
Cycle Systems

John L. Pfaltz
Dept. of Computer Science, University of Virginia

jlp@virginia.edu

Abstract

In this paper we show that the composition (symmetric difference) of cycles is well-defined.
So, such a collection {. . . , Ci, Ck, . . .} of cycles with a composition operator, ◦ , is a matroid.
As such, it has sets of independent, or basis, cycles that determine its rank r. This paper is
concerned with independent and dependent sets of cycles within a cycle system. In particular,
we enumerate the number of all possible basis sets in any cycle system of rank r ≤ 6. Then we
use a generating function to establish that the ratio of basis sets to all possible r element sets
approaches c, 0.287 < c < 0.289.

1 Introduction

Cycle systems such as Figure 1 exist in nature. Various protein polymers have a linked cyclic
structure [2]. Figure 1, which introduced the author to cycle systems, is a membrane polymer

Figure 1: The cyclic structure of a Gr4 membrane polymer.

which cotrols the flow of other proteins across the neucleus membrane of every cell in our bodies
[4, 10, 19]. But, cycle structures seem not to have been much studied as mathematical systems; even
though, as we show in this paper, they are matroids with group properties.

There seem to be two reasons why this kind of “cycle matroid” has been largely ignored. First,
we normally visualize cycles as figures in a planar setting, such as Figure 1. But, they can be
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realized in (at least) 3 dimensions; think of a “hula hoop”. Consequently, there are many more
“non-intersecting” configurations which can be difficult to imagine.

The second reason is that a different concept of “cycle matroid” already exists in the matroid
literature. This conception begins with an ordinary undirected graph, G = (N,E). Any set of
edges T ⊆ E that constitute a tree are said to be “independent”. Any set of edges containing a cycle
are then “dependent”. Any spanning tree is considered to be a “basis” of rank r = n − 1, where
n = |N |. Since all bases (maximal independent sets) have the same cardinality r (rank), the set of
edges can be called a “graphic matroid”. It is simplest possible example of the matroid concept and
is, thus, found in many texts [9, 20]. This model is utterly clear. It is essentially trivial. And thus of
little research interest.

In Section 2 we will develop a far more complex notion of “cycle matroid”. Section 3 introduces
a novel way of describing the participation of any particular edge in a set of basis cycles. Then, in
Section 4.1 we count the maximal possible number of basis combinations in a cycle system of rank
r. By way of a spoiler revelation, for r = 6 it is only 27,998,208. When r = 20 this number is
3.06516 × 10101! Of particular interest is the ratio of independent sets of r cycles with respect to
dependent sets of r cycles.

2 Cycle Basics

Cycles, such as Figure 1, exist in 3-space, but it is customary to visualize them in terms of their
planar projections using graph theoretic terms. As noted in Section 1, this can be misleading.
However, it allows us to use a large body of graph theoretic terminology with minimal explanation.
There are a huge number of texts devoted to graph theory; we will rely mostly on the definitions
in the old standard, Harary [7], which will be supplemented as necessary by other cited works.
Unfortunately, in all of them there is often confusion regarding the terms cycle, circuit, and rank.
We must be more careful.

Let a graph G = (N,E) be the usual collection of nodes, N , and edges E where e ∈ E is a
subset {x, y} ⊆ N . G is undirected. Let y ∈ N be any node, the set of incident edges, denoted
i(y) are those nodes of E of the form {x, y} or {y, z}. Let S be a set of edges, by the degree of
y relative to S denoted δS(y) we mean the cardinality |S ∩ i(y)|, that is the number of edges in S
that are incident to y.

A cycle, C ⊆ E, is a set of edges such that for all y, δC(y) is even. This is a rather unusual
definition of the cycle concept, even though by Euler’s theorem [7, p. 64], [1, p. 135], it is a well
known equivalence with the usual definition in terms of closed walks, or traversability. In the graph
Gα of Figure 2(a), the set C1 = {{a, b}, {b, d}, {c, d}, {a, c}}, shown in bold, is a cycle. Observe
that the degree of the node c, δ(c) = 3, but the relative degree δC1(c) = 2. The use of relative
degree is crucial when considering cycles embedded in larger graphs, or networks.

