Cycle Systems

John L. Pfaltz
Dept. of Computer Science, University of Virginia
jlp@virginia.edu

Abstract

In this paper we show that the composition (symmetric difference) of cycles is well-defined. So, such a collection $\left\{\ldots, C_{i}, C_{k}, \ldots\right\}$ of cycles with a composition operator, ○, is a matroid. As such, it has sets of independent, or basis, cycles that determine its rank r. This paper is concerned with independent and dependent sets of cycles within a cycle system. In particular, we enumerate the number of all possible basis sets in any cycle system of rank $r \leq 6$. Then we use a generating function to establish that the ratio of basis sets to all possible r element sets approaches $c, 0.287<c<0.289$.

1 Introduction

Cycle systems such as Figure 1 exist in nature. Various protein polymers have a linked cyclic structure [2]. Figure 1, which introduced the author to cycle systems, is a membrane polymer

Figure 1: The cyclic structure of a Gr4 membrane polymer.
which cotrols the flow of other proteins across the neucleus membrane of every cell in our bodies [$4,10,19]$. But, cycle structures seem not to have been much studied as mathematical systems; even though, as we show in this paper, they are matroids with group properties.

There seem to be two reasons why this kind of "cycle matroid" has been largely ignored. First, we normally visualize cycles as figures in a planar setting, such as Figure 1. But, they can be
realized in (at least) 3 dimensions; think of a "hula hoop". Consequently, there are many more "non-intersecting" configurations which can be difficult to imagine.

The second reason is that a different concept of "cycle matroid" already exists in the matroid literature. This conception begins with an ordinary undirected graph, $G=(N, E)$. Any set of edges $T \subseteq E$ that constitute a tree are said to be "independent". Any set of edges containing a cycle are then "dependent". Any spanning tree is considered to be a "basis" of rank $r=n-1$, where $n=|N|$. Since all bases (maximal independent sets) have the same cardinality r (rank), the set of edges can be called a "graphic matroid". It is simplest possible example of the matroid concept and is, thus, found in many texts $[9,20]$. This model is utterly clear. It is essentially trivial. And thus of little research interest.

In Section 2 we will develop a far more complex notion of "cycle matroid". Section 3 introduces a novel way of describing the participation of any particular edge in a set of basis cycles. Then, in Section 4.1 we count the maximal possible number of basis combinations in a cycle system of rank r. By way of a spoiler revelation, for $r=6$ it is only $27,998,208$. When $r=20$ this number is 3.06516×10^{101} ! Of particular interest is the ratio of independent sets of r cycles with respect to dependent sets of r cycles.

2 Cycle Basics

Cycles, such as Figure 1, exist in 3-space, but it is customary to visualize them in terms of their planar projections using graph theoretic terms. As noted in Section 1, this can be misleading. However, it allows us to use a large body of graph theoretic terminology with minimal explanation. There are a huge number of texts devoted to graph theory; we will rely mostly on the definitions in the old standard, Harary [7], which will be supplemented as necessary by other cited works. Unfortunately, in all of them there is often confusion regarding the terms cycle, circuit, and rank. We must be more careful.

Let a graph $\mathcal{G}=(N, E)$ be the usual collection of nodes, N, and edges E where $e \in E$ is a subset $\{x, y\} \subseteq N . \mathcal{G}$ is undirected. Let $y \in N$ be any node, the set of incident edges, denoted $i(y)$ are those nodes of E of the form $\{x, y\}$ or $\{y, z\}$. Let S be a set of edges, by the degree of y relative to S denoted $\delta_{S}(y)$ we mean the cardinality $|S \cap i(y)|$, that is the number of edges in S that are incident to y.

A cycle, $C \subseteq E$, is a set of edges such that for all $y, \delta_{C}(y)$ is even. This is a rather unusual definition of the cycle concept, even though by Euler's theorem [7, p. 64], [1, p. 135], it is a well known equivalence with the usual definition in terms of closed walks, or traversability. In the graph \mathcal{G}_{α} of Figure 2(a), the set $C_{1}=\{\{a, b\},\{b, d\},\{c, d\},\{a, c\}\}$, shown in bold, is a cycle. Observe that the degree of the node $c, \delta(c)=3$, but the relative degree $\delta_{C_{1}}(c)=2$. The use of relative degree is crucial when considering cycles embedded in larger graphs, or networks.

Given any cycle, C, we let \bar{C} denote the set of edges comprising C; we let \dot{C} denote its incident nodes. Even though a cycle is a set of edges, it is often simpler to denote them by \dot{C}, their incident

Figure 2: The bolder lines delineate cycles.
nodes. So, the cycle $C_{2}=\dot{C}_{2}=\langle d, e, g, f\rangle$ of Figure 2(b). Using this notation, we should properly denote the relative degree of a node y in a cycle C_{i} by $\delta_{\bar{C}_{i}}(y)$; but we will normally elide the bar.

