a set of individuals Y is smoother, easier, or
continuous if a connection already exists between
Y and z. This seems to be the case in numerous
studies cited by [5]. The transformation f1 in
Figure 4 which adds the edge (c′, f ′) to G1 satis-
fies Prop. 3.9 because c ∈ {bc}.ϕη, but f ∈ e.ϕη

as well.

Expansion of G2 at a′ by creating the edge
(a′′, j′′) is different. Because a′ ∈ b′.ϕ′

η′ (and

c′.ϕ′

η′), but (b′, j′) 6∈ A′, by Prop. 3.9 f2 is dis-
continuous at b (and also c). We would also ob-
serve that f2 is not neighborhood monotone at
b′ because a′.η′ = a′b′c′ ⊆ b′.η′ = a′b′c′d′ but
a′′.η′′ = a′′b′′c′′j′′ 6⊆ b′′.η′′ = a′′b′′c′′d′′, so f2 is
not continuous by Prop. 3.8 as well. Finally, we
verify that b′.ϕ′

η′ .f2 = a′′b′′ 6⊆ b′′ = b′′.ϕ′′

η′′ . As
this example illustrates, the discontinuity need
not occur at either x or z, but often at some
point y in x.η or z.η

Lastly, we make a more complex addition of
two edges to the new point y′′′ in G4, viz.

(d′′′, y′′′) and (g′′′, y′′′). This transformation f3

satisfies Proposition 3.9. For example d′′ ∈
{b′′g′′}.ϕη

′′ (as well as {c′′g′′}.ϕη
′′), so the in-

clusion of (y′′′, g′′′) in G4 by f3 satisfies the nec-
essary condition. While f3 is continuous, a trans-
formation that added only (d′′′, y′′′) or (g′′′, y′′′)
would not be. We observe that f3 is not a
closed transformation because {d′′g′′} is closed
in G3, but {d′′′g′′′} is not closed in G4 because
{d′′′g′′′}.ϕη = {d′′′g′′′y′′′}.
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Figure 4: Three additive network transforma-
tions, f1, f2 and f3.

3.3 Triadic Closure

Creating a relationship, or edge (x, z), will be
continuous if x and z are already connected, that
is, there exist y ∈ x.η and y ∈ z.η. The creation
of (x, z) ∈ A is commonly known as triadic clo-

sure The transformation f1 in Figure 4 is a clas-
sic example of triadic closure. The study of triads
was initiated by Granovetter in [13], although he
did not use the term “closure”. It is not truly a
closure operator (it is not idempotent); however,
it appears to be a frequently occurring process in
dynamic social systems [14, 21, 25, 30].

Corollary 3.10 Let x, z ∈ y.η, triadic closure
adding (x, z) will be continuous at y.

3.4 Network Contraction

Real networks lose members and connections; but
this can be hard to model mathematically with
homomorphic functions. The problem is that ev-
ery point in the existing network must map to
some point in the image space — and to be a ho-
momorphism it must bring its edges/connections
with it. Of course, if the two network elements
are truly combined in reality then homomor-
phism is the right model. But, when the member
or connection simply disappears, it isn’t.

When we use the transformation model pre-
sented in this paper we can map a point, or sub-
set, onto the empty set, Ø. We call it point re-
moval. Removal of any point, or node z, must
also delete all edges incident to z, that is all edges
of the form (y, z) ∈ E. This is equivalent to
deleting a row and column from the adjacency
relation, A′. We let δz denote the removal of z

from P ′ and (y, z) from E′ for all y ∈ z.η.

Proposition 3.11 δz is continuous at all y ∈
z.η.

Proof: Let X.ρ ⊆ Y.ρ. Readily, X.ρ−{z} ⊆

Y.ρ−{z}, so X.ρ.δz ⊆ Y.ρ.δz and by Prop. 3.8, δz

is continuous.

Instead of deleting a point and all its incident
edges we can remove one, or more, connections
thus changing the neighborhood structure repre-
sented by A′.