Given any cycle, C, we let C̄ denote the set of edges comprising C; we let Ċ denote its incident
nodes. Even though a cycle is a set of edges, it is often simpler to denote them by Ċ, their incident
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Figure 2: The bolder lines delineate cycles.

nodes. So, the cycle C2 = Ċ2 = 〈d, e, g, f〉 of Figure 2(b). Using this notation, we should properly
denote the relative degree of a node y in a cycle Ci by δC̄i

(y); but we will normally elide the bar.
We typically illustrate cycles as rectangular structures; but one can always insert or delete nodes

in any edge without changing the topology of the graph [1, 6], so these cycles can be inflated or
condensed without changing their basic nature. The empty set, C∅ = ∅, is a cycle.

2.1 Cycle Composition, ◦

By the composition of two cycles Ci ◦ Ck we mean the symmetric difference of C̄i and C̄k, or

Ci ◦ Ck = (C̄i ∪ C̄k)\(C̄i ∩ C̄k) (1)

In Gα of Figure 2(a) C1 ◦ C2 = C3 = 〈a, b, d, f, g, c, a〉. In Figure 2(b) C1 ◦ C2 is the entire edge
set of Gβ .

By a cycle system we mean any collection C of cycles {. . . , y, . . .} together with the compo-
sition operator. Figure 3 presents two more cycle systems. It is worth verifying that in the cycle
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Figure 3: Two more cycle systems.

system Gγ of Figure 3(a), C4 = C1 ◦ C2 = 〈a, b, c, g, f, e, a〉 and C5 = C1 ◦ C3 consists of two
disjoint cycles 〈a, b, f, e, a〉 and 〈c, d, h, g, c〉. The cycle C1 ◦ C2 ◦ C3 = 〈a, b, c, d, h, g, f, e, a〉. In
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Gδ of Figure 3(b), C1 ◦ C2 ◦ C3 = 〈a, b, c, f, e, b, g, h, e, d, a〉 or Gδ itself. Why is the edge {b, e}
in C1 ◦ C2 ◦ C3 but not in C1 ◦ C2 or C1 ◦ C3 or C2 ◦ C3?

The composition defined in (1) is effectively the symmetric difference, ⊕, of two sets, yielding
a set of edges. It is familiar operator (see Wikipedia). But it is not immediately obvious that the set
of edges resulting from Ci ◦ Ck, or C̄i ⊕ C̄k, need be a well-formed cycle.

Proposition 2.1 Let Ci, Ck be cycles. Ci ◦ Ck = Cm is a well-formed cycle.

Proof: Since Ci, Ck are cycles, for all y ∈ Ċi, and Ċk, δCi
(y), and δCk

(y) are even.
If C̄i ∩ C̄k 6= ∅, let Ċi ∩ Ċk = {. . . , y, . . . }. For all such y, δ

Ci∪Ck\(Ci∩Ck)
(y) = δCi

(y) + δCk
(Y ) − 2 ∗

δCi∩Ck
(y). The third term is doubled because y is in both Ci and Ck. Readily, δ

Ci∪Ck\(Ci∩Ck)
(y) is even.

If y 6∈ Ċi ∩ Ċk the third term is zero and the same result follows.
If C̄i ∩ C̄k = ∅ then all y ∈ Ċi or Ċk satisfy the condition above. 2

The author has been unable to find a proof of this proposition using the standard closed path defini-
tion of a cycle.

The following properties of ⊕ are traditional; but not always stated. It is worth restating and
proving them.

