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Abstract—In his study of social network systems, Granovetter
[9], made the distinction between strong and weak ties between
individuals. We show that these weak ties constitute a well-
defined “interior”, I, that is part of every network, N . From
I, which is an algebraic matroid, one can rigorously define
network properties such as “similarity” or “betweenness” whose
implementation is scalable.

I. INTRODUCTION

In his study of social network systems, Granovetter [9],
made the distinction between strong and weak ties between
individuals. This paper can be regarded as a mathematical
study involving the weak ties of network, which we call
its “interior”, I. It is known that this interior of a network
preserves many of the important structural properties, such as
shortest paths and betweenness centers.

Figure 1 illustrates a representative, but rather small, net-
work, Nα, which will serve as a running example. In Section
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Fig. 1. A small network, Nα, on 26 elements.

II-A we present an algorithmic process that extracts the
“interior” of this, or any network, N .

This interior will consist of a collection, I, of cycles. It can
be shown that I is a matroid with well defined rank, r [22].

In Section IV, we will develop a concept of network
similarity based on each networks interior. Similarity of this
form is a true equivalence relation.

Finally, in Section V, we reflect on the impact of this
“interior” notion. In particular, we consider the value of
growing a series of similar networks given a specific interior,
I.

II. ELEMENTS, LINKS AND CYCLES

Let R be a symmetric relation on some universe U of
elements. That is, for all x, y ∈ U , if xRy then yRx. So,

IEEE/ACM ASONAM 2020, December7-10,
2020978-1-7281-1056-1/20/$31.00 2020IEE

R can be regarded as simply a collection of subsets {x, y} ∈
R ⊆ U .

We wish to model the structure of R on U . Presumably
the elements of U are real objects such as people, atoms,
organizations, each with their own structure. We call them
elements in our model, and designate them with lower case
letters, such as x, y, and z. If xRy, or equivalently {x, y} ∈ R,
we say a link exists between x and y.

Let {x, y} ∈ R be any link. The elements, x, y are said
to be neighbors. Let X ⊆ U be any set of elements. By the
neighborhood of a element x, we mean the set {x}.η = {y :
∃y ∈ U where {x, y} ∈ R}. By natural extension the neigh-
borhood of a set X ⊆ N , X.η = ∪x∈X{x}.η}.1 In Figure 1,
{b}.η = {a, b, c, e}, {x,w, y}.η = {s, t, v, w, x, y, z}.

A. Closure and Interior Operators

An arbitrary operator, ϕ, is said to be a closure operator
if ϕ is: expansive (Y ⊆ Y.ϕ), monotone (X ⊆ Y implies
X.ϕ ⊆ Y.ϕ), and idempotent (Y.ϕ.ϕ = Y.ϕ). On the other
hand, if ϕ is contractive, that is Y.ϕ ⊆ Y , ϕ, then ϕ is said
to be an interior operator and denoted by ω instead of ϕ.

Literature regarding closure operators is abundant, e.g. [2],
[13], [21]. A familiar example is the convex hull operator of
geometry [5]. Contractive operators have been far less studied.
Exceptions are [3], [10], [11], for whom any contractive
operator is treated as a “choice function” of social theory. If
one considers an arbitrary plane figure, then one could choose
a minimal circle circumscribing the figure to be its closure,
and a maximal inscribed circle to be its interior.

To develop the following interior operator, we begin by
using a neighborhood closure, ϕη , on sets, X , of elements,
defined X.ϕη = {y|{y}.η ⊆ X.η}. It is not difficult to show
that ϕη satisfies the three closure axioms. In social networks,
a neighborhood can be regarded as the element’s “social
horizon”. If anyone’s social horizon, {x}.η, is contained in
that of another, {y}.η, that person (or organization) is indeed
“closed” and contributes little to understanding the structure
of the social community.

Let N be a network (U ,R), with the neighborhood operator
η. Suppose z ∈ {y}.ϕη , implying that {z}.η ⊆ {y}.η. Readily,
the element z does not contribute much to the structure of N ;
we say z is reduced into by y. Consequently, z, together
with its incident links, can be removed from N with little
loss of information. This monotone reduction step, call it ωz ,

1We denote set valued operators using suffix notation; for scalar valued
functions we use more traditional prefix notation.



is somewhat analogous to grinding off the high spots on a
solid body until it is reduced to a perfect sphere.

