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Abstract

A matroid whose elements are cycles is quite different from the better
known “cycle matroid” of the matroid literature. In this paper, we show that
every cycle system, C, comprised of cycles together with a cycle composition
operator, ◦ , is a matroid, M, or generalized vector space. In addition, the
set of cycles under composition, ◦ , would be a commutative group, except
that ◦ turns out to be only a partial binary operator. We establish that C is a
Brandt semigroup, but endowed with two-sided identity and inverses.

The interplay between graph, matroid, and group properties makes cycle
matroids an interesting new mathematical object with possible application as
a model of biological information.

1 Introduction

This paper is about cycle structures, such as Figure 1 (ignore the stringy tendrils).
These are 3-dimensional structures. The figure is a 2-dimensional rendition of a
protein polymer found in the membrane surrounding the nucleus of every cell of
our bodies [1]. It is customary to project such cycle structures into a 2-dimensions
so that we can more easily visualize and describe them. These projections become
ordinary undirected graphs. Consequently, this paper will involve a mixture of
graph theory, group theory, matroid theory. We combine these three to define a
class of mathematical objects which appear to be quite novel, and relatively un-
studied.

A matroid is a collection of sets, some of which are regarded as “indepen-
dent”. If every maximal, independent collection has the same cardinality, r, then
this system of independent collections is called a matroid of rank r. There is an
abundance of literature on matroids, of which [3, 15, 20, 22] is only a sample. The
term “cycle matroid” of a graph G = (N,E) is well-known. It is frequently used
as a simple introduction to basic matroid concepts. In that introductory example, a
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Figure 1: A membrane polymer controling protein transport across the neucleus
wall.

set of edges X ⊆ E is said to be “independent” if it contains no cycles. A maxi-
mal, independent set is thus a spanning tree of G, with cardinality n − 1. So this
matroid has rank r = n − 1. Any set of edges containing a cycle is a dependent
set. This notion of dependence and independence yields a clear, intuitive example
of the matroid concept.

However, it is not at all what we mean by a “cycle matroid”!
The elements of graph based matroids are the edges of the graph. The elements

of our “cycle matroids” are the cycles themselves. We use nodes and edges only to
help describe the individual cycles.

In Section 2, we define the notion of cycle composition, together with its prop-
erties and that of independent sets of cycles. In particular, we show that cycle
composition, ◦ , is an associative operator. Then in Section 3 we show that a cycle
system, C, is a non-trivial matroid of rank r, that is, all sets of independent cycles
have the same cardinality. We examine three distinct cycle systems, all of rank
r = 3 in Section 4. Two have the same adjacency relationships, yet one is pla-
nar and the other is not. The third system, Cγ , demonstrates that the composition
operator, ◦ , is only a partial binary operator. Nevertheless, we establish when
associativity can be assumed, and demonstrate that every cycle system is a Brandt
semigroup. Finally, in Section 5 we examine the flats of a cycle matroid, and their
semilattice structure when partially ordered by inclusion.
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2 Cycle System Basics

Let G = (N,E) denote a finite, undirected graph consisting of a set N of nodes
and a setE of edges {x, y}, x, y ∈ N . 1 Many authors believe that the relationships
between the nodes of a graph, or a network, can constitute a mathematical model
of information.

A path, ρ(x, z) of length n is a sequence < y1, y2, . . . , yn > of nodes such
that y1 = x, yn = z and for 1 ≤ i ≤ n, {yi, yi+1} ∈ E. If x = z, we say ρ(x, z)
is closed, or an n-cycle which we denote by C.2 If yi 6= yk for all 1 ≤ i, k ≤ n,
we say the path (or cycle) is simple. In this paper we assume all paths/cycles
are simple; but may occasionally say it again for emphasis. We call the sequence
< y0, y1, . . . , yn > an enumeration of C. Readily, any of the nodes yi in the cycle
can serve as the initial node x = z of an enumeration. Let G = (N,E) and let
X ⊆ N . By the subgraph on X denoted [X] ⊆ G, we mean the graph (X,EX)
where EX = {{x, y} ∈ E, x, y ∈ X}.

In the following pages we will denote a cycle Ci by C̄i if we want to emphasize
the edge structure, and by Ċi if we want to emphasize its nodes, or by just Ci if
we are only identifying the cycle. Similarly, we will use the same notation ρ̇(x, z)
and ρ̄(x, z) to denote the nodes and edges of a path. By the length of a cycle
Ci =< y1, . . . , yn+1 >, yn+1 = y1 denoted |Ci| we mean |Ċi| = |C̄i| = n.