Proposition 2.2 Let C = {C1, C2, . . . , Cn} be a cycle system with composition as defined by (1),
then for all i, k,m,

(a) Ci ◦ Ck = Ck ◦ Ci; (symmetry)
(b) (Ci ◦ Ck) ◦ Cm = Ci ◦ (Ck ◦ Cm); (associativity)
(c) if Ci ◦ Ck = Cm then Ci ◦ Cm = Ck; (exchange)
(d) if Ci 6= Ck then Ci ◦ Ck 6= C∅;
(e) if Ci ◦ Ck = Ci ◦ Cm then Ck = Cm. (uniqueness)

Proof: (a) is evident from the definition (1).
(b) (Ci ◦ Ck) ◦ Cm = (Ci ∪ Ck ∪ Cm)\(Ci ∩ Ck ∩ Cm) = Ci ◦ (Ck ◦ Cm)

(c) Let Cm = Ci ◦ Ck, then Ck = C∅ ◦ Ck = (Ci ◦ Ci) ◦ Ck = Ci ◦ (Ci ◦ Ck) = Ci ◦ Cm.
(d) Suppose Ci ◦ Ck = C∅, where i 6= k, then Ck = C∅ ◦ Ck = (Ci ◦ Ci) ◦ Ck = Ci ◦ (Ci ◦ Ck) =
Ci ◦ C∅ = Ci or Ci = Ck contradicting the condition.
(e) Let Ci ◦ Ck = Cs = Ci ◦ Cm. By (c) above, Ck = Ci ◦ Cs = Ci ◦ (Ci ◦ Cm) = C∅ ◦ Cm = Cm. 2

The consequence of Proposition 2.2(e) is thatCi defines a permutation on the cycles {C1, C2, . . . Cn}
of C, since each composition Ci ◦ Ck is a unique cycle of C.

Let Y = {C1, . . . , Cn} be a set of cycles. By the span1 of Y , denoted Y.σ, we mean the set of
all cycles {Cm} such that Cm = Ci ◦ · · · ◦ Ck, where Ci, . . . Ck,∈ Y . When we wish to denote
precisely the cycle C1 ◦ · · · ◦ Cn we will use the notation { ◦ Y }. Thus Y.σ = ∪X⊆Y { ◦ X}.

1In graph theory, the term “span” usually refers to a tree whose nodes include all y ∈ N . Since a tree has no cycles,
it has no connection to our usage which is taken from the notion of spanning vectors in a vector space.
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2.2 Basic Cycles

A set Y = {Ci} of non-empty cycles is said to be dependent if there exists Cm ∈ Y such that
Cm = Ci ◦ · · · ◦ Ck where Ci, · · · , Ck ∈ Y . If Y is not dependent, it is said to be independent.
The early work of Hassler Whitney [22] is a fine reference work on linear independence. But
beware; in it a minimal dependent set is called a “circuit”.2 This terminology is still common in the
literature [7, 21]. Any cycle can be a member of an independent set.

Proposition 2.3 Let Y ⊆ C be a collection {C1, . . . , Cn} of cycles.
(a) If { ◦ Y } = C1 ◦ · · · ◦ Cn = C∅ then Y is dependent;
(b) if no subset X of Y is dependent, but Y is dependent, then { ◦ Y } = C1 ◦ · · · ◦ Cn = C∅;

Proof: (a) Since { ◦ Y } = C∅, by Prop. 2.2(d), there exists Ci such that { ◦ {Y \Ci}} = Ci, so Y is
dependent.
(b) Suppose Y is dependent, so ∃ Ci and X ⊆ Y where { ◦ X} = Ci or { ◦ X} ◦ Ci = C∅. By assumption,
X 6⊂ Y , so X = Y . 2

Thus sets, Y , satisfying Proposition 2.3(b) are “circuits”.
A maximal independent set of cycles B ⊆ C is said to be a basis for the system C. Since B is

maximal, every cycle Cm ∈ C is expressible as the composition of some set Y of cycles contained
in B, that is Cm = { ◦ Y }, Y ⊆ B. (Note: we have not yet established that the cardinality of all
basis sets must be the same. However, Proposition 2.2(c) and (e) suggest that this might be so.)

A system may have many bases. B1 = {C1, C2, C3} is one basis for the system Cγ of Figure
3(a); B2 = {C4, C2, C3}, shown in Figure 4(b) is another, where C4 = C1 ◦ C2.

b c d

e f g h

a b c d

e f g h

a

C1 C2 C3 C4 C2 C3

Figure 4: Two distinct bases for Cγ of Figure 3(a).