Proposition 3.12 An extended transformation
f , which deletes a symmetric edge (x, z) from A
will be discontinuous if and only if either

(a) z ∈ x.ϕη (or x ∈ z.ϕη), but x.ϕη 6= z.ϕη,
or

(b) (x, z) is an edge in a chordless cycle <

v, . . . , w, x, z, . . . , v >

where either |x.η| = 2 or |z.η| = 2.

Proof: Suppose (a) holds and z ∈ x.ϕη. Then

z′ = z.f ∈ {x}.ϕη .f , but z′ 6∈ x.f.ϕη
′, so f is

8



discontinuous.

Suppose (b) holds and |x.η| = 2 , so x.η = {w, z}.

Now x ∈ {w, z}.ϕη so x′ = {x}.f ∈ {wz}.ϕη .f , but

x′ = x.f 6∈ {wz}.f.ϕη
′ because x 6∈ {w′z′}.η′ Again

f is discontinuous. The reasoning is similar when

x.η = {wz}.

Conversely, suppose f is discontinuous. Let Y

be a minimal set such that Y.ϕη.f 6⊆ Y.f.ϕη
′.

Readily, either z ∈ Y.ϕη but z′ = z.f 6∈ Y.f.ϕη
′ ,

(or x ∈ Y.ϕη, x′ = x.f 6∈ Y.f.ϕη
′). We may assume

the former. If z ∈ Y then z′ ∈ Y.f.ϕη
′ trivially,

so z ∈ Y.η. Moreover, z ∈ Y.ϕη implies z.η ⊆ Y.ρ.

Since (x, z) ∈ A, z ∈ x.η, thus x ∈ Y . If Y = {x},

then (a) holds and we are done.

Assuming z 6∈ x.ϕη there must exist v ∈ z.η, v 6∈ x.η.

Since z ∈ Y.ϕη, ∃w ∈ Y, v ∈ w.η. We claim this

cycle < v, w, x, z, v > is chordless. v 6∈ x.η because

z 6∈ x.ϕη. z 6∈ w.η because Y is minimal.

In social terms, Proposition 3.12 would assert
that breaking a connection between x and z rep-
resents a discontinuity if z is tightly bound to x,
that is has the same shared connections to oth-
ers nearby. This certainly seems to be true in the
real world.

The second half of condition (a), x.ϕη 6= z.ϕη,
is needed only for situations such as that of Fig-
ure 5 in which x.ϕη = z.ϕη regardless of what

y
2

x

y
1

z

Figure 5: Two points with x.ϕη = z.ϕη.

other nodes are connected to y1 and y2. Addi-
tion, or deletion, of the dashed edge (x, z) makes
no change in the closed set structure whatever.

The transformations f3 and f4 of Figure 6 il-
lustrate network contractions. In Figure 6, the
dashed edges of Gi indicate the deletions in Gi+1.

By Prop. 3.12, removing the edge (a, b) from
G1 is discontinuous because b ∈ a.ϕη. Indeed, we
find that a.ϕη.f1 = a′b′ 6⊆ a.f1.ϕ

′

η′ = a′. How-
ever, f1 is continuous at c ∈ a.η. The transfor-

a

e

b

d

c
f

g

h

a’

e’

b’

d’

c’
f’

g’

h’

G
1

G
2

f
1

G
3

a"

e"

b"

d"

c"
f"

f
2

Figure 6: Contraction of a network by two suc-
cessive deletions.

mation f2 illustrates that rather large network
changes can be continuous, since by Proposition
3.11 both δg′ and δh′ are continuous, and by
Proposition 3.1, G2.δg′ .δh′ must be continuous
as well. However, removal of either connection
(d′, g′) or (g′, h′) individually would be discon-
tinuous. By Prop. 3.1 the composition of contin-
uous transformations must be continuous; but as
f2 illustrates, a continuous transformation need
not be decomposable into primitive continuous
steps.

