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Abstract

This paper presents two computable functions, ω and ε, that map net-
works into networks. If all cognition occurs as an active neural network, then
it is thought that ω models long-term memory consolidation and ε models
memory recall. A derived, intermediate network form, consisting of chord-
less cycles, could be the structural substrate of long-term memory; just as the
double helix is the necessary substrate for genomic memory.

1 Introduction

There seems to be consensus that our sensations, ideas, and memories are really
just active networks of neurons in our brains [18, 40]. And we have a good idea
where in the brain specific kinds of mental activity occur, e.g. [26, 37] But, to our
knowledge, no one has any idea as to what kinds of networks correspond to any
specific sensation, concept or memory.

We know that neurons can stimulate other neurons by means of electric (or
chemical) charges proceding along an axon to one, or more, synapses [39]. That
would suggest that a directed, asymmetric network is a reasonable model. How-
ever, such an asymmetric network may best model neuronal behavior, but not neu-
ronal state. Many neurons are interconnected by dendrites. These are thought to
be bi-directional, thus implementing symmetric relationships that may recognize a
state necessary to activate a neuron.

Given this state of uncertainty, we have chosen to explore symmetric relation-
ships, or graphs or networks, in this paper. Some of the mathematical results we
present may be true as well for asymmetric (directed) networks; some would re-
quire minor rewording; and some will no longer be true at all.
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Regardless of whether our neural networks are essentially symmetric or asym-
metric, it would appear that a mathematical treatment of networks, or graphs, or
relationships is a fruitful way to approach them. That we will do in this paper
which is an expanded version of [36].

In Section 2, we clarify our interpretation of relationships and their visual rep-
resentation as graphs or networks. We also introduce the concept of “closure”. In
Section 3, we describe a computational process, ω, which reduces any network to
its unique, irreducible “trace”. We will claim that this procedure appears to model
the process of long-term memory “consolidation”.

The ω process is a well-defined function over the space of all finite networks
in that for any network N , ω yields a unique irreducible trace T . Thus the inverse
set, ω−1, defines the abstract set of all networks that reduce to the same specific
irreducible trace. In Section 4, we present a computational process which gener-
ates specific members within ω−1. We will argue that this can model “memory
reconstruction”.

In Section 5 we present additional evidence to support our claims to model
long-term memory consolidation and recall. Certain mathematical details are de-
veloped in an appendix, Section 6.

2 Sets, Relations, and Closure

Our computations are set based. The nature of the elements comprising the sets
play no part, and can be quite arbitrary. So unlike most computational systems
in which the variables will be int or float, our variables have type setid.
We program using a set manipulation package in C++ with operators such as
is contained in and union of. Sets themselves are represented as exten-
sible bit strings, so that the operators above are effectively of order O(1). There is
no theoretical upper bound of these sets, but we have not tested it with sets of car-
dinality exceeding 50,000. A somewhat fuller description is given in [28]. All the
following set-based operators and procedures have been implemented, and fully
tested, using this system.

We use a standard set notation. A set S is comprised of elements {a, b, . . . , y, z}
of unspecified type. The curly braces { } indicate that these elements are regarded
as a “set”. Sets are denoted by upper case letters, e.g. X, Y ; elements are always
lower case, e.g. x, y. Sometimes we elide the commas, as in Y = {abc}.

If an element x is a member of the set X , we write x ∈ X . If a set X is
contained in another set Y , that is, x ∈ X implies x ∈ Y (here x is a variable
running over all elements of X), we write X ⊆ Y . If the containment is strict,
that is there exists y ∈ Y , y 6∈ X , we write X ⊂ Y . By X ∪ Y and X ∩ Y we
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mean the union and intersection (meet) of X and Y respectively.
One may have a “set of sets”, which we call a collection, and denote with a

caligraphic letter. Thus we may have X ∈ C.