By a cycle system C = {C1, . . . , Cn}, we simply mean a collection of cycles,
each of length≥ 3. Figure 2 illustrates a small cycle system, which we will denote
as Cα. It consists of 3 cycles, Ċ1 =< abckji >, Ċ2 =< cdek > and Ċ3 =<

C 1
C 2

C 3

a

b
c d

e

fgh

i

j
k

Figure 2: A small representative cycle system, Cα.

efghijk >, of lengths 6, 4 and 7 respectively. (We normally elide the commas
when enumerating sets if no confusion is possible.)

1Since G is undirected, edges between nodes are really just sets {x, y}, where |{x, y}| = 2. If
E can have sets {x, y, z} with cardinality > 2, then G is called a hypergraph.

2Some authors, e.g. [2, 16] make the distinction between directed “cycles” and undirected “cir-
cuits. Others, e.g. [10], talk of cycles in graphs, but circuits in derived matroids. We follow the usage
in [9] and since we only consider undirected graphs/relationships we excusively use the term cycle
without confusion.
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The cyclesC1, C2 andC3 have been labled in the figure, but there are more. For
example, we can identify Ċ4 =< abcdekji >, Ċ5 =< abckefghi >, and Ċ6 =<
cdefghijk >. (Enumerating sets in cyclic order simplifies identifying them in
figures. Enumerating sets in alphabetic order simplifies comprehension of set op-
erations. Enumerating cycles by their edges, as in C̄3 =< {ef}, {fg}, {gh}, {hi},
{ij}, {jk}, {ke} > is unambiguous; but tedious. We try to avoid it whenever pos-
sible.)

The cycle system Cα of Figure 2 is also an undirected graph G = (N,E),
where N = {a, b, . . . , k}. We use C and cycle terminology when we want to em-
phasize the roles of the cycles and cycle composition (developed in the following
section) and G when we want to explore its traditional graph theoretic properties.
A cycle C is a subgraph on Ċ in the base graph G.

2.1 Cycle Composition, ◦

We observe that the cycle C4 =< abcdekji >= C̄4 = (C̄1 ∪ C̄2) ∼ (C̄1 ∩ C̄2).
We say a cycle Cm is the composition of Ci and Ck, denoted Ci ◦ Ck, whenever

Cm = Ci ◦ Ck = C̄m = (C̄i ∪ C̄k) ∼ (C̄i ∩ C̄k) (1)

Not only is C4 = C1 ◦ C2 we have C5 =< abckefghi >= (C̄1∪C̄3)∼ (C̄1∩
C̄3) and C6 = C2 ◦ C3 = C4 ◦ C5 = C1 ◦ C3 ◦ C4. Two cycles Ci and Ck are
said to be adjacent if C̄i ∩ C̄k 6= Ø.

The empty cycle,C∅ is precisely that, the empty set, or Ċ∅ = C̄∅ = Ø. Readily,
for all Ci, Ci ◦ C∅ = Ci = C∅ ◦ Ci, so C∅ serves as the identity element for ◦ .
Moreover, because (C̄k ∪ C̄k)∼(C̄k ∩ C̄k) = Ø, for all k, we have Ck ◦ Ck = C∅.

Since union, ∪, and intersection, ∩, are symmetric, it seems apparent that ◦ is
symmetric. However the following trivial lemma makes it evident.

Lemma 2.1 LetCi ◦ Ck = Cm. Then {x, y} ∈ Cm if and only if {x, y} ∈ C̄i∪C̄k
and {x, y} 6∈ C̄i ∩ C̄k.

Proof: Evident from the definition of ◦ in (1). 2

Proposition 2.2 For all i, k, Ci ◦ Ck = Ck ◦ Ci.

Proof: One simply applies the lemma 2.1 to both sides of the equation. 2

Proposition 2.3 For all i, k,m, Ci ◦ (Ck ◦ Cm) = (Ci ◦ Ck) ◦ Cm.