4 Continuity in Practice

It is difficult to find explicit examples of net-
work change in the literature. A sequence of
evolving networks is clearly the basis of Kossinets
and Watts work in [21]. Yet, we are given only
the average properties of these successive net-
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works. And, as they observe “the relative stabil-
ity of average network properties, however, does
not imply equivalent stability of individual net-
work properties, for which the empirical picture
is more complicated” (p.89). Therefore, in this
section we turn to a network transformation that
is not the result of an external social process, but
rather its own internal structure.

4.1 Network Reduction

The networks, or undirected graphs, that nor-
mally illustrate papers such as this, are essen-
tially trivial. They have less than 50 elements,
so their structure is easily visualized and com-
prehended. When networks have hundreds of
elements visual analysis is at best difficult [10].
One solution is to reduce its structure to some
essential components and/or selected numerical
characteristics. Both statistical and eigenvector
analysis are often used to this end. One can use
these techniques to calculate expected distance
between points [7] or community structure [29].
We instead will use closed sets to simplify the
structure itself.

In Figure 2 of Section 2.1, we observed that the
point c is not closed, that a and b are elements
of c.ϕη. Although {a} and {b} are themselves
closed sets, they must be contained in any closed
set containing c. We say a point z is subsumed

by a set Y if z is an ordinary point of Y , that
is (by Prop. 2.5) if z.ρ ⊆ Y.ρ. For the reduc-
tion process we describe below we will only con-
sider singleton sets Y , such as {c}. In a sense,
subsumed points such as a and b of Figure 2 con-
tribute little to the closure structure, or topology,
of the network. They can be eliminated with lit-
tle loss of structural information.

In [36], Richards and Seay provide a small 18
point network called the “Sampson” data. They
use it to contrast various eigenvector algorithms;
we will use it to illustrate graph reduction by
point subsumption. Figure 7(a) is one visualiza-
tion of this network. The circled points of Figure
7(b) denote all the points that are subsumed by
other singleton sets. For example, 7 is subsumed
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(a)

Figure 7: (a) Original “Sampson” network, (b)
subsumed points, (c) reduced network.

by 2, 14 is subsumed by 15. Finally, Figure 7(c)
is the reduced graph created by deleting all sub-
sumed points.

The reduced graph of Figure 7(c) is struc-
turally simpler, yet its topology is faithful the
the original. By recording [in brackets] the num-
ber of points subsumed by each individual node
it also conveys a measure of the original density
near that node. The key elements of Figure 7(c)

10



Figure 8: Chordless cycles in the collaboration network of Figure 1.

are chordless cycles of length 4 or greater. These
are < 3, 10, 2, 1, 3 >, < 18, 4, 2, 15, 17, 18 >,
< 2, 10, 18, 4, 2 > and < 18, 17, 11, 16, 18 > in the
figure.5 These are chordless cycles; no point on
a chordless cycle can be subsumed by another.
These chordless cycles define the topology of the
network in much the same manner that 1-cycles
can be used to define the topological structure of
manifolds [11]. By Proposition 3.11 the removal
of subsumed points, such as δ7 in Figure 7(b)
above, are each individually continuous. Thus by
Proposition 3.1, their composition is continuous.

Figure 7(a) is rather simple to begin with. The
continuous reduction by subsumed points is more
useful in larger, more complex networks. Con-
sider the 379 node graph of Figure 1. This was
reduced by the same program that generated Fig-
ure 7(c) to the 65 node network shown in Figure
8. Dashed lines crudely approximate the extent
of nodes in the original network.

In a sense, the reduction process described here
is an inverse of triadic closure. It tries to remove
the tight triangulated clusters of points so that
the more extended connections become more evi-

5A graph, or subgraph, is said to be chordal if it con-
tains no cycles of length greater than 3 without a chord
(edge) joining two of its points [18, 23].

dent. Figure 8 still seems to have many triangles,
especially in its center, but close inspection will
show that every point is on some chordless cycle
of length 4, or greater. The reduced represen-
tation in terms of chordless cycles is shown in
Figure 8. It is a continuous image of the original
379 node network.