2.1 Relationships

Let S be any set. A relation, η, on S is a function, which given any subset Y =
{y1, y2, . . . , yk} ⊆ S returns the related set Y.η = {z1, z2, . . . , zn} ⊆ S. This is
a bit unusual. It is more common to think of relations as links, or edges, between
elements, such as illustrated by the undirected graph, or network, of Figure 1,
which we will use as a running example. η is sometimes regarded as a set of
“edges” in a graph theoretic approach. But we prefer to define relations in terms of
sets and functional operators. It provides an additional measure of generality which
can be of value. We emphasize this set-based definition by using suffix notation,
such as Y.η to mean the set of elements {z} that are related to Y by η. We call Y.η
the neighborhood of Y . In Figure 1, {a}.η = {a, d, f}, {d}.η = {a, b, d, f, g},
and {a, e}.η = {a, b, c, d, e, f, h}.

a

b

c

d

e
h

f

g

Figure 1: A small network illustrating neighborhood properties

If η has the property that
P1: Y.η =

⋃
y∈Y {y}.η (extensibility)

that is, Y.η is the union of all the subsets {y}.η for all y ∈ Y , we say that η is exten-
sible, or graphically representable, so that Figure 1 is an accurate representation
of η.

If the relationship is not extensible, then it constitutes a “hypergraph” [4, 12].
To more easily illustrate the concepts of this paper with graphs, we will assume
that η is extensible; but unless explicitly noted none of the mathematical asser-
tions require it. Moreover, we observe that for large, sparse relationships, matrix
representations and operations are quite impractical [44].

In addition to extensibility, P1, a relationship η may also have any of the fol-
lowing 3 properties: that for all X,Y ⊆ S,
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P2: Y ⊆ Y.η (expansive or reflexive)1

P3: X ⊆ Y implies X.η ⊆ Y.η (monotone)2

P4: X.η = Y implies Y.η = X (symmetric)3

The relation of Figure 1 is symmetric; its graph is undirected. By a network,
N = (N, η), we mean a setN of nodes or elements, together with any relationship
η. For this paper, we require that η satisfy the functional properties P2, P3 and P4.

2.2 Closure

The mathematical concept of “closure” plays a key role in our approach. In a
discrete world, the interpretation of closed sets is somewhat different from the
more traditional concepts encountered in classical point-set topology. Our view is
that a closure operator, ϕ, is a set-valued function whose domains are also sets.
If Y denotes any set, Y.ϕ denotes its closure; that is it is the smallest closed set
containing Y . Thus, like η, ϕ is a well-defined function mapping subsets, X,Y ⊆
N of a given network into other subsets of N . More formally, ϕ is a closure
operator that satisfies the following 3 closure axioms, C1: expansive (Y ⊆ Y.ϕ),
C2: monotone (X ⊆ Y implies X.ϕ ⊆ Y.ϕ), and C3: idempotent (Y.ϕ.ϕ = Y.ϕ).
Readily, any relationship operator, η, satisfying properties P2 and P3 is almost
a closure operator. It has only to satisfy the idempotency axiom. But normally,
Y.η ⊂ Y.η.η since neighborhoods tend to grow.

An alternative definition of closure asserts that a collection C = {C1, . . . , Cn}
can be regarded as the closed sets of a superset S if and only if C4: the intersection
Ci ∩ Ck of any these closed sets is itself closed (in C). It is not difficult to prove
that C4 implies C1, C2, and C3, and conversely.

We normally think of closure in terms of its operator definition. Because ϕ is
expansive, C1, the superset S must be closed; by C4, if any two closed sets are
disjoint, the empty set Ø must also be closed.

2.3 Neighborhood Closure

One important closure operator ϕ, called neighborhood closure, can be defined
with respect to network relationships. We let

Y.ϕ =
⋃

z∈Y.η
{{z}.η ⊆ Y.η} (1)

1This is primarily for mathematical convenience.
2Probably essential. If η is not monotone, we can prove very few mathematical results of interest.
3Unnecessary, relaxed in other papers such as [34, 35].
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That is, if z ∈ Y.ϕ then z is not related to any elements that are not already related
to Y . Readily, since {a}.η = {adf} ⊆ {abdfg} = {d}.η in Figure 1, a ∈ {d}.ϕ.
Convince yourself that {d}.ϕ = {adf} and {h}.ϕ = {h}. It is not hard to show
that ϕ, so defined with respect to η satisfies the closure axioms C1, C2 and C3 and
that for all {y}, {y} ⊆ {y}.ϕ ⊆ {y}.η.

3 Irreducible Networks

We are fairly sure that all mental activity, that is sensory apprehension, cognition,
and ideation are creatures of our brain’s neural system and we know what parts of
the brain this activity is located [17, 20, 40]; but what configurations of activated
neurons might correspond to a particular experience or idea is totally unknown.
The 206 interconnected nodes of Figure 2, some of which have been labeled with
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6

Figure 2: A moderately complex network whose nodes and links might model a
neural configuration [5, 6].

letters and integers, may be thought to schematically represent a momentary con-
figuration of neurons in a mental process. Assuming this, we ask how could this
mental experience be “remembered”?