Proof: Let {x, y} ∈ C̄i ◦ (C̄k ◦ C̄m). Then, {x, y} ∈ C̄i∪(C̄k∪C̄m) = (C̄i∪C̄k)∪C̄m)

and {x, y} 6∈ C̄i ∩ (C̄k ∩ C̄m). By lemma 2.1, {x, y} 6∈ C̄i ∩ (C̄k ∩ C̄m) implies {x, y} 6∈
(C̄i ∩ C̄k) ∩ C̄m), thus {x, y} ∈ (C̄i ◦ C̄k) ◦ C̄m. 2
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The lemma is not really necessary to prove Prop. 2.3, but it helps to keep track
whether {x, y} is has been eliminated because it is in one or more of the intersec-
tions.

Table 1 completely details the composition operator for the 8 cycles of Cα.

◦ C1 C2 C3 C4 C5 C6 C7 C∅

C1 C∅ C4 C5 C2 C3 C7 C6 C1

C2 C4 C∅ C6 C1 C7 C3 C5 C2

C3 C5 C6 C∅ C7 C1 C2 C4 C3

C4 C2 C1 C7 C∅ C6 C5 C3 C4

C5 C3 C7 C1 C6 C∅ C4 C2 C5

C6 C7 C3 C2 C5 C4 C∅ C1 C6

C7 C6 C5 C4 C3 C2 C1 C∅ C7

C∅ C1 C2 C3 C4 C5 C6 C7 C∅

Table 1: Composition table for the cycle system of Cα of Figure 2.

The following proposition is used so often in the following sections that the
term “theorem” seems appropriaate

Proposition 2.4 (Exchange theorem) If Cm = Ci ◦ Ck then Ck = Ci ◦ Cm.

Proof: Let Cm = Ci ◦ Ck, then

Ck = C∅ ◦ Ck

= (Ci ◦ Ci) ◦ Ck

= Ci ◦ (Ci ◦ Ck)

= Ci ◦ Cm. 2

Proposition 2.5 If Ci 6= Ck where i 6= k then Ci ◦ Ck 6= C∅.

Proof: Suppose Ci ◦ Ck = C∅, where i 6= k, then Ck = C∅ ◦ Ck = (Ci ◦ Ci) ◦ Ck =

Ci ◦ (Ci ◦ Ck) = Ci ◦ C∅ = Ci, or Ci = Ck contradicting the condition. 2

Proposition 2.6 If Ci ◦ Ck = Ci ◦ Cm then Ck = Cm.

Proof: Let Ci ◦ Ck = Cs = Ci ◦ Cm. By Prop. 2.4, Ck = Ci ◦ Cs = Ci ◦ (Ci ◦ Cm) =

C∅ ◦ Cm = Cm. 2

The consequence of Proposition 2.6 is that Ci defines a permutation on the cycles
{C1, C2, . . . Cn} of C, since each composition Ci ◦ Ck is a unique element of C.
The rows (or columns) of Table 1 illustrate this.

Figure 3 provides a slightly larger cycle system, Cβ = {C1, C2, C3, C4, C5}.
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Figure 3: A cycle system Cβ on 21 elements with 25 edges.

2.2 Basic Cycles

A set S = {Ci} of non-empty cycles is said to be dependent if there existsCm ∈ S
such that Cm = Ci ◦ . . . ◦ Ck where Ci, . . . , Ck ∈ S. If S is not dependent, it is
said to be independent. Any cycle can be a member of an independent set.

A maximal independent set of cycles B is said to be a basis for the system C.
For any cycle Ck ∈ C, either Ck ∈ B or Ck = Ci ◦ . . . ◦ Cj , where Ci, . . . Cj ∈
B. A system may have many bases. B1 = {C1, C2, C3} is one basis for the system
Cα of Figure 2; B2 = {C1, C2, C6} is another. If one “draws” the graph G as
in Figures 2 or 3 (they need not be planar) then the evident simple cycles without
cross connections constitute one basis forG. This simplifies reasoning about C. For
example Bβ = {C1, C2, C3, C4, C5} is a basis for Figure 3, as can be exhaustively
verified. (Note: we have not yet established that the cardinality of all basis sets
must be the same. However, propositions 2.4 and 2.6 suggest that this must be so.)