There is a treasure trove of sequential net-
works at www.boardsandgender.com/data.php

describing individual participation on Norwegian
corporate boards of directors.6 This is a monthly
sequence; for this paper we used August 2011.
Application of this reduction process to the 1421
node data set reveals that this network consists of
126 connected components. The largest of these,
and only one of any interest, is shown as Fig-
ure 1 in Opshal [30]. Our process reduced it to
the 103 nodes shown in Figure 9. Each node is
labeled with the number of nodes it subsumes.
Those nodes which have many subsumed nodes,
such as [67] suggest the presence of “communi-
ties” [9]. The actual community structure can
be refined using local methods [4, 41]. Extended
chordless cycles, such as the emboldened path
< 1 − 2 − 7 − 1 − 37 > in the lower right sec-

6This resource has been made available by Seierstad
and Opshal [39].
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Figure 9: Chordless cycles of Norwegian directorate network.

tion invite a more careful inspection. One such
is shown in Figure 10.
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Figure 10: Expanded detail of lower right path
of Figure 9

4.2 Expanded Neighborhoods

Throughout this paper we have assumed that
the neighborhood of a set, or point, consists of
those points directly connected to it by an edge

in A. And we defined the closure operator, ϕη,
accordingly. But other network neighborhoods,
and other network closures are possible.

Suppose we define the neighborhood of a set
Y to be all points connected by paths of at most
2 edges; that is Y.η = {x|∃y ∈ Y, d(x, y) ≤ 2}
where d(x, y) denotes the “distance” between x

and y, or number of edges in a shortest con-
necting path [1, 15]. Alternatively, we could use
A2 = A×A to represent “adjacent” points.

Regardless of the neighborhood concept,
neighborhood closure is defined as in (1).

Network reduction of Figure 1 using these ex-
panded neighborhoods yields Figure 11. Here the
65 nodes of Figure 8 have been reduced to 33.
The 32 points subsumed by these larger neigh-
borhoods, together with their incident edges have
been indicated by dashed lines. Readily, it is an
even simpler rendition of Figure 1 than Figure 8.

Care must be taken when interpreting Figure
11. For the sake of clarity, the illustrated connec-
tions/edges are those of Figure 8; however the
actual neighborhoods of these remaining points
consist of all points one, or two, steps away. Also
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Figure 11: Newman’s network reduced using expanded neighborhoods.

characterization of the chordless cycles becomes
more complex. For instance, 4-cycles can no
longer be chordless.

For very large networks of thousands of nodes,
it is likely that expanded neighborhoods of depth
k > 2 will be needed to significantly simplify and
display their structure. This remains to be ex-
plored.

4.3 Asymmetric Neighborhoods

We defined the “neighborhood” of a point as el-
ements connected to it by an edge; but that is
only a formal representation. The real “neighbor-
hood” of a point, or person, are those points (per-
sons) that are somehow “close” or “connected”
to it. The edges of the network are only a for-
mal representation of that connection. However,
connections in a social network, such as “friend-
ship”, need not be bidirectional, or symmetric.
We may have a “directed” edge. Neighborhoods
can still be defined in terms of points that can be
reached in one, or more, steps; and a neighbor-
hood closure can be still be defined by (1). All
of our development has been couched in terms
of sets of neighbors without reference to specific
“edges”, and we know of no instance where sym-

metry has been assumed. So all these results
should be true for arbitrary neighborhoods, even
though we have provided no examples.

The case when A is antisymmetric, so A is a
partial order, and the closure is a path closure
has been well studied [33]. It is the intermediate
situations that are unknown, and interesting.

4.4 Fuzzy Closure

With neighborhood closure, as defined in Section
2.1, a point z in the neighborhood of a set Y is in
Y -closure if its neighborhood, z.η is completely
contained in Y.ρ. Thus for z to be subsumed by
a single point y, as in Section 4.1, all the neigh-
bors/connections of z must already be neighbors
of y. This is asking for a great deal, and it is
rather surprising that the form of network reduc-
tion described above works as well is it does on
real networks.