If ωz is iterated until there are no elements y such that
z ∈ {y}.ϕη then N is irreducible. We call this irreducible
sub-network, I , in which all singleton subsets {y} are closed,
the interior of N . The following computer procedure, reduce
implements the interior operator, ω.

while there exist reducible elements {
for_each y in N {

get {y}.nbhd
for_each z in ({y}.nbhd - {y}) {

if ({z}.nbhd contained_in {y}.nbhd {
remove z from network } } } }

(Set operators, such as contained_in are features of our
C++ implementation [14].) It repeatedly sweeps through all
elements y ∈ U , deleting any elements zi ∈ {y}.ϕη , together
with all links incident to zi, until no such z remain in N .
That is, ω = ωz1 ·ωz2 · . . . ·ωzn . Since each ωzi is monotone ω
is as well. The process terminates when every singleton subset
{y} ⊆ I is closed. At this point, ω is readily idempotent

In Figure 2, the elements a and d have been deleted
because {a}.η = {ab} ⊂ {abce} = {b}.η and {d}.η =
{cd} ⊂ {bcde} = {c}.η. Then on a successive sweep through
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Fig. 2. The interior of Figure 1 shown as solid bold links.

the remaining elements, b and c can be removed because
{b}.η = {c}.η ⊂ {bcefim} = {e}.η. The other elements
(denoted by dashed links) have been similarly removed. The
remaining elements and links (denoted by bolder solid lines)
constitute the interior of Figure 1. Many correspond to the
weak ties identified by Granovetter.

Technically, this interior operator, ω, is of order O(n2)
because we can construct examples where ω removes only
one element on each sweep through U . However, it is rather
effective in practice, reducing large networks |U| ≥ 1, 000,
with at worst 6 iterative sweeps of U .

Using the betweeness concept, the Girvan-Newman algo-
rithm, [8] extracts much the same internal structure of a
network. The major difference is that our reduction process
preserves the very links that they would delete on the basis of
high “betweenness”. Because it requires a breadth-first search
from every node in the network, their algorithm must be at
least O(n2).

One can show [16] that this interior operator, ω, as em-
bodied by the pseudo code above, yields a unique (up to
isomorphism) sub-network regardless of the order in which
the elements y ∈ U are visited by ω, or the order in which
elements z ∈ {y}.ϕη are deleted. That is:

Proposition 2.1: Let I = N .ω and I ′ = N .ω′ be two
irreducible subsets of a finite network N , then I ∼= I ′.

In the proof of this theorem one encounters certain triangles
that force isomorphism instead of equality. Triangles seem to
abound in social networks; though not necessarily in networks
in general [4]. This is a consequence of triadic closure2 in
which two individuals x and z who have a common friend y
tend to either be friends, or become friends, themselves.

Proposition 2.2 below asserts that even though triangles may
exist in I, all elements belong to a cycle of length ≥ 4.

Proposition 2.2: Let N be a finite network with I = N .ω
being its irreducible interior. If y ∈ I is not an isolated point
then either

(1) there exists a k-cycle C, k ≥ 4 such that y ∈ C, or
(2) there exist k-cycles C1, C2 each of length ≥ 4 with
x ∈ C1 z ∈ C2 and y lies on a path from x to z.

III. CYCLE SYSTEMS

We have informally used the idea of cycles above. Now we
will be more careful. A cycle, Ci is a closed sequence of n ≥ 4
links, <{y1, y2}, {y2, y3}, . . . {yn, y1}> where yi−1 6= yi. Ci
is said to have length n. While the irreducible interior, I, ex-
tracted by the process ω (of Section IIa,) can contain triangles,
Proposition 2.2 demonstrates that every element yk is part of
at least one cycle of length ≥ 4, so this restriction on the
cycles in a cycle system C is appropriate. Figure 3, consisting
of 4 obvious cycles, C1 = <abckja>, C2 = <cdmlkc>,
C3 = <defgmd> and C4 = <ghijklmg>, is an example.
This cycle system has been drawn on a planar surface, but
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Fig. 3. A small cycle system, C, on 4 basic cycles.

cycle systems exist in, at least, 3-space. In particular, cycles
never “bound” a volume; think of a hula hoop.

A cycle is really a sequence of links, as in C̄1 =
<{a, b}, {b, c}, {c, k}, {k, j}, {j, a}>, however we often just
enumerate its constituent elements, as Ċ1 = <abckja> above.
We use the notation C̄i to mean the links comprising the cycle
Ci and Ċi to mean its constitutent elements.