Proposition 2.4 Let B1 = {C1, . . . , Cr} be a basis for C where |C| ≥ 3. For any Ci ∈ B1 there
exists C ′i 6∈ B1 such that B2 = B1\{Ci} ∪ {C ′i} is a basis.

Proof: Since |C| ≥ 3, B1 ⊂ C and |B1| ≥ 2. Let Ci, Ck ∈ B1, Ck 6= Ci, and let C ′
i = Ci ◦ Ck. Then

C ′
i 6∈ B1 else B1 would be dependent. We claim B2 = B1\{Ci} ∪ {C ′

i} is independent and maximal, i.e. a
basis.

2This is derived from the graphic cycle matroid, described in Section 1, in which circuits (or cycles) are the minimal
dependent sets.
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Suppose there exists Cm ∈ B2 and Y ⊂ B2 such that Cm = { ◦ Y } then C ′
i ∈ Y , else B1 is dependent.

Thus, Cm = C ′
i ◦ { ◦ Y ′} where Y ′ = Y \{C ′

i} ⊆ B1. But then, Cm = Ci ◦ Ck ◦ { ◦ Y ′}, again implying
B1 is dependent. Thus, B2 must be independent.
Now suppose ∃Cm 6∈ B2 such that B2 ∪ {Cm} is independent. A similar argument shows that B1 cannot be
maximal. 2

Proposition 2.4 establishes that every cycle system is a matroid. There is an abundance of
literature, of which [9, 20, 21] are only representative. More relevent is [14] which emphasises
independence, and dependence. Cycle systems can be viewed as algebraic matroids. The cycles
behave like vectors over GF(2).

2.3 Shortlex Order Labeling

We have been denoting the cycles in a graph G, or cycle system C, by the labels C1, C2, . . . , Ci, . . .
where the subscripts are integer. Clearly any index set could be used. Given any initial basis set
of r cycles, we will arbitrarily label (denote) them by C1, C2, . . . Cr. Then Cr+1 = C1 ◦ C2. The
label Cr+2 is assigned to C1 ◦ C3 and Cr+3 = C1 ◦ C4. The cycle C1 ◦ Cr must be labeled C2r−1.
Now C2 ◦ C3 becomes C2r etc. Finally, C1 ◦ C2 ◦ · · · ◦ Cr = C2r−1. This is a shortlex order
labeling. Thus if r = 3 as in Gγ or Gδ of Figure 3, C6 = C2 ◦ C3 regardless of the actual position
of the cycles C2 and C3 in the network.

Table 1 represents the shortlex order labeling of any cycle system with r = 5. This provides a

C1 C12 = C2 ◦ C5 C23 = C2 ◦ C3 ◦ C5

C2 C13 = C3 ◦ C4 C24 = C2 ◦ C4 ◦ C5

C3 C14 = C3 ◦ C5 C25 = C3 ◦ C4 ◦ C5

C4 C15 = C4 ◦ C5 C26 = C1 ◦ C2 ◦ C3 ◦ C4

C5 C16 = C1 ◦ C2 ◦ C3 C27 = C1 ◦ C2 ◦ C3 ◦ C5

C6 = C1 ◦ C2 C17 = C1 ◦ C2 ◦ C4 C28 = C1 ◦ C2 ◦ C4 ◦ C5

C7 = C1 ◦ C3 C18 = C1 ◦ C2 ◦ C5 C29 = C1 ◦ C3 ◦ C4 ◦ C5

C8 = C1 ◦ C4 C19 = C1 ◦ C3 ◦ C4 C30 = C2 ◦ C3 ◦ C4 ◦ C5

C9 = C1 ◦ C5 C20 = C1 ◦ C3 ◦ C5 C31 = C1 ◦ C2 ◦ C3 ◦ C4 ◦ C5

C10 = C2 ◦ C3 C21 = C1 ◦ C4 ◦ C5

C11 = C2 ◦ C4 C22 = C2 ◦ C3 ◦ C4

Table 1: Shortlex order labeling of cycles in any cycle system of rank 5

standard factorization for all cycles; so for example, C10 ◦ C19 = (C2 ◦ C3) ◦ (C1 ◦ C3 ◦ C4) =
(C1 ◦ C2 ◦ C4) ◦ (C3 ◦ C3) = (C1 ◦ C2 ◦ C4) = C17.
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3 Segments

In Figure 4 we had to use multiple lines to convey the position of the alternate basis cycle C4. In
this section we formalize this ad hoc procedure.