2.3 Lexicographic Labelling

We have been denoting the cycles in a graph G, or cycle system C, by the labels
C1, C2, . . . , Ci, . . . where the subscripts are integer. Clearly any index set could be
used. Given any initial basis set of r cycles, we will arbitrarily label (denote) them
by C1, C2, . . . Cr. Then C1 ◦ C2 = Cr+1, The label Cr+2 is assigned to C1 ◦ C3

and C1 ◦ C4 = Cr+3. The cycle C1 ◦ Cr must be labeled C2r. Now C2 ◦ C3

becomes C2r+1 etc. This is a lexicographic labelling.
Thus if r = 3 as in Cα of Figure 2, C6 = C2 ◦ C3 regardless of the actual

position of these cycles C2 and C3 in the graph. Consequently Table 1 can serve a
the composition table for every cycle system with 3 basis cycles.

The more interesting cycle system of Figure 3 has the lexicographic labelling
as follows.
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C1 C12 = C2 ◦ C5 C23 = C2 ◦ C3 ◦ C5

C2 C13 = C3 ◦ C4 C24 = C2 ◦ C4 ◦ C5

C3 C14 = C3 ◦ C5 C25 = C3 ◦ C4 ◦ C5

C4 C15 = C4 ◦ C5 C26 = C1 ◦ C2 ◦ C3 ◦ C4

C5 C16 = C1 ◦ C2 ◦ C3 C27 = C1 ◦ C2 ◦ C3 ◦ C5

C6 = C1 ◦ C2 C17 = C1 ◦ C2 ◦ C4 C28 = C1 ◦ C2 ◦ C4 ◦ C5

C7 = C1 ◦ C3 C18 = C1 ◦ C2 ◦ C5 C29 = C1 ◦ C3 ◦ C4 ◦ C5

C8 = C1 ◦ C4 C19 = C1 ◦ C3 ◦ C4 C30 = C2 ◦ C3 ◦ C4 ◦ C5

C9 = C1 ◦ C5 C20 = C1 ◦ C3 ◦ C5 C31 = C1 ◦ C2 ◦ C3 ◦ C4 ◦ C5

C10 = C2 ◦ C3 C21 = C1 ◦ C4 ◦ C5

C11 = C2 ◦ C4 C22 = C2 ◦ C3 ◦ C4

This provides a standard factorization for all cycles; so for example C10 ◦ C19 =
(C2 ◦ C3) ◦ (C1 ◦ C3 ◦ C4) = (C1 ◦ C2 ◦ C4) = C17.

3 Cycle Matroids

A matroid is a generalized vector space. Neel and Neudauer [15] is a gentle intro-
duction to matroids. But, beware of misleading terminology. For example, based
on the notion of “cycle matroids” mentioned in Section 1, a “circuit” refers to a
minimal dependent set; it need have not geometric meaning.

Let Y = {C1, . . . , Cn} be a set of cycles. By the span of Y , denoted Y.σ, we
mean the set of all cycles {Cm} such thatCm = Ci ◦ . . . ◦ Ck, whereCi, . . . Ck,∈
Y .3 Readily, Y ⊆ Y.σ.

An arbitrary operator, ϕ, is said to be a closure operator if ϕ is
expansive, Y ⊆ Y.ϕ
monotone, X ⊆ Y implies X.ϕ ⊆ Y.ϕ and
idempotent, Y.ϕ.ϕ = Y.ϕ.

Readily, Y ⊆ Y.ϕ.

Proposition 3.1 The spanning operator, σ is a closure operator over sets Y of
cycles.

Proof: Readily, σ is expansive and monotone.
Let Y be a set of cycles {Ci}. Suppose Cm ∈ Y.σ.σ implying that there exists some
sequence 1 ≤ i ≤ k such that

Cm = C1 ◦ . . . ◦ Ci ◦ . . . ◦ Ck (2)

3In graph theory, the term “span” usually refers to a tree whose nodes include all y ∈ N . Since
a tree has no cycles, it has no connection to our usage which is taken from the notion of spanning
vector spaces. Another commone term is the “graphic matroid”. These are matroids derived from
graphs; cycle matroids are derived from cycle composition and graphs are just used to visualize them.
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where Ci ∈ Y.σ, 1 ≤ i ≤ k. Hence Ci = Ci1 ◦ . . . ◦ Cin where Cij ∈ Y .
Thus, substituting into the sequence (2) for each i, we get Cm = (C11 ◦ . . . ◦ C1n)

◦ (C21 ◦ . . . ◦ C2n) ◦ . . . ◦ (Ck1 ◦ . . . ◦ Ckn) implying Cm ∈ Y.σ. 2

A closure system is said to be a matroid if it satisfies the Steinitz-MacLane
exchange axiom [8, 13, 20], that is:

if x, y 6∈ Y.ϕ and y ∈ (Y ∪ x).ϕ then x ∈ (Y ∪ y).ϕ.
If ϕ satisfies the anti-exchange axiom [17], that is:

if x, y 6∈ Y.ϕ and y ∈ (Y ∪ x).ϕ then x 6∈ (Y ∪ y).ϕ
then the system is called an antimatroid [5, 11, 12, 14, 19].