5



If a singleton set {y} is not closed, say z ∈ {y}.ϕ, then {z}.η ⊆ {y}.η, so z
contributes little to understanding the structure of η in terms of closure. In Figure
2, {4}.ϕ = {3, 4, 5, 6}. Removing the nodes 3, 5, and 6, and their connections to
4, results in minimal information loss with respect to η as a whole. However, with
these nodes gone, we now have {4}.η = {a, 1, 4} ⊆ {a, 1, 2, 4} = {a}.η. So the
two elements, 1, 4, and their connections can be removed as well. In fact the entire
pendant substructure {1, 2, 3, 4, 5, 6} on {a} can be removed with no loss of global
information. If it is removed {a}.ϕ = {a}, so {a} is closed.

We say a network N = (N, η) is irreducible if every singleton set, {y}, is
closed. That is, if for all y ∈ N , {y}.ϕ = {y}. In Figure 2, {f}.ϕ = {f}, but
from observations above, the entire network is not irreducible.

If {y} is not closed, only elements z in {y}.η could possibly be in {y}.ϕ so
only those need be considered. If {z}.η ⊆ {y}.η so that {z}.ϕ ⊆ {y}.ϕ, we say z
is subsumed by y, or z belongs to y. We can remove z from N , together with all
its connections, and add z to {y}.β, the set of all nodes belonging to {y} which we
call its β-set. Since, y ∈ {y}.β, its cardinality, or β-count, |{y}.β| ≥ 1, a value
we will use in the next section. We use the pseudocode of Figure 3 to implement
the process ω that reduces any network N to its irreducible core, which is called
its trace, T .4 This version of ω only records β-counts, not entire β-sets.

while there exist reduceable nodes
{
for_each {y} in N

{
get {y}.nbhd;
for_each {z} in {y}.nbhd - {y}

{
if ({z}.nbhd contained_in {y}.nbhd

{ // z is subsumed by y
remove z from network;
|{y}.beta| = |{y}.beta| + |{z}.beta|;
}

}
}

}

Figure 3: Reduction code, implementing ω

The irreducible trace, T , of Figure 2 is shown in Figure 4. The trace is the dark
network on the 83 elements with 234 bolder connections. Sets of subsumed nodes,
or β-sets, have been encircled with dashed lines. The largest β-set, comprised of 12

4In [33], this was called the “spine” ofN .
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Figure 4: The irreducible trace T of Figure 2

nodes, is {y}.β in the upper right corner. The β-set {a}.β in the lower left corner
consists of 7 nodes (including a itself). A total of 123 nodes were subsumed and
eliminated.

In this particular network the outer loop of Figure 3 was executed 4 times with
a 5th pass to verify that there remained no more reduceable nodes. The order in
which individual nodes y are examined is arbitrary. One can create networks that
require n = |N | iterations of this outer loop. So this process has a theoretical
complexity of O(n2). However, in tests with rather complex networks of several
thousand nodes, the maximal number of iterations has never exceeded 7. Its ef-
fective complexity appears to be quite reasonable. Moreover, because of its local
nature, the inner loop could be easily implemented in parallel.

We keep speaking of the function ω. It can be shown (see Section 6), that
for any network N , its irreducible trace, T , is unique (up to isomorphism). There-
fore, the pseudocode of Figure 3 does indeed embody a well-defined computational
function which we denote by ω. Not only is ω a function, we can actually charac-
terize its image, T = N .ω. When η is symmetric, if y is a node in T = N .ω, then
y will be either: (a) an isolated node; (b) an element of a chordless cycle of length
≥ 4; or (c) an element in a path between two chordless cycles of length ≥ 4 (again
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see Section 6).

3.1 Chordless Cycles

A chordless cycle is most easily visualized as a necklace of pearls (or beads).
More formally, it is a sequence < y1, y2, . . . , yn, y1 > where yi±1 ∈ {yi}.η,
y1 ∈ {yn}.η and yi±k 6∈ {yi}.η if k > 1. In Figure 1 the 5-cycle< b, d, g, h, e, b >
is chordless. In Figures 2 and 4 the 5-cycle < a, b, i, j, k, a > is also chord-
less, as is the 8-cycle < b, c, d, e, f, g, h, i, b >. But the combined 11-cycle <
a, b, c, d, e, f, g, h, i, j, k, a > is not. The link (b, i) is a chord.