Let {x, z} ∈ L. The edge {x, y} can be replaced by a path ρ(x, z) = 〈x, y1, . . . , yk, z〉 where
δ(yi) = 2 in a process called subdivision. Similarly, such a path can be contracted back to a
single edge. We call such paths, “segments” which we define more carefully below. Subdivision,
or contraction, of segments will not change the essential structure of the cycle system; they are all
topologically equivalent [1, 6]. Many properties of cycle systems are determined by their segments.
Nodes included in segments serve primarily as labels to reference them in figures.

An edge can belong to, or be a part of, several different cycles. By the edge membership
operator, {x, y}.λ, we mean a function yielding the set of basic cycles {Ci} such that the edge
{x, z} ⊆ C̄i. By a segment 〈x, . . . , yi, . . . , z〉, 0 ≤ i < n where n ≤ 0, we mean a path sequence
such that {x, y1}.λ = {yi, yi+1}.λ = {yn, z}.λ. Thus we can extend the edge membership operator
to segments and define 〈x, z〉.λ = {yi, yi−1}.λ. We say the segment 〈x, z〉 is incident to x (and z).

In Figure 4(a) the segment 〈c, g〉 has 〈c, g〉.λ = {C2, C2}. In Figure 4(b) 〈c, g〉.λ = {C2, C2, C6}.
In both figures, 〈d, h〉.λ = {C3}.

Lemma 3.1 If Cm = Ci ◦ Ck then for all 〈x, z〉 ∈ Cm, 〈x, z〉 ∈ C̄i or 〈x, z〉 ∈ C̄k, but not both.

Proof: Since 〈x, z〉 ∈ C̄i ∪ C̄k\(C̄i ∩ C̄k), the assertion follows. 2
Effectively, any segment remaining after a composition must have membership in precisely one of
the composing basic cycles.

The λ operator is well-defined, that is, never empty, because

Proposition 3.2 Let B be a basis for C, then for every segment 〈x, z〉 there exists Ck ∈ B such that
Ck ⊆ 〈x, z〉.λ.

Proof: Let 〈x, z〉 ∈ C̄m for some Cm ∈ C. If Cm ∈ B we are done. If not, Cm = { ◦ Y } for some Y ⊆ B.
The result follows from Lemma 3.1. 2

Proposition 3.3 〈x, z〉 is a maximal segment if and only if δ(x) and δ(z) ≥ 3.

Proof: This follows directly from the definition. 2

Proposition 3.4 Let δ(y) = 3 where 〈w, y〉, 〈x, y〉, and 〈y, z〉 are its incident segements. Then
〈w, y〉.λ ∪ 〈x, y〉.λ = 〈w, y〉.λ ∪ 〈y, z〉.λ = 〈x, y〉.λ ∪ 〈y, z〉.λ.

Proof: We claim 〈w, y〉.λ ⊆ 〈x, y〉.λ ∪ 〈y, z〉.λ, since if not, there exists a cycle Ci ∈ 〈w, y〉.λ, but
Ci 6∈ 〈x, y〉.λ and Ci 6∈ 〈x, z〉.λ. But Ci is a cycle so 〈w, y〉 ∈ C̄i implies either 〈x, y〉 ore 〈y, z〉 ∈ C̄i.
The same argument holds for all three possible containments, so the result follows. 2
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In short, the edge membership operator of any two segments includes all participating basis cycles.

Corollary 3.5 If δ(y) ≥ 3, then for at least one segment, 〈x, y〉, |〈x, y〉.λ| > 1.

Figure 5 is an attempt to visualize a segment 〈x, z〉 in a 3-dimensional space. Here, |〈x, z〉.λ| =
4 and δ(x) = δ(z) ≥ 3 as required by Proposition 3.3.

x

z

1

1

2

2

2

3

3

1

3

4

4

4

Figure 5: A segment 〈x, z〉 in 3-space.