Proposition 3.2 Let C be a cycle system and let σ be the spanning operator. The
system (C, σ) satisfies the Steinitz-Maclane exchange axioms and is thus a matroid.

Proof: By Prop. 3.1, σ is a closure operator.
Let Ci, Ck 6⊆ Y.σ where Y = {. . . , Cj , . . .}. Suppose Ck ∈ (Y ∪ Ci).σ implying that
Ck = Ci ◦ (. . . Cj . . .) = Ci ◦ Cm where Cm ∈ Y.σ. Consequently, by Prop. 2.4,
Ci = Ck ◦ Cm or Ci ∈ (Y ∪ Ck).ϕ. 2

Since C is a matroid, the cardinality of every maximal independent set is fixed and
this number, r, is the rank of the system. Since any cycle system C constitutes a
matroid, it satisfies the following fundamental basis exchange theorem [20, 21].

Proposition 3.3 Let B1 and B2 be any two bases of C, and let Ci ∈ B1. Then there
exists Ck ∈ B2 such that (B1∼Ci) ∪ Ck is a basis of C.

Matroids and vector spaces are more often characterized by this ability to arbitrarily
exchange basis elements.

This “exchange” property is illustrated by the two examples in Figure 4. B1 =

C 1 C 2

C 3

C 1

C 7

C 6a

b
d

e
j

i
k

g fh

a

b
c

k

j

h

c

i

g
f

d

e

Figure 4: Alternate bases for Cα shown in Figure 2

{C1, C2, C3} is one basis for Cα If we remove C3 from B1 then it can be replaced
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with C7 = C1 ◦ C2 ◦ C3 to yield B2 = {C1, C2, C7} shown as the left-most fig-
ure.4 If C2 is removed from B1 then {C1, C3, C6} can be a basis B3. Using B2,
C3 = C1 ◦ C2 ◦ C7. With B3, C2 = C3 ◦ C6.

4 Three Cycle Systems

In this section we compare 3 different cycle systems, each with rank 3. It will be
useful to use adjacency to compare the basis sets of these systems. Recall, that two
cycles, Ci, Ck, were said to be “adjacent” if C̄i ∩ C̄k 6= Ø. Thus, for any system
C of cycles we can construct an adjacency graph, AC , where N = {C1, . . . , Cn}
and {Ci, Ck} ∈ E if Ci is adjacent to Ck. (In graph theory, the adjacency graph
of such a graph is called its dual graph.) For this section we will only construct
an adjacency graph, AB, with respect to a basis set. Readily, for the basis Bα of
Figure 2, the adjacency graph AB is that of Figure 5.

C1

C
2

C
3

Figure 5: Adjacency graph, AB for Cα shown in Figure 2.

Now, consider the K3,3 graph of Figure 6 with a basis of 3 cycles shown to

K3,3 C 2C 1

c

z

a

x

C 3

a

x

a b

yx

c

z

b

y

c

z

b

y

Figure 6: The non-planar system K3,3.

the right. The K3,3 graph of Figure 6 is non-planar5; but since cycle systems are
embedded within 3-space, this is not an issue. It is not hard to see that the adjacency
graph of this basis B of K3,3 is identical to that of Cα shown above as Figure 5.

The cycle C1 ◦ C2 ◦ . . . ◦ Cr, for all Ci ∈ B, sometimes regarded as the
“boundary” of C with respect to B, is often of interest. Figure 7 visually compares

4{C1, C2, C5}, {C1, C2, C6} would also be bases. {C1, C2, C4} can not be a basis because
C4 = C1 ◦ C2.

5Kuratowski’s theorem states that a graph G is planar if and only if he has no subgraphs homeo-
morphic to K3,3 or K5 [2, 10].
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the “interior” structure of Figures 2 and 6 with respect to their “boundary” cycles

b
c

i

e

d

fgh

c b

y z

x

a

j k
a

C K
α 3,3

Figure 7: Figures 2 and 6 redrawn with respect to their “boundary”.

