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Abstract

In this paper, a category of undirected graphs is introduced where the
morphisms are chosen in the style of mathematical graph theory rather than
as algebraic structures as is more usual in the area of graph transformation.

A representative function, ω, within this category is presented. Its in-
verse, ω−1, is defined in terms of a graph grammar, ε.

1 The abstract category

Hartmut Ehrig was one who helped introduce the graph grammar community (Gra-
Gra) to the concept of categories [7]. In this short paper we apply some of his vision
to develop a category of undirected graphs. A graph (V,E) is undirected if its edge
setE consists of sets {x, y}, not ordered pairs. It is not hard to characterize one ver-
sion of this category. It consists of obj = UG, the collection of all finite undirected
graphs, together with hom = all functions, f : G → G′, where G,G′ ∈ UG, with
composition, that is f : G→ G′, g : G′ → G′′ implies f ·g : G→ G′′ ∈ hom. Let
G = (V,E) and G′ = (V ′, E′). By f : G → G′ we mean f : 2V → 2V

′
subject

to appropriate constraints with respect to the edge sets E and E′.1 But, without
specifying these constraints this kind of category conveys little information.

More interesting is the subcategory whose functions f, g are continuous (see
below). Continuity in the familiar continuous manifolds, such as R or C, is defined
in terms of open sets. With discrete, or finite, graphs it can be better defined in
terms of closed sets.

Let ϕ denote an arbitrary closure operator on an arbitrary collection, 2V , of
sets, that is for all subsets X,Y,∈ 2V , ϕ is expansive (Y ⊆ Y.ϕ), monotone (X ⊆

1The codomain 2V
′

of f need not be 2V , and its edge set E′ need not have the same structure as
E. Therefore, elements of the codomain are denoted with a prime.
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Y implies X.ϕ ⊆ Y.ϕ) and idempotent (Y.ϕ.ϕ = Y.ϕ).2 Such closure systems
(2V , ϕ) are rather well studied, since they include matroids and antimatroids [2, 3,
4, 5, 6, 9]. More importantly, we can now define what we mean by a continuous,
discrete, set-valued function f . A function f : (2V , ϕ) → (2V

′
, ϕ′) is said to be

continuous [12, 13] if for all Y ⊆ V ,
Y.ϕ.f ⊆ Y.f.ϕ′

We observe that the closure operator, ϕ′ on V ′ need not be the same as ϕ on V . To
obtain a category, we must now show that the composition of continuous functions
f ·g is continous. But, they need not be. The composition f ·g of continuous, set-
valued functions will be continuous provided f and g are also monotone [13]. To
create a subcategory, we need both properties.

Suppose the functions f and g are also “closure preserving”, that is the image
of any set Y , closed with respect to ϕ will be closed with respect to ϕ′. In this case,

Y.f.ϕ′ ⊆ Y.ϕ.f
so Y.ϕ.f = Y.f.ϕ′, yielding the categorical diagram

Y

Y’

Y. ϕ
ϕ

ϕ
Y.f.   ’ϕ

’

f f

Figure 1: A typical categorical diagram

The preceding discussion creates a subcategory of continuous set-valued func-
tions. But as yet, it has nothing to do with undirected graphs!

As before, let obj be the set of all undirected graphs, G = (V,E) where V
is a set of vertices, points, or nodes and E is a symmetric binary relation on V ,
commonly called the edge set. Now, we consider hom to be the collection of all
continuous, monotone, set-valued functions mapping subsets of the vertex (point,
node) set, V of G into subsets of the vertex set V ′ of G′. We expect, somehow,
that the closure operator on these graphs should reflect their edge structure. Let η
be an operator on 2V such that y ∈ {x}.η and x ∈ {y}.η if and only if {x, y} is an
edge in G. It is convenient if η, a neighbor operator is reflexive, that is x ∈ {x}.η.
We, now, extend η to subsets Y ⊆ V by Y.η = ∪y∈Y {y}.η. Some texts call
these “closed neighborhoods”.3 In the case of undirected graphs we prefer to use

2We use suffix notation to denote the application of set-valued operators and functions.
3This is a common terminology, but unfortunately such “closed neighborhoods” are not “closed”.

The intersection of closed sets must be closed, but it easy to show that this is seldom true with “closed
neighborhoods”.
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neighborhood closure ϕη, defined below

Y.ϕη = {z|{z}.η ⊆ Y.η} (1)

Because η is reflexive, ϕη is expansive; it is monotone by construction; and idem-
potency is not hard to prove [15, 16].