When y and z are individuals we
would be more likely to say z is tightly
bound to y if “almost all” of z’s attach-
ments/connections/neighbors are neighbors of
y. Can such a fuzzy concept of closure be made
rigorous?
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Let us define a fuzzy neighborhood closure,
ϕf by Y.ϕf = Y ∪ {w ∈ Y.η : |w.ρ−Y.ρ| ≤ 1},
that is w can have one independent attached
neighbor and still be considered to be in the clo-
sure Y.ϕf . We use the intersection property of
closure systems to show:

Proposition 4.1 ϕf is a closure operator.

Proof: Let X and Z be closed w.r.t. ϕf . We

claim that Y = X ∩ Z is also closed w.r.t. ϕf , that

is Y.ϕf = Y . Suppose not, then ∃w ∈ (X ∩ Z).ϕf ,

w 6∈ X ∩ z. Let y ∈ (X ∩ Z).ϕf . If y 6∈ X, there

exist at least two neighbors u, v ∈ y.η, u, v 6∈ X,

so u, v 6∈ X ∩ Z contradicting the assumption that

y ∈ (X ∩ Z).ϕf . So y ∈ X.

Assuming y 6∈ Z leads to precisely the same contra-

diction, so y ∈ X ∩ Z.

Readily, Y ⊆ Y.ϕη ⊆ Y.ϕf so this fuzzy closure
yields a coarser network structure. For example,
the only non-trivial fuzzy closed sets of the graph
of Figure 2 are abd, efgh, and h

Because ϕf is a closure operator, many of the
preceding propositions are still valid; some are
not. For example, the chordless cycle property
(2) does not hold; Y.ϕf 6⊆ Y.ρ. If S = (Z, A) with
Z being the integers {1, . . . , n} and (i, i+1) ∈ A,
then the only closed sets are Ø and Z. No non-
empty subset of Z can be closed. Because of the
behavior of fuzzy closure in this last example, re-
duction of the network of Figure 1 using it yields
only a single point! Nevertheless, the fact that
one can define a fuzzy closure indicates the pos-
sibility of use in very large networks or in other
kinds of social network analysis.

5 Summary

The results of this paper provide a rigorous math-
ematical foundation for studying the continuous
transformation of large social networks. The
characterization is based on local changes to the
graph, or network, not some average global prop-
erty. But, “continuity” has always been a local
concept couched in terms of very small changes in

the pre-image space.7 However, Proposition 3.1,
the example of f3 in Figure 4, and our application
of Proposition 3.11 to network reduction demon-
strate that global change, which is the compo-
sition of smaller continuous steps, may also be
characterized as “continuous”.

Unlike the traditional approach to continuity,
the concept of the “closed set” structure of a net-
work leads to its chordless cycles. Perhaps the
idea of a neighborhood, Y.η, comes closest to em-
bodying the concept of “nearby points”, and thus
an “open” set.8 However, neighborhoods have
few of the key properties of open sets, and trying
to fit them into this role seems futile.

While, the introduction of closed sets to the
study of transformational change has resolved
a number of key issues, there are many more
yet to explore. For example, suppose there ex-

ist two continuous transformations G
f

−→ G′ and
G′

g
−→ G. In what way must G and G′ be simi-

lar, if at all? How does the chordless cycle struc-
ture change under continuous, and discontinuous,
transformations? In Section 4.4, we show that
a form of fuzzy closure can be defined, but we
have not explored it rigorously. What properties
might fuzzy continuity have?

Finally, we suspect that asking “is f is contin-
uous?” is the wrong question. It is likely that
asking “why is f continuous everywhere in the
region Y , but discontinuous near its boundary?”
and “what social forces cause this to happen?”
will be more fruitful. In any case, it seems clear
that abstract networks are a useful model of so-
cial connections and that a mathematically rig-
orous analysis of large social networks based on
closed sets can be quite rewarding.
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