(emboldened). They are clearly different, even though their bases have precisely
the same adjacency structure.

The cycle system Cγ shown in Figure 8 is obviously quite different from either
Cα or K3,3. So too, is the adjacency graph AB of this basis Bγ = {C1, C2, C3}

a

b

i

C

C
C

1
2

3

c

l

k

j h

g

f

m

e

d

Figure 8: A different cycle system, Cγ , with rank, r = 3.

shown in Figure 9.

C 1 C 2 C
3

Figure 9: Adjacency graph of Bγ .

However, if we consider the alternate basis Bγ = {C1, C2, C6} where C6 =
C2 ◦ C3 as shown in Figure 10, we observe that its adjacency graph, shown as
Figure 11, is isomorphic to the basic adjacency graph of Cα and K3,3; but quite
unlike AB for the first basis of Cγ . Evidently, the adjacency structure of different
basis sets of any given cycle system need not be consistent. And clearly, cycle
systems (or cycle matroids) cannot be distinguished with regard to the structure of
the basis sets.

4.1 Partial Binary Operators

The cycle system Cγ of Figure 8 raises an even more serious question. By the
definition of cycle composition (1), C1 ◦ C3 =< ablk > ∪ < defgm >. It is not

10



C 1

C 6

C 2

k

j i
h

f

g

e
dc

b

a l m

Figure 10: Cycles in a different basis for Cγ shown in Figure 8.

C1

C
2

C
6

Figure 11: Adjacency graph AB for second basis of Cγ .

a cycle!
There are two ways of resolving this question. One can define a “cycle” to be

the disjoint union of one, or more, “simple cycles”. Or one can accept the fact
that cycle composition is not a true binary operator; but rather a partial binary
operator [6, 24]. We prefer the latter.

A partial binary operator over a domain X need not be well-defined for all
x, y ∈ X . Such partial binary operators exist in graph theory. Edge concatenation
of two edges, (u, v) and (x, y),‘ to form a longer path by transitive closure is well-
defined only if v = x.

If cycle composition is not everywhere well-defined, then it throws into ques-
tion our earlier propositions. Clearly, Proposition 2.3 must be modified to read “For
all i, k, m, if Ck ◦ Cm and Ci ◦ Cm are well-defined cycles, then . . . ”. Surpris-
ingly, careful reading will show that propositions 2.4 through 2.6 are still correct
as written. In particular we re-examine the proof of Proposition 2.4.
Proof: Let Cm = Ci ◦ Ck, (assumes Ci ◦ Ck is a well-formed cycle Cm) then
Ck = C∅ ◦ Ck composition with C∅ always yields a cycle

= (Ci ◦ Ci) ◦ Ck composition defines C∅
= Ci ◦ (Ci ◦ Ck) a cycle by previous assumption
= Ci ◦ Cm. 2

So the proof of Proposition 2.4 is still valid as written. Similarly, in Proposi-
tions 2.5 and 2.6, the necessary existance assumptions assure associativity. But,
this is not always the case, we need a more general result.
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Proposition 4.1 Let X = {C1, C2, . . . , Cn} ⊆ B be a connected set (in the adja-
cency graph, AB). The product Ck = C1 ◦ C2 ◦ . . . ◦ Cn is well-formed cycle.

Proof: If n = 2, since C1, C2 are connected, C̄1 ∩ C̄2 6= Ø, so C1 ◦ C2 is well-formed.
We assume the proposition for sets of n− 1 cycles.
Now let |X| = n. Since X is connected, Cn is connected to Ck = C1 ◦ C2 ◦ . . . ◦ Cn−1,
which by assumption is a well-formed cycle Ck. Hence C̄k ∩ C̄n 6= Ø, so Ck ◦ Cn =

(C1 ◦ C2 ◦ . . . ◦ Cn−1) ◦ Cn is a well-formed cycle. 2

This proposition that the composition of all cycles is a connected set is well-
defined is an important one, because individual compositions within the set need
not be.

Proposition3.1 implicitly assumes associativity. Zhang ([24], Prop. 2.5) shows
the same closure result with respect to a partial operator by using the fact that
the intersection of closed sets must be closed. There is no need to duplicate his
approach.