We typically illustrate cycles as rectangular structures; but one can always insert or delete nodes in any edge without changing the topology of the graph $[1,6]$, so these cycles can be inflated or condensed without changing their basic nature. The empty set, $C_{\emptyset}=\emptyset$, is a cycle.

2.1 Cycle Composition, ○

By the composition of two cycles $C_{i} \circ C_{k}$ we mean the symmetric difference of \bar{C}_{i} and \bar{C}_{k}, or

$$
\begin{equation*}
C_{i} \circ C_{k}=\left(\bar{C}_{i} \cup \bar{C}_{k}\right) \backslash\left(\bar{C}_{i} \cap \bar{C}_{k}\right) \tag{1}
\end{equation*}
$$

In \mathcal{G}_{α} of Figure 2(a) $C_{1} \circ C_{2}=C_{3}=\langle a, b, d, f, g, c, a\rangle$. In Figure 2(b) $C_{1} \circ C_{2}$ is the entire edge set of \mathcal{G}_{β}.

By a cycle system we mean any collection \mathcal{C} of cycles $\{\ldots, y, \ldots\}$ together with the composition operator. Figure 3 presents two more cycle systems. It is worth verifying that in the cycle

Figure 3: Two more cycle systems.
system \mathcal{G}_{γ} of Figure 3(a), $C_{4}=C_{1} \circ C_{2}=\langle a, b, c, g, f, e, a\rangle$ and $C_{5}=C_{1} \circ C_{3}$ consists of two disjoint cycles $\langle a, b, f, e, a\rangle$ and $\langle c, d, h, g, c\rangle$. The cycle $C_{1} \circ C_{2} \circ C_{3}=\langle a, b, c, d, h, g, f, e, a\rangle$. In
\mathcal{G}_{δ} of Figure $3(\mathrm{~b}), C_{1} \circ C_{2} \circ C_{3}=\langle a, b, c, f, e, b, g, h, e, d, a\rangle$ or \mathcal{G}_{δ} itself. Why is the edge $\{b, e\}$ in $C_{1} \circ C_{2} \circ C_{3}$ but not in $C_{1} \circ C_{2}$ or $C_{1} \circ C_{3}$ or $C_{2} \circ C_{3}$?

The composition defined in (1) is effectively the symmetric difference, \oplus, of two sets, yielding a set of edges. It is familiar operator (see Wikipedia). But it is not immediately obvious that the set of edges resulting from $C_{i} \circ C_{k}$, or $\bar{C}_{i} \oplus \bar{C}_{k}$, need be a well-formed cycle.

Proposition 2.1 Let C_{i}, C_{k} be cycles. $C_{i} \circ C_{k}=C_{m}$ is a well-formed cycle.
Proof: Since C_{i}, C_{k} are cycles, for all $y \in \dot{C}_{i}$, and $\dot{C}_{k}, \delta_{C_{i}}(y)$, and $\delta_{C_{k}}(y)$ are even.
If $\bar{C}_{i} \cap \bar{C}_{k} \neq \emptyset$, let $\dot{C}_{i} \cap \dot{C}_{k}=\{\ldots, y, \ldots\}$. For all such $y, \delta_{C_{i} \cup C_{k} \backslash\left(C_{i} \cap C_{k}\right)}(y)=\delta_{C_{i}}(y)+\delta_{C_{k}}(Y)-2 *$ $\delta_{C_{i} \cap C_{k}}(y)$. The third term is doubled because y is in both C_{i} and C_{k}. Readily, $\delta_{C_{i} \cup C_{k} \backslash\left(C_{i} \cap C_{k}\right)}(y)$ is even.
If $y \notin \dot{C}_{i} \cap \dot{C}_{k}$ the third term is zero and the same result follows.
If $\bar{C}_{i} \cap \bar{C}_{k}=\emptyset$ then all $y \in \dot{C}_{i}$ or \dot{C}_{k} satisfy the condition above.
The author has been unable to find a proof of this proposition using the standard closed path definition of a cycle.

The following properties of \oplus are traditional; but not always stated. It is worth restating and proving them.