We observe that there is a cycle Ċ5 = <abcdmlkja> =
(C̄1∪C̄2) ∼ (C̄1∩C̄2) in Cα, Figure 3. We will say a cycle Cm
is the composition of Ci and Ck, denoted Ci ◦ Ck, whenever

Cm = Ci ◦ Ck = C̄m = (C̄i ∪ C̄k) ∼ (C̄i ∩ C̄k) (1)

2In spite of the the name, “triadic closure” is not a mathematical closure
operator. For example, it is not idempotent. Indeed, social networks tend to
become ever more triangle “dense” over time.
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Besides C5 = C1 ◦ C2, we have C15 = C1 ◦ C2 ◦ C3 ◦ C4

= (C1 ◦ C2) ◦ C3 ◦ C4 = C5 ◦ C3 ◦ C4 = <abcdefgh
ija>.3 Two cycles Ci and Ck are said to be adjacent if
C̄i ∩ C̄k 6= Ø.

The empty cycle, C∅ is precisely that, the empty set, or
Ċ∅ = C̄∅ = Ø. Readily, for all Ci, Ci ◦ C∅ = Ci = C∅ ◦ Ci,
so C∅ serves as the identity element for ◦ . Moreover, because
(C̄k∪C̄k)∼(C̄k∩C̄k) = Ø, for all k, we have Ck ◦ Ck = C∅.

Cycle systems have an abelian group structure, and can be
shown to be “matroids” (i.e. a kind of vector space lite) with
basis sets of cycles satisfying the standard basis exchange
axioms.4 The rank r of a cycle matroid is the cardinality of any
maximal, independent set of cycles (i.e. basis). Cα of Figure 3
has rank, r = 4. In fact, it can be shown that all cycle systems,
are a form of “algebraic matroid” [18], [19], [20], [22].

Let C be a cycle system and let C f−→ C′ be a transformation
mapping the cycles of C onto the cycles of C′. f is said to
be a cycle homomorphism if f(Ci ◦ Ck) = f(Ci) ◦ f(Ck).
Figure 4 illustrates C′, one homomorphic image of the cycle
system C in Figure 3, that is C f−→ C′ = {C ′1, C ′2, C ′4} where
C1

f−→ C ′1, C2
f−→ C ′2, C4

f−→ C ′4, and we can have either
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Fig. 4. C′, a homomorphic image of C in Figure 1.

C3
f−→ C ′2, or C3

f−→ C ′4. Observe that neither elements nor
links are involved in cycle homomorphisms, only cycles, their
adjacency and composition. This is evident, since C3, a cycle
of length 5, can map to C ′4, of length 10.

If f is one-to-one, it is a cycle isomorphism. Readily, the
cycle system C in Figure 3 is isomorphic to the interior, I, of
the network of Figure 2. One can regard these as the “same”
cycle system.

IV. NETWORK SIMILARITY

Knowledge of a network’s interior has a number of ap-
plications, such as significantly reducing the cost of locating
“betweenness centers” [1], [6], [7]. But, one of its more ob-
vious applications is facilitating a rigorous notion of network
“similarity”.

Normally in mathematics, “similarity” is an equivalence
relation, that is if Nα and N β are similar, denoted Nα ∼ N β ,
then N β ∼ Nα (symmetry) and Nα ∼ N β and N β ∼ N γ

implies Nα ∼ N γ (transitivity).
We will say that two networks Nα and N β are similar,

denoted Nα ∼ N β , if they have the “same” interiors, i.e.

3In all, there are 15 non-empty cycles in Figure 3.
4These cycle matroids should not be confused with the “cycle matroid” that

is often used as an introduction to matroid theory [12] In those elementary
graph based matroids the elements are edges (not cycles) with basis sets being
any spanning tree.

Iα = Nα.ω and Iβ = N β .ω are isomorphic. Readily, this
definition of similarity yields a true equivalence relation.

Most other statistical or eigenvalue based “similarity” al-
gorithms [15], [23], [24] yield a coeficient c that is more
properly regarded as a measure of “closeness”, or a “distance”
d between the networks. This distance may, or may not, satisfy
the triangle inequality although the author has never seen it
discussed.

One network that is similar to Nα (of Figure 1) is shown as
N β in Figure 5 where only those elements of Iβ that might
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Fig. 5. Nβ , (with Iβ ) is a network “similar” to Nα.

correspond to similar elements in Iα have been labeled. Here,
it is apparent that most of the interior consists of the weak ties
of Granovetter.