4 Cycle Systems with Rank ≥ 3

Figure 6 illustrates two cycle systems of rank 3 using edge membership notation. Tracing C7 =

C1
C2

C3
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Figure 6: Cycle systems of rank 3.

C1 ◦ C2 ◦ C3 is illustrative. In both systems, each segment for which |〈x, z〉.λ| is odd must be used
in the cycle; but “even” segments can never be in C1 ◦ C2 ◦ · · · ◦ Cr = { ◦ B}.

We have included several unnecessary nodes to provide clarity. For example, the links 〈xabz〉
in Figure 6(a) could be combined to create a maximal segment 〈x, z〉 with 〈x, z〉.λ = {C1}.
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Figure 7 shows two cycle systems of rank 4. We may consider the segments bounded by
w, x, y, z as constituting the core of these systems. In the construction of Figure 7(b) we took
advantage of Proposition 3.4.
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Figure 7: Cycle systems of rank 4.

Figure 8 duplicates Figure 7 except that in both cases ((a) and (b)) C15 = C1 ◦ C2 ◦ C3 ◦ C4

is solid, while the segments not included in C15 are dashed. Observe that if 〈x, z〉 is not a segment
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Figure 8: C15 = C1 ◦ C2 ◦ C3 ◦ C4 in perfect systems of rank 4.

of C15 then |〈x, z〉.λ| is even. Also observe the interesting structure at node z in Figure 8(a), and
node w in Figure 8(b), where δ(w) = δ(z) = 4. Nodes with δ(y) ≥ 4, such as in Figure 2, are not
common. Since, C1, C2, C3, C4 comprising C15 is a basis, δC15(w) = δ(w).

Figure 9 shows two cycle systems of rank 5.

4.1 Counting Bases in a Cycle System

Let a cycle system C have rank r. Then it consists of all possible sets of r cycles, or
∑

i=1,...,r C(r, i) =
2r, or 2r − 1 non-empty cycles. For the case of r = 5, there are nr = 2r − 1 = 31 non-empty
cycles as shown in Table 1. Any subset Y of r cycles could be independent, or a basis set. (Any
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Figure 9: Cycle systems of rank 5.

set of n > r cycles must be dependent.) There are C(nr, r) ways of choosing these subsets. With
r = 5, C(31, 5) = 169, 911. But not all of these collections need be independent. By Table 1,
C8 = C1 ◦ C4, so any subset Y containing {C1, C4, C8} (which we will now abbreviate by the 3-
set {1, 4, 8}) cannot be independent.3 There exist 305 5-sets which contain {1, 4, 8} as a subset and
so must also be dependent; and 81,375 dependent 5-sets which contain at least one other dependent
subset.

A five element set Y may contain no dependent subset, yet still be dependent. Consider the
5-set of cycles {10, 12, 15, 27, 28}. The composition C10 ◦ C12 ◦ C15 ◦ C27 ◦ C28 = C∅, so by
Proposition 2.3 is dependent. (This is most easily seen by expressing each cycle in terms of its
constituent basic cycles. Thus {10, 12, 15, 27, 28} = {(2 ◦ 3), (2 ◦ 5), (4 ◦ 5), (1 ◦ 2 ◦ 3 ◦ 5),
(1 ◦ 2 ◦ 4 ◦ 5)} or {(1 ◦ 1) ◦ (2 ◦ 2) ◦ (2 ◦ 2) ◦ (3 ◦ 3) ◦ (4 ◦ 4) ◦ (5 ◦ 5)} = C∅.

Composition of the 5-set of cycles {12, 13, 14, 16, 22} yields C6. It has no dependent subset; so
is presumably independent. We can show that this is a basis set of C by verifying that C1 = C12 ◦
C14 ◦ C16; that C2 = C13 ◦ C22; and similarily for C3, C4 and C5. Try it.