Proposition 2.2 Let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ be a cycle system with composition as defined by (1), then for all i, k, m,
(a) $C_{i} \circ C_{k}=C_{k} \circ C_{i}$; (symmetry)
(b) $\left(C_{i} \circ C_{k}\right) \circ C_{m}=C_{i} \circ\left(C_{k} \circ C_{m}\right)$; (associativity)
(c) if $C_{i} \circ C_{k}=C_{m}$ then $C_{i} \circ C_{m}=C_{k}$; (exchange)
(d) if $C_{i} \neq C_{k}$ then $C_{i} \circ C_{k} \neq C_{\emptyset}$;
(e) if $C_{i} \circ C_{k}=C_{i} \circ C_{m}$ then $C_{k}=C_{m}$. (uniqueness)

Proof: (a) is evident from the definition (1).
(b) $\left(C_{i} \circ C_{k}\right) \circ C_{m}=\left(C_{i} \cup C_{k} \cup C_{m}\right) \backslash\left(C_{i} \cap C_{k} \cap C_{m}\right)=C_{i} \circ\left(C_{k} \circ C_{m}\right)$
(c) Let $C_{m}=C_{i} \circ C_{k}$, then $C_{k}=C_{\emptyset} \circ C_{k}=\left(C_{i} \circ C_{i}\right) \circ C_{k}=C_{i} \circ\left(C_{i} \circ C_{k}\right)=C_{i} \circ C_{m}$.
(d) Suppose $C_{i} \circ C_{k}=C_{\emptyset}$, where $i \neq k$, then $C_{k}=C_{\emptyset} \circ C_{k}=\left(C_{i} \circ C_{i}\right) \circ C_{k}=C_{i} \circ\left(C_{i} \circ C_{k}\right)=$ $C_{i} \circ C_{\emptyset}=C_{i}$ or $C_{i}=C_{k}$ contradicting the condition.
(e) Let $C_{i} \circ C_{k}=C_{s}=C_{i} \circ C_{m}$. By (c) above, $C_{k}=C_{i} \circ C_{s}=C_{i} \circ\left(C_{i} \circ C_{m}\right)=C_{\emptyset} \circ C_{m}=C_{m}$.

The consequence of Proposition $2.2(\mathrm{e})$ is that C_{i} defines a permutation on the cycles $\left\{C_{1}, C_{2}, \ldots C_{n}\right\}$ of \mathcal{C}, since each composition $C_{i} \circ C_{k}$ is a unique cycle of \mathcal{C}.

Let $Y=\left\{C_{1}, \ldots, C_{n}\right\}$ be a set of cycles. By the span^{1} of Y, denoted $Y . \sigma$, we mean the set of all cycles $\left\{C_{m}\right\}$ such that $C_{m}=C_{i} \circ \cdots \circ C_{k}$, where $C_{i}, \ldots C_{k}, \in Y$. When we wish to denote precisely the cycle $C_{1} \circ \cdots \circ C_{n}$ we will use the notation $\{\circ Y\}$. Thus $Y . \sigma=\cup_{X \subseteq Y}\{\circ X\}$.

[^0]
2.2 Basic Cycles

A set $Y=\left\{C_{i}\right\}$ of non-empty cycles is said to be dependent if there exists $C_{m} \in Y$ such that $C_{m}=C_{i} \circ \cdots \circ C_{k}$ where $C_{i}, \cdots, C_{k} \in Y$. If Y is not dependent, it is said to be independent. The early work of Hassler Whitney [22] is a fine reference work on linear independence. But beware; in it a minimal dependent set is called a "circuit". ${ }^{2}$ This terminology is still common in the literature [7, 21]. Any cycle can be a member of an independent set.

Proposition 2.3 Let $Y \subseteq \mathcal{C}$ be a collection $\left\{C_{1}, \ldots, C_{n}\right\}$ of cycles.
(a) If $\{\circ Y\}=C_{1} \circ \cdots \circ C_{n}=C_{\emptyset}$ then Y is dependent;
(b) if no subset X of Y is dependent, but Y is dependent, then $\{\circ Y\}=C_{1} \circ \cdots \circ C_{n}=C_{\emptyset}$;

Proof: (a) Since $\{\circ Y\}=C_{\emptyset}$, by Prop. 2.2(d), there exists C_{i} such that $\left\{\circ\left\{Y \backslash C_{i}\right\}\right\}=C_{i}$, so Y is dependent.
(b) Suppose Y is dependent, so $\exists C_{i}$ and $X \subseteq Y$ where $\{\circ X\}=C_{i}$ or $\{\circ X\} \circ C_{i}=C_{\emptyset}$. By assumption, $X \not \subset Y$, so $X=Y$.

Thus sets, Y, satisfying Proposition 2.3(b) are "circuits".
A maximal independent set of cycles $\mathcal{B} \subseteq \mathcal{C}$ is said to be a basis for the system \mathcal{C}. Since \mathcal{B} is maximal, every cycle $C_{m} \in \mathcal{C}$ is expressible as the composition of some set Y of cycles contained in \mathcal{B}, that is $C_{m}=\{\circ Y\}, Y \subseteq \mathcal{B}$. (Note: we have not yet established that the cardinality of all basis sets must be the same. However, Proposition 2.2(c) and (e) suggest that this might be so.)