4.2 Partial Semigroups

Partial binary operators have not been extensively studied; but there is some litera-
ture regarding them. If a binary operator, ·, is partial, the system (S, ·) is called a
groupoid [Wikipedia]. But, a groupoid (S, ·) may have more structure. In partic-
ular, there are Brandt groupoids [4, 6]. A partial groupoid is a Brandt groupoid,
B, if it satisfies ([6], p.99):

(B1) If a · b = c (a, b, c ∈ B) then each of the three elements a, b, c is uniquely
determined by the other two.

(B2) Let a, b, c be elements of B
(i) If a · b and b · c are defined, so are (a · b) · c and a · (b · c) and these are

equal.
(ii) If a·b and (a·b)·c are defined, so are b·c and a·(b·c), and a·(b·c) = (a·b)·c.
(iii) If b·c and a·(b·c) are defined, so are a·b and (a·b)·c, and (a·b)·c = a·(b·c).

(B3) To each element a in B there correspond unique elements e, f and a′ of B
such that e · a = a · f = a and a · a′ = f .

(B4) If e2 = e and f2 = f (e, f in B), there exists an element a in B such that
e · a = a · f = a.

Proposition 4.2 A cycle structure C with the partial binary operator ◦ (as defined
by (1)) is a Brandt groupoid.

Proof: (B1) is established by Prop. 2.4.
(B2) (i) SupposeCa ◦ Cb andCb ◦ CC are defined, theCa andCb are adjacent inAC as are
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Cb and CC . Consequently CC is adjacent to Ca ∪ Cb, so (Ca ◦ Cb) ◦ CC is well-defined.
Parts (ii) and (iii) are similar.
(B3) & (B4) Since C∅ serves as a two-sided identity, and Ca ◦ Ca = C∅ for all Ca, these
are trivially satisfied. 2

Clifford and Preston then establish that a Brandt groupoid can be made into a
Brandt semigroup by merely adding a zero element, 0, such that

a ◦ b = a · b if a · b is defined in B, else 0
a ◦ 0 = 0 ◦ a = 0 ◦ 0 = 0.

(The zero element, 0, should not be confused with C∅ which is an identity element,
and would be denoted by 1 in their notation.) Readily, any disjoint union of cycles
can be regarded as a zero element, so that if Ci ◦ Ck is not a cycle, but rather
Ci ∪ Ck, we can say Ci ∪ Ck = 0. This would make any cycle system a Brandt
semigroup. Clifford and Preston ([6], p.102) go on to prove that the following 3
conditions on a semigroup, S, are equivalent

(i) S is a Brandt semigroup,
(ii) S is a completely 0-simple inverse semigroup,
(iii) S is isomorphic to a (regular) Rees I × I matrix semigroup over a group

with zero G0 and with the I × I identity matrix ∆ as sandwich matrix.
We will not pursue this rather interesting characterization of cycle systems further.

5 Flats and Subgroups and Semilattices

In matroid theory, a flat is a closed subset of the matroidM, that is, for any X ⊆
M, X.σ is a flat [20, 21]. If for some basis B, B ⊆ X then X.σ = M. More
often, X ⊂ B and X.σ is a subspace ofM. In group theory, a subset H ⊆ G is a
subgroup if 1) e ∈ H , and 2) if x, y ∈ H then x · y ∈ H , [23]. In a cycle space the
two are closely connected.

Consider the description of the cycle system Cγ represented by Figure 8 and
Table 1. Because Ci ◦ Ci = C∅ the identity cycle, for all i, every individual cy-
cle constitutes a subgroup of order 2. Consequently, there can be no non-trivial,
primary subgroups (generated by a single element). But, there are non-trivial sub-
groups. One can verify that {C∅, C1, C2, C4}, {C∅, C2, C3, C6} and {C∅, C4, C5, C7}
are all subgroups of order 4. None are basis sets. Each are non-empty flats in the
matroid. Readily,

Proposition 5.1 For any cycle matroidM, if X = {Ci, Ck} and Ci ◦ Ck = Cm,
then {C∅, Ci, Ck, Cm} is a flat.

Proof: Follows directly from Prop. 2.4. 2

13



The set X in the proposition above is called a generator of the flat if X is an
independent set.

Let X be a generator, and let |X| = n. We will say X.σ is an n-flat. A flat is
said to be complete if for all Ci, Ck ∈ X.σ, Ci ◦ Ck = Cm ∈ X.σ. The flats of
Proposition 5.1 are complete 2-flats.