Now we have the makings of a category, UG, of undirected graphs consisting
of obj = the collection of all undirected graphs, and hom = all monotone, set-
valued functions f : 2V → 2V

′
that are continuous with respect to ϕη. It is

worth observing that this development allows us to continuously enlarge graphs by
a function f : 2V → 2V

′
in which Ø.f = X ′ ⊆ V ′4 and to contract graphs with

g : 2V
′ → 2V

′′
where Y.g = Ø ⊆ V ′′. It is convenient to employ the notation

f : G → G′ with the understanding that f is really defined on the power sets of
V and V ′ and that f is continuous with respect to a closure operator ϕ on the edge
set/relation E.

Is UG anything more than an abstract category? Are there really functions in
hom?

In the next section we present two graph transformations which define ω ∈
hom and ε ∈ hom. Both have been implemented as algorthmic computer pro-
grams.

2 Two functions in hom(UG)

Let G be a graph (V,E), with a neighborhood operator η. Suppose z ∈ {y}.ϕη,
implying by (1) that {z}.η ⊆ {y}.η. Since {z}.ϕη = {y}.ϕη, the set {z} con-
tributes nothing to the closure structure of G; it can be removed from G with little
loss of information. We define the transformation ωz : G → G′ by {z}.ωz = Ø
where ωz is the identity map on V − {z}, Y ⊆ V , and {u′, v′} ∈ E′ if and only
if {u, v} ∈ E, u, v 6= z. We say z has been subsumed by y. It is not hard to show
that ωz is both monotone and continuous since z ∈ {y}.ϕη

2.1 Reduction, ω

A computer procedure, reduce implements ω. It repeatedly sweeps through all
vertices y ∈ V , deleting any vertices zi ∈ {y}.ϕη, together with all edges incident
to zi, until no such z remain in V .5 That is, ω = ωz1 ·ωz2 · . . . ·ωzn . Since each ωzi

4We modify the usual definition of monotonicity to read: X ⊆ Y implies X.f ⊆ Y.f , provided
X 6= Ø.

5This procedure has been quite effective reducing large graphs |V | ≥ 1, 000, with at worst 6
iterative sweeps of V .
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is monotone and continuous, ω is as well, that is Y.ϕη.ω ⊆ Y.ω.ϕη
′. The process

terminates when every singleton subset {y} ⊆ V is closed. Such a graph is said to
be irreducible.

It can be shown that G′ = G.ω is unique (up to isomorphism) regardless of
the order in which the vertices y ∈ V are visited by ω or the order in which
vertices z ∈ {y}.ϕη are deleted [15, 16, 17]. So ω is a well defined function
in hom(UG). Because every singleton set (vertex) in G′ is closed, ω must also
be closure preserving, with Y.ω.ϕη

′ ⊆ Y.ϕη.ω, so the diagram of Figure 1 is
applicable when f = ω.

In Figure 2, the graph G of 18 vertices is reduced to G′ = G.ω with 10 re-
maining vertices. In G, the dashed lines encircle the vertices that were subsumed
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Figure 2: Reduction, ω, of a graph G

by 2′, 3′, 15′ and 17′.
Irreducible graphs, such asG′, have a number of interesting properties. It is not

hard to show that G′ consists of a collection of chordless cycles of length ≥ 4. By
a “chordless cycle” we mean a sequence of vertices < y1, y2, . . . yn, y1 >, where
{yi, yi+1} ∈ E, 1 ≤ i ≤ n − 1, and where {yi, yi+k} 6∈ E for k ≥ 2. Of course,
we also require {yn, y1} ∈ E. It’s a “pearl necklace” without cross connections.
Because there can be no cross connecting edges of the form {yi, yi+k}, k ≥ 2, each
cycle Cα, when considered strictly as a “set” of vertices, is a member of a Sperner
set [8]. That is, given a ground set V , for all cycles Cα, Cβ ⊂ V , Cα 6⊆ Cβ .
Besides the interesting combinatorics associated with Sperner sets, this permits
various computer algorithms to process irreducible graphs solely as set systems
without regard to individual edges. This reduction, G.ω, of G to an irreducible
graph G′ has a number of other intriguing properties [17], such as the preservation
of paths, of the graph “centers”, but this is not relevant to this paper.
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2.2 Expansion, ε

It is fairly easy to define the treatment of edges in a function, such as ω, that

contracts a graph. If Y
f−→ Ø, then all edges {y, z} such that y ∈ Y, z ∈ Y.η can

be deleted. Expanding a graph, Ø
g−→ Y ′, presents more problems. How is Y ′ to

be embedded in G′? One option is to employ an expansion grammar ε, such as
explored in [14]. Expansion grammars are quite different from phrase-structured
grammars in which a non-terminal symbol A is expanded with a rewrite rule of the
formA→ σ [20]. The problematic aspect of a phase-structured grammar, explored
by Ehrig in [7], is how is the right side σ of the rewrite rule to be embedded in the
growing, non-linear structure.