Granovetter [19] called chordless cycles the “weak connections” of a social net-
work. He felt they were the key to understanding the network structure as a whole.
However, chordless cycle structures have been relatively unstudied, while “chordal
graphs” (with no chordless cycles) have an exhaustive literature [25]. Even when η
is not symmetric, chordless cycles are basic to the characterization of an irreducible
trace [35].

We can explore the mathematical properties of chordless networks a bit further.
If some collection, S, of subsets Ci of elements in S has the property that no set Ci

is completely contained in another, then Sn, where n = |S|, constitutes a Sperner
system.5 Such systems are so called after Emanuel Sperner who first described
them [11]. With a little thought, we see that if Ci and Ck are chordless cycles, then
Ci cannot contain Ck. Consider C1 and C2 in Figure 2, C2 is a subset of C1 so
C1 cannot be chordless, and indeed it is not. Consequently, a system of chordless
cycles {Ci} constitutes a Sperner system, Sn, with each cycle being a unique set
in this system. This allows us to treat chordless cycles as sets of elements, without
considering links or edges.

The primary interest in Sperner systems has been combinatoric, that is count-
ing how many distinct Sperner systems on n elements can exist. That number is
exceedingly large. For example, if n = 7, there are S7 = 7, 581 distinct config-
urations where no subset is contained in another. This combinatoric result assures
us that if memories are encoded as chordless cycles, it will be very rich in coding
possibilities.

This trace, T , of chordless cycles preserves a number of important properties
found in the original network, N . First, it preserves the shortest path structure
between retained nodes. Consequently, connectivity and the distances between
nodes (as usually defined) are preserved. Further, “network centers”, [3, 13, 14],
whether with respect to distance or “betweenness”, are preserved in the trace.

When η is not symmetric, the reduction process ω still yields a unique irre-
5A collection of subsets {Ci} is a Sperner system if Ci 6⊂ Ck for all i 6= k.
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ducible network T ; but the characterization preceeding Section 3.1 above no longer
holds. Instead, when η is not symmetric, then for all y ∈ T = N .ω, if there exists
z ∈ {y}.η then there exists a directed path from y through z that terminates in a
chordless cycle of length ≥ 4. That path may itself be the chordless cycle.

3.2 Distribution of Chordless Cycles

The combinatorics of Sperner sets provides one mechinism for encoding informa-
tion. The distribution of cycle lengths in a single irreducible network provides
another. Counting the numbers of cycles of length k in a specific chordless net-
work, N , is not easy. Using the Sperner set property, the author has employed a
brute force counting process that is limited by the size of N . Diane Castonguay,
Elisangela Silva Dias et al. have developed more effective ways of counting [9, 21].
In [33], this distribution is called the signature of the network. The average cycle
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Figure 5: Distribution of chordless cycles in the irreducible trace of Figure 4.

length is 23.4 in this network and the 6 longest chordless cycles have length 35.

3.3 Consolidation

The physical nature of human long-term memory is not at all a settled matter. We
are fairly certain that the hippocampus of the brain is heavily involved [1, 16, 37];
but just how is not completely understood. One school of thought posits that long-
term memories are recorded in some form of “memory trace” [7, 42, 46, 38]. But,
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because no trace of these supposed “memory traces” has ever been physically de-
tected (pun intended), others disbelieve this theory [8, 27]. We explore the possi-
bility of biological “memory traces” in Section 5.2.

There is more consensus that some form of processing which distinguishes
long-term memory from short-term memory does occur. This process is commonly
called consolidation [2, 23, 27]. We believe that ω is analogous to consolidation,
and that chordless cycles, in some form, are analogous to the elusive “memory
trace”, whence our terminology.

4 Computing Similar Networks

Since ω is a well-defined function mapping the space of all finite, symmetric net-
works into itself, one can consider N .ω−1, which is the collection of all networks
N i such that N i.ω = T = N .ω. Two such networks, N i and N k, that have
the same irreducible trace are said to be structurally similar. Readily, structural
similiarity is an equivalence relation. Even though N k may be similar to N i, they
may have very different cardinalities. A networkN k(Nk, ηk) is said to be strongly
similar to N i(Ni, ηi) if N k.ω = N i.ω and |Nk| = |Ni|.