There are six complete 1-flats in the cycle system, Cγ . They are {0, 1}, {0, 2},
{0, 3}, {0, 4}, {0, 6}, {0, 7}. In this system, {0, 5} is not a flat because C5 =
C1 ◦ C3 is not a cycle. (Here we are just using the subscript k of Ck to denote the
cycle.) There are 4 complete 2-flats in Cγ . They are: {0, (1, 2), 4}, {0, (1, 6), 7},
{0, (2, 3), 6}, and {0, (3, 4), 7}. Here we have denoted two generators by parenthe-
sis (. . .); but any two non-empty cycles must be independent, and thus a generating
pair. There can be only one 3-flat, since any generating set of 3 independent cycles
must be a basis. It is customary to partially order the flats of a matroid to form a
lattice [7, 17]. In the case of Cγ , the lattice of complete flats is that of Figure 12

{0, 1, 2, 4} {0, 2, 3, 6} {0, 1, 6, 7} {0, 3, 4, 7}

{0, 7}{0, 4} {0, 3} {0, 6}{0, 1}{0, 2}

{0}

Figure 12: Semilattice of complete flats in Cγ .

A more extensive example are the flats of Cβ which are shown as Figure 13
which we will enumerate using the lexicographic labelling of Section 2.3. Five of
the cycles are of the form Ci ◦ Ck = Ci ∪Ck. These are (again just using the sub-
script form) 8 = 1 ◦ 4, 9 = 1 ◦ 5, 13 = 3 ◦ 4, 19 = 1 ◦ 3 ◦ 4 and 21 = 1 ◦ 4 ◦ 5.
Neither these, nor any set containing one of them can be a complete flat. There
are 7 complete 2-flats with 4 cycles each, they are: {0, (1, 2), 6}, {0, (1, 3), 7},
{0, (2, 3), 10}, {0, (2, 4), 11}, {0, (2, 5), 12}, {0, (3, 5), 14} and {0, (4, 5), 15}.
There are only 3 complete 3-flats with 8 cycles in each: {0, (1, 2, 3), 6, 7, 10, 16}
{0, (2, 3, 5), 10, 12, 14, 23} and {0, (2, 4, 5), 11, 12, 15, 24}. Again, a generating
set X ⊂ B is enclosed in parentheses; but any independent subset could serve as a
generator.6

Proposition 5.2 A flat is complete if and only if its generator X is a complete
subgraph of the adjacency graph GC .

Proof: Let Ci, Ck ∈ X . Ci is not adjacent to Ck in [X] ⊆ GC iff Ci ◦ Ck is not a cycle

6With anti-matroid closure, the generators are unique [12].
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{0, (2, 3, 5), 10, 12, 14, 23}{0, (1, 2, 3), 6, 7, 10, 16} {0, (2, 4, 5), 11, 12, 15, 24}

{0, (1, 2), 6} {0, (1, 3), 7} {0, (2, 3), 10} {0,(2, 5), 12} {0, (3, 5), 14} {0, (2, 4), 11} {0, (4, 5), 15}

{0, 6} {0, 15}

{0}

{0, 4}{0, 11}{0, 5}{0, 24}{0, 12} {0, 2} {0, 14}{0, 1} {0, 7} {0, 10} {0, 16} {0, 3} {0, 23}

Figure 13: Semilattice of complete flats in Cβ of Figure 3

iff the flat is not complete 2

Proposition 5.3 A collection H = {Ci, · · · , Ck} is a subgroup of C (viewed as a
group) if and only if H.σ is a complete flat in C (viewed as a matroid).

Proof: Readily, Ci, Cj ∈ H implies Ci ◦ Cj ∈ H ⊆ H.σ.
Conversely, Cm ∈ H.σ imples Cm = X ◦ for some minimal X ⊂ H . Hence, H.σ is a
group. 2

It is impossible to create a planar graph consisting of 4 cycles such that there is
at least one edge common to each pair. But, cycle systems exist in 3-dimensional
space, so one can construct systems with n adjacent independent cycles for all n.
For such “complete” systems, the lattice of flats is a complete meet lattice whose
greatest element is C, orM, itself.

The idea of a cycle matroid was instigated by considering the cycles in the
protein polymers, such as Figure 1, that form membrane proteins. It has been
thought that such cyclic structures might constitute a molecular representation of
information in non-neural creatures [18]. Whether this conjecture is true, or not, it
is clear that this kind of cyclic structure, with its matrix like properties, could well
be a primitive mechanism for information storage. In any case, they are interesting
mathematical objects.
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