By taking advantage of the shortlex ordering and these properties of dependence, one can write
a program to generate and count all independent and dependent sets of r cycles in a cycle system
of rank r.4 Table 2 displays these counts. We note that no combination (set) of just two cycles can
be dependent and every independent r-set corresponds to a basis set. The increasing percentage
of dependent r-sets of cycles and increasing percentage of dependence caused by smaller included
dependent subsets are suggestive. It appears that there are relatively few minimal dependent sets, or
“circuits”, compared with the number of maximal independent subsets. Unfortunately, this method
of calculation is restricted to r ≤ 6 because of integer overflow.

3By an n-set, we simply mean a set of n distinct elements/cycles.
4In the case of r = 3, accuracy was verified by exhaustive examination. In the case of r = 4, 5, 6, large samples of

independent and dependent sets, as well as dependencies based on dependent subsets were verified. Source code for this
C++ program is available from the author.
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number w.
total total number number dependent

rank cycles r-sets independent dependent sub-sets
2 3 3 3 100% 0 0% 0 0%
3 7 35 28 80% 7 20% 0 0%
4 15 1,365 840 61% 525 39% 420 80%
5 31 169,911 83,328 49% 86,583 51% 81,375 94%
6 63 67,945,521 27,998,208 41% 39,947,313 58% 39,072,369 98%

Table 2: Independent & dependent subsets in cycle systems of rank r

It is known that the equation

n independent =
∏

i=0,r−1

(2r − 2i)/r! (2)

counts the number of independent sets in a projective geometry PG(r, 2) of dimension r over a
field of 2 elements [8, 23].

In Table 3, which has been generated by the equation (2), we see that the fourth column exactly
matches that of Table 2 for r ≤ 6. This illustrates the well-known cryptomorphism of matroids
[20, 21], i.e. cycle systems are cryptomorphic to PG(r, 2). In Table 3, we are primarily concerned

total total number nbr ind ÷ number nbr ind ÷
rank cycles r-sets independent nbr total dependent nbr dep

2 3 3 3 1.0 0 -
3 7 35 28 0.8 7 4.0
4 15 1,365 840 0.61538 525 1.6
5 31 169,911 83,328 0.49042 86,583 0.96240
6 63 67,945,521 27,998,208 0.41206 39,947,313 0.70087
8 255 3.9686× 1014 1.3264× 1014 0.33422 2.6422× 1014 0.50200

10 1,023 3.3100× 1023 1.0098× 1023 0.30507 2.3002× 1023 0.43900
12 4,095 4.5677× 1034 1.3448× 1034 0.29441 3.2229× 1034 0.41726
14 16,383 1.1446× 1048 3.3271× 1047 0.29066 8.1196× 1047 0.40976
16 65,535 5.5227× 1063 1.5982× 1063 0.28939 3.9245× 1063 0.40724
18 262,143 5.3345× 1081 1.5415× 1081 0.28897 3.7929× 1081 0.40642
20 1,048,575 1.0611× 10102 3.0651× 10101 0.28884 7.5465× 10101 0.40616

Table 3: Independent & dependent subsets in cycle systems of rank r

with the ratios of independent r-sets to all r-sets (column 5) and independent r-sets to dependent
r-sets (column 7). Readily, the former appears to converge to a constant 0.2887 ≤ c1 ≤ 0.2889
and the latter to a constant 0.4059 ≤ c2 ≤ 0.4061. That the relative abundance of independent and
dependent r-sets should approach a constant value is rather surprising. We believe these are new
results in the field of algebraic matroids [3, 13, 14].
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Table 3 is clearly indicative of the rich combinatorial complexity to be found in cycle matroids
of even relatively low rank.

Because of this complexity, cyclic structures have been suggested as possible underlying bases
for molecular memory, particularly in organisms without neural systems [12, 15, 16, 17, 18], in
molecular control structures [4, 10, 19], and in molecular information conduits [5, 11]. They invite
more research into their properties.
Acknowledgment: The author would like to thank Zvi Rosen of Florida Atlantic Univ. for pointing
out the connection with projective geometries and the generating expression (2), and Robert Jamison
of Clemson Univ. for his general comments on Section 2. An unknown referee also suggested many
helpful changes.
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