The pseudocode below in Figure 6 describes a computational process ε that,
given the trace T of a network N together with β-counts, randomly expands it to
a strongly similar network N ′ = N .ω.ε. The process choose random in returns

for all {y} in N
{
while (|{y}.beta| > 1)

{
create new node z;
S = choose_random_in ({y}.nbhd);
{z}.nbhd = S;
k = random_int(1, |{y}.beta|-1);
|{y}.beta| = |{y}.beta| - k;
|{z}.beta| = k;
add {z} to N;
}

}

Figure 6: Pseudocode for ε which generates strongly similar networks.

a random subset of its argument. Since {z}.η = S ⊆ {y}.η, the node z will be subsumed
by (or belong to) y if reduced again ensuring that N .ω.ε.ω = N .ω. When a node {y} is
expanded, its β-count is decremented, and if > 1, part of the remainder may be added to
the β-count of {z}. Consequently, by creating just as many new nodes as had belonged
to any node {y}, we ensure that |N ′| = |N |. This kind of ε process has been called an
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“expansion grammar” in [31]. The construction of ε, where {z}.η ⊆ {y}.η, assures us that
T .ε.ω will be T again. Consequently, for any network N ′ = T .ε, N ′ ∈ N .ω−1, so N ′
and N are structurally similar.

Let N be the network of Figure 2. The following Figure 7 shows a network N ′ that
was randomly expanded by ε, given the irreducible trace T of Figure 4. The numbered
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Figure 7: A reconstructed network N ′ = T .ε in N .ω−1 that is strongly similar to
N of Figure 2

nodes were randomly appended to the trace and roughly correspond to the 123 subsumed
nodes. They are numbered in the order that they were attached to the darker irreducible
trace. N ′ is strongly similar to the network N of Figure 2 because N ′.ω = T = N .ω.

Such a semi-random “retrieval” process may be inappropriate in computer applications
[35], but it seems to model biological recall rather well. It has been observed that the recall
and reconstruction of our long-term memories is seldom exact [23]. Our memories often
are confused with respect to detail, even when they are generally correct. Reconstruction
of a network trace by ε has these very properties.

Given that for all networks N , N .ω.ε.ω = N .ω = T , it also supports the notion of
“re-consolidation” which asserts than long-term memories are repeatedly recalled and re-
written with no change, unless deliberately distorted in our (semi)conscious mind [27, 45].
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5 Biological Memory
A computational model need not actually explain the behavior that it models. For example,
the path of a thrown projectile has an excellent parabolic model. However, further study
of this conic formulation contributes little to the understanding of either gravity or air
resistence. By the same token, there need not be closure operators or chordless cycles
involved in the performance of human memory, for the model to be valid. But, it would
be a powerful verification of this model if we could demonstrate the existence of chordless
cycle structures in a memory representation. We can’t. Neither, to our knowledge, does
anyone else know the the structural format of our long-term memory.

Throughout this paper we have suggested parallels found in various memory studies.
But, do these computational processes, ω and ε, really model biological memory? We just
don’t know. Are long-term memories really encoded as chordless cycles? In this section
we offer a few more tantalizing clues which may, or may not, be significant.

5.1 Role of Closure
We employed “closure” as the basic mathematical concept in the preceeding development.
But, are instances of closure actually found in biological organisms? We offer two sugges-
tive examples.

First, The visual pathway consists of layers of cells, beginning with the rods and cones
of the retina passing stimuli toward the primary visual cortex. The neurological structure
of this visual pathway is reasonably well understood, c.f. [18, 39, 43]. The individual
functions of its layers are less well so.

Imagine that Figure 8 depicts a cross section of the retinal region. Dark cells denote

Figure 8: Excited cells in a cross section of the visual cortex.

visually excited cells. Although tightly packed, the actual neuronal structure is not as
regular as this hexagonal grid; but this regularity plays no part in the process.