But, N β doesn’t look much like Nα. N β is a larger
network with 3 relatively dense clusters of elements that are
interconnected by longer paths in Iβ , and has none of the
long, stringy tendrils of Figures 3 and 2. How can these be
considered similar?

There actually exist an uncountable number of networks
N that are similar to Nα because this form of similarity
partitions the immense space of all possible networks. Figure
5 is just one of the many such networks. However, it is well
known that the conjunction of equivalence relations is itself
an equivalence relation. Thus, one may refine this notion of
similarity and require that, for Nα to be similar to N β , they
must have isomorphic interiors and have the same cardinality;
that is, Iα ∼= Iβ and |Uα| = |Uβ |, or possibly the same
density |Rα|/|Uα| = |Rβ |/|Uβ | as well. With these kinds of
additional restrictions, one creates a finer partition of the space
of all undirected networks, and similar networks will “look”
more alike.

Given two irreducible interiors, Iα and Iβ , we use a
standard technique to determine isomorphism. We create two
adjacency graphs, Aα = (Vα, Eα) and Aβ = (Vβ , Eβ)
whose vertices are cycles Ci with edges (Ci, Ck) ∈ E
whenever Ci is adjacent to Ck, that is C̄i ∩ C̄k 6= Ø. There
exist a variety of effective procedures for identifying a graph
isomorphism, Aα

f−→ Aβ , if one exists. Then one need only
test if the graph isomorphism is also a cycle isomorphism, that
is CI ◦ Ck = Cm implies f(Ci) ◦ f(Ck) = f(Cm).
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A. Weak Similarity

Two networks Nα and N β are said to be weakly similar if
Iα

f−→ Iβ is a homomorphism. Weak similarity is transitive,
that is if Iα

f−→ Iβ and Iβ
g−→ Iγ then Iα

h−→ Iγ ; but it is
not symmetric. We need not have Iγ

h−→ Iα or Iβ
f−→ Iα.

One can also extend a form of interior based similarity to all
pairs,Nα,N β , of networks. LetN γ be maximal network such
that Iα

f−→ Iγ and Iβ
g−→ Iγ be cycle homomorphisms.

ThenNα andN β can be said to be similar through the greatest
common network N γ .

We know of no possible way of implementing weak simi-
larity in practice. Moreover, it is not clear what information
would be conveyed if one did know of a greatest common
interior. Just because one can define an operation does not
mean it can be successfully implemented. The idea has been
introduced only for a sense of theoretical “completeness”.

V. DISCUSSION

This paper takes a strongly mathematical approach to un-
derstanding the weak, that is global, structure of networks. In
certain social networks, such as those modeling international
relationships this can be most important. While it ignores
local neighborhood structure, it can be used to partition large
networks into dense neighborhoods in much the same way as
the Girvan-Newman procedure. One need only keep track of
elements that have been reduced into the remaining element
in I, as described in [17].

Does any concept of network similarity make sense?
Suppose one defines it in terms of a single value, as in
sim(Nα,N β) = 0.683. What information does this really
convey? Is the concept of similarity described in this paper
any more valuable? Most pairs of networks are simply “not
similar”. Yet, if they are similar, the isomorphism Iα

f−→ Iβ
conveys a great deal of information.

We believe that asking if two networks Nα and N β are
“similar” is often just an academic exercise. More commonly,
we are given a particular network, N , and we seek to un-
derstand its structure by generating “similar” networks that
have been expanded from its interior, I. Figure 5 is an
extreme example. In practice, the generating can be much
more targeted. It can force the same number of elements;
the same density |R|/|U|; the same clustering of elements at
corresponding locations in the interior. See for example [17].
This opens up the possibility of many “what if” scenarios
which change these parameters, or even change the cyclic
structure of the interior, I.

Is it actually practical to use this approach with the very
large networks one encounters in practice? As noted in Section
II-A, the process that reduces a network N to its irreducible
interior I is theoretically O(n2), but in practice it is no worse
that linear O(n). Similarly, in the test for similarity of Section
IV, it is known that determining graph isomorphism is NP in
theory. But, again in practice, procedures using heuristic filters
can almost always reduce the problem to at worst a linear one.
Testing whether a proposed isometry actually is one, is again

at worst linear, or O(n). So, using appropriate software, such
as described in [14], operations based on the cycle structure
of I are scalable to very large networks.

The interior of a network is a rigorous mathematical object.
It is, at least, an algebraic matroid created by a well-defined
interior operator. It has the potential for rigorous social net-
work analysis which to this author’s knowledge, has yet to be
explored.
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