In an expansion grammar, a subset Y of a growing structure is first identified to
be the neighborhood of a new element p′. That is {p′}.η′ = Y ⊆ V in the rewritten
structure. More precisely, εi : (Vi, Ei) → (Vi+1, Ei+1) where Vi+1 = Vi ∪ {p′i},
Ei+1 = Ei ∪ {{yk, p′i}, yk ∈ Y ⊂ Vi} and εi : Ø = {p′i}.

The set-valued procedure, ε can then be defined as a graph grammar with any
set of specified rewrite rules, or productions. The following example of an expan-
sion grammar is also given in [14]. Consider the rewrite rule r1 below,

r1 : Kn
ε−→ : p′ n ≥ 1

which specifies that any complete subgraph, Kn, (or clique) of order n in V can
serve as the neighborhood of a new point p′ provided n ≥ 1.6 Every point in K ′n
will be adjacent to p′ in G′. Call the application of a rewrite rule a step, εi, in the
process ε. It is a well defined operation in which Ø.εi = {p′}. The left side of the
rewrite rule defines its embedding neighborhood. The right-most part defines any
conditions on this neighborhood.

Application of r1 is illustrated in Figure 3. Each expanded neighborhood (in
this case clique) has been made bold; and the expansion point, p′, circled. The
dashed edges indicate those links which define the clique as the neighborhood of
the expansion point p′. It is not hard to see that any graph generated in this fashion
must be chordal.7

A more relaxed version of the rewrite rule r1 above, will allow Y , the new
neighborhood of p′, to be any subset of the neighborhood of an existing vertex
y ∈ Vi. Specified as a rewrite rule r2 it is,

r2 : Y
ε−→ : p′ ∃y ∈ Vi, Y ⊆ {y}.η

Figure 4 shows one possible application of this expansion grammar ε to the graph
G′ of Figure 2. Here, the rewrite rule r2 has been used 8 times, to create a, b, . . . h.
The vertex d is generated by r2 using the neighborhood {17}.η = {15, 17, 18} =

6A graph, Kn is complete if all n nodes are mutually connected by an edge.
7Because extreme points are simplicial (neighborhood is a clique), and because every chordal

graph must have at least two extreme points [9, 10], every chordal graph can be so generated.
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Figure 3: A sequence of neighborhood expansions generating chordal graphs
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Figure 4: A member of G′.ε where G′ = G.ω in Figure 2.

{d}.η′. The new vertex c was attached to {1, 15} ⊂ {1, 2, 3, 15} = {1}.η; and f
was later attached to {1, c} ⊂ {1}.η.

2.3 The Inverse Set, ω−1

The two procedures ω and ε are intertwined. The requirement in the second rewrite
rule r2 that {p′}.η = Y ⊆ {y}.η ensures that if ω is applied to G′.ε, p′ will at
some iteration be subsumed by y. Thus, if G′ is irreducible, G′.ε.ω = G′ This
characteristic is evident in Figure 4 where b will be subsumed by 3, etc. It is also
true for the graph G′.ε of Figure 5 as well. Consequently, ω is a right-inverse of
ε over the subspace of irreducible undirected graphs. The inverse of ω, that is
G.ω.ω−1 is the collection of all undirected graphs {Gk} such that Gk.ω = G′ =
G.ω. Each invocation of the non-deterministic procedure ε is single-valued; but ε
is not a function. The execution of ε will yield a graph, Gk ∈ G.ω.ω−1.
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In the rewrite rule r2 the choice of y ∈ Vi and the choice of Y ⊆ {yi}.η are
completely arbitrary. Given different choices for y and Y yields Figure 5 which
seems to be a far more interesting graph. Both Figures 4 and 5 were generated by
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Figure 5: Another graph G′.ε in G′.ω−1.

a computer version of ε using a random number generator.
This is not the only category of undirected graphs, but it is a promising one

[18]. Unfortunately, undirected graphs, and mappings between such graphs, have
little of the regular structure seen in the different abstract algebras that gave rise to
the categorical approach of [1, 11, 19], or that of [2] which was applied to general
closure operators. Yet, the rudiments are there, as this short treatise shows. In the
early 70’s, Hartmut Ehrig urged us to view graph grammars and graph manipula-
tion through a categorical lens. He was ahead of his time.
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