Let α be an existential operator defined as Y.α = black (excited), if and only if ∃z ∈
Y.η where z is black (excited). Let β be the existential operator defined by Y.β = white
(quiesent), if and only if ∃z ∈ Y.η such that z is white (quiesent). Figure 9(a) illustrates
the excited (small ×) neighbors of Figure 8. Figure 9(b) illustrates Y.α.β in which all
excited cells of Figure 9(a) that have at least one quiesent (white) neighbor become quiesent
(white). The resulting central figure becomes evident; it is a closed object, because the pair
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(a) (b)

Figure 9: (a) Y.α, excited cells, (b) Y.α.β, remaining excited cells.

of operators (α.β) is a closure operator. The pair (α.β) is idempotent because iterating
them, as in Y.(α.β).(α.β) yields no new black (excited) cells.

This two step operation can occur at the neural firing rate. It is an effective parallel
process that was first proposed to eliminate salt and pepper noise in computer imagery
[41]. Readily, such a “blob detection” capability would have evolutionary value. Does
such a capacity exist? We don’t know for sure. But, it is thought that the visual pathway is
organized in an alternating manner to facilitate precisely this kind of two-step processing
[43]. In any case, this example illustrates that this kind of all, or nothing, logic in which
“for all” (∀x) can be interpreted as “there does not exist” (¬∃¬x) needed to implement the
closure operator of (1) can be rendered in neural circuitry.

The second example is also “cognitive”. In the development of “Knowledge Spaces”
[10], Doignon and Falmagne call a coherent collection of facts or skills a “knowledge
state”. These are closed sets which are partially ordered by containment to form a lattice
structure [30], which they call a “knowledge space”. There is a considerable literature
concerning closed knowledge “states” and knowledge “spaces”.6 A somewhat similar ap-
proach to cognitive closure was presented in [34]. Closure operators can be an important
aspect of cognitive behavior.

5.2 Role of Chordless Cycles
Also central to our paper is the concept of “chordless cycles” which constitute the structure
of an irreducible trace. Surprisingly, chordless cycles abound in all biological organisms
as protein polymers.

One example, found in every cell of our bodies, is a 154 node phenylalaninic-glycine-
repeat (nuclear pore protein), N , which is shown in Figure 10.7 One can easily see the
chordless loops, with various linear tendrils attached to them. When these are removed by

6Cord Hockemeyer, http://www.uni-graz.at/cord.hockemeyer/KST Bibliographie/kst-bib.html,
maintains a bibliography of over 400 related references.

7This network, N , that we received from a lab at Johns Hopkins Univ. was only identified as
GrN2. We believe it is an natively unfolded phenylalanine-glycine (FG)-repeat [24].
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Figure 10: A 154 node protein polymer

ω, there are 107 remaining elements involved in the chordless cycle structure. These are
thought to regulate transport of other proteins across the nuculear membrane [15, 29, 47].

Readily, organisms with any form of memory, e.g. “movement toward light yields
food”, have survival benefit. Nature appears to reuse successful structures. If chordless
cycles can successfully regulate one form of transport, it would not be surprising if evolu-
tionary pressure led to their use in other control mechanisms.

Moreover, modification of protein polymers by means of phosphorylation [48] is thought
to be involved in short-term memory [23]. For long-term memories, chordless cycles
within the dendritic connections between pyramidal neurons seem more likely [22, 38].

But is there reason to suspect that memory has any “structural” properties at all?
Perhaps the most important biological memory mechanism is our genetic memory

which records the nature of our species. It is known to have a double helix structure which
facilitates a near perfect recall. These coded sequences are subsequently “expressed” dur-
ing development by an expansion process which might be similar to a non-random ε.

While the double helix facilitates a reliable read-only memory (ROM); chordless cy-
cles appear facilitate the encoding of eposidic information in a dynamic memory via a
consolidation process such as ω.

Much of this section is speculation. But, both “closure” [34] and “chordless cycles”
[35] would appear to have biological significance. The assertions of this paper have a
solid mathematical base. As such, ω and ε provide useful examples within a category
of networks that can formally model dynamic biological networks. If in addition, they
actually model memory consolidation and recall as we suspect, that would be an additional
bonus.
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6 Appendix
Too much formal mathematics makes a paper hard to read. Yet, it is important to be able to
check some of the statements made in the body of the paper. In this appendix we provide
a few propositions to formally prove some of our assertions.

The order in which nodes, or more accurately the singleton subsets, of N are encoun-
tered can alter which points are subsumed and subsequently deleted. Nevertheless, we
show below that the reduced trace T = N .ω will be unique, up to isomorphism.

Proposition 6.1 Let T = N .ω and T ′ = N .ω′ be irreducible subsets of a finite network
N , then T ∼= T ′.

Proof: Let y0 ∈ T , y0 6∈ T ′. Then y0 can be subsumed by some point y1 in T ′ and
y1 6∈ T else because y0.η ⊆ y1.η implies y0 ∈ {y1}.ϕ and T would not be irreducible.
Similarly, since y1 ∈ T ′ and y1 6∈ T , there exists y2 ∈ T such that y1 is subsumed by y2.
So, y1.η ⊆ y2.η.
Now we have two possible cases; either y2 = y0, or not.
Suppose y2 = y0 (which is often the case), then y0.η ⊆ y1.η and y1.η ⊆ y2.η or y0.η =
y1.η. Hence i(y0) = y1 is part of the desired isometry, i.
Now suppose y2 6= y0. There exists y3 6= y1 ∈ T ′ such that y2.η ⊆ y3.η, and so forth.
Since T is finite this construction must halt with some yn. The points {y0, y1, y2, . . . yn}
constitute a complete graph Yn with {yi}.η = Yn.η, for i ∈ [0, n]. In any reduction all
yi ∈ Yn reduce to a single point. All possibilities lead to mutually isomorphic maps. 2

In addition to N .ω being unique, we may observe that the transformation ω is functional
because ω maps all subsets of N onto Nω . So we can have {z}.ω = Ø, thus “deleting” z.
Similarly, ε is functional because Ø.ε = {y} provides for the inclusion of new elements.
Both ω and ε are monotone, if we only modify its definition to be X ⊆ Y implies X.ε ⊆
Y.ε, provided X 6= Ø.

The following proposition characterizes the structure of irreducible traces.

Proposition 6.2 LetN be a finite symmetric network with T = N .ω being its irreducible
trace. If y ∈ T is not an isolated point then either

(1) there exists a chordless k-cycle C, k ≥ 4 such that y ∈ C, or
(2) there exist chordless k-cycles C1, C2 each of length ≥ 4 with x ∈ C1 z ∈ C2 and y

lies on a path from x to z.

Proof: (1) Let y ∈ NT . Since y is not isolated, we let y = y0 with y1 ∈ y0.η, so
(y0, y1) ∈ E. Since y1 is not subsumed by y0, ∃y2 ∈ y1.η, y2 6∈ y0.η, and since y2 is not
subsumed by y1, ∃y3 ∈ y2.η, y3 6∈ y1.η. Since y2 6∈ y0.η, y3 6= y0.
Suppose y3 ∈ y0.η, then < y0, y1, y2, y3, y0 > constitutes a k-cycle k ≥ 4, and we are
done.
Suppose y3 6∈ y0.η. We repeat the same path extension. y3.η 6⊆ y2.η implies ∃y4 ∈ y3.η,
y4 6∈ y2.η. If y4 ∈ y0.η or y4 ∈ y1.η, we have the desired cycle. If not ∃ y5, . . . and
so forth. Because N is finite, this path extension must terminate with yk ∈ yi.η, where
0 ≤ i ≤ n− 3, n = |N |. Let x = y0, z = yk.
(2) follows naturally. 2
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Finally, we show that ω preserves the shortest paths between all elements of the trace,
T .

Proposition 6.3 Let σ(x, z) denote a shortest path between x and z in N . Then for all
y 6= x, z,∈ σ(x, z), if y can be subsumed by y′, then there exists a shortest path σ′(x, z)
through y′.

Proof: We may assume without loss of generality that y is adjacent to z in σ(x, z).
Let< x, . . . , xn, y, z > constitute σ(x, z). If y is subsumed by y′, then y.η = {xn, y, z} ⊆
y′.η. So we have σ′(x, z) =< x. . . . , xn, y

′, z > of equal length. (Also proven in [32].) 2

In other words, z can be removed from N with the certainty that if there was a path from
some node x to z through y, there will still exist a path of equal length from x to z after
y’s removal.

Figure 11 visually illustrates the situation described in Proposition 6.3, which we call
a diamond. There may, or may not, be a connection between y and y′ as indicated by

x

y

z

y’

Figure 11: A network diamond

the dashed line. If there is, as assumed in Proposition 6.3, then either y′ subsumes y or
vice versa, depending on the order in which y and y′ are encountered by ω. This provides
one example of the isomorphism described in Proposition 6.1. If there is no connection
between y and y′ then we have two distinct paths between x and z of the same length.
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