A system may have many bases. $\mathcal{B}_{1}=\left\{C_{1}, C_{2}, C_{3}\right\}$ is one basis for the system \mathcal{C}_{γ} of Figure 3(a); $\mathcal{B}_{2}=\left\{C_{4}, C_{2}, C_{3}\right\}$, shown in Figure 4(b) is another, where $C_{4}=C_{1} \circ C_{2}$.

Figure 4: Two distinct bases for \mathcal{C}_{γ} of Figure 3(a).

Proposition 2.4 Let $\mathcal{B}_{1}=\left\{C_{1}, \ldots, C_{r}\right\}$ be a basis for \mathcal{C} where $|\mathcal{C}| \geq 3$. For any $C_{i} \in \mathcal{B}_{1}$ there exists $C_{i}^{\prime} \notin \mathcal{B}_{1}$ such that $\mathcal{B}_{2}=\mathcal{B}_{1} \backslash\left\{C_{i}\right\} \cup\left\{C_{i}^{\prime}\right\}$ is a basis.

Proof: Since $|\mathcal{C}| \geq 3, \mathcal{B}_{1} \subset \mathcal{C}$ and $\left|\mathcal{B}_{1}\right| \geq 2$. Let $C_{i}, C_{k} \in \mathcal{B}_{1}, C_{k} \neq C_{i}$, and let $C_{i}^{\prime}=C_{i} \circ C_{k}$. Then $C_{i}^{\prime} \notin \mathcal{B}_{1}$ else \mathcal{B}_{1} would be dependent. We claim $\mathcal{B}_{2}=\mathcal{B}_{1} \backslash\left\{C_{i}\right\} \cup\left\{C_{i}^{\prime}\right\}$ is independent and maximal, i.e. a basis.

[^1]Suppose there exists $C_{m} \in \mathcal{B}_{2}$ and $Y \subset \mathcal{B}_{2}$ such that $C_{m}=\{\circ Y\}$ then $C_{i}^{\prime} \in Y$, else \mathcal{B}_{1} is dependent. Thus, $C_{m}=C_{i}^{\prime} \circ\left\{\circ Y^{\prime}\right\}$ where $Y^{\prime}=Y \backslash\left\{C_{i}^{\prime}\right\} \subseteq \mathcal{B}_{1}$. But then, $C_{m}=C_{i} \circ C_{k} \circ\left\{\circ Y^{\prime}\right\}$, again implying \mathcal{B}_{1} is dependent. Thus, \mathcal{B}_{2} must be independent.
Now suppose $\exists C_{m} \notin \mathcal{B}_{2}$ such that $\mathcal{B}_{2} \cup\left\{C_{m}\right\}$ is independent. A similar argument shows that \mathcal{B}_{1} cannot be maximal.

Proposition 2.4 establishes that every cycle system is a matroid. There is an abundance of literature, of which [9, 20, 21] are only representative. More relevent is [14] which emphasises independence, and dependence. Cycle systems can be viewed as algebraic matroids. The cycles behave like vectors over GF(2).

2.3 Shortlex Order Labeling

We have been denoting the cycles in a graph G, or cycle system \mathcal{C}, by the labels $C_{1}, C_{2}, \ldots, C_{i}, \ldots$ where the subscripts are integer. Clearly any index set could be used. Given any initial basis set of r cycles, we will arbitrarily label (denote) them by $C_{1}, C_{2}, \ldots C_{r}$. Then $C_{r+1}=C_{1} \circ C_{2}$. The label C_{r+2} is assigned to $C_{1} \circ C_{3}$ and $C_{r+3}=C_{1} \circ C_{4}$. The cycle $C_{1} \circ C_{r}$ must be labeled $C_{2 r-1}$. Now $C_{2} \circ C_{3}$ becomes $C_{2 r}$ etc. Finally, $C_{1} \circ C_{2} \circ \cdots \circ C_{r}=C_{2^{r}-1}$. This is a shortlex order labeling. Thus if $r=3$ as in \mathcal{G}_{γ} or \mathcal{G}_{δ} of Figure $3, C_{6}=C_{2} \circ C_{3}$ regardless of the actual position of the cycles C_{2} and C_{3} in the network.

Table 1 represents the shortlex order labeling of any cycle system with $r=5$. This provides a

$$
\begin{array}{lll}
C_{1} & C_{12}=C_{2} \circ C_{5} & C_{23}=C_{2} \circ C_{3} \circ C_{5} \\
C_{2} & C_{13}=C_{3} \circ C_{4} & C_{24}=C_{2} \circ C_{4} \circ C_{5} \\
C_{3} & C_{14}=C_{3} \circ C_{5} & C_{25}=C_{3} \circ C_{4} \circ C_{5} \\
C_{4} & C_{15}=C_{4} \circ C_{5} & C_{26}=C_{1} \circ C_{2} \circ C_{3} \circ C_{4} \\
C_{5} & C_{16}=C_{1} \circ C_{2} \circ C_{3} & C_{27}=C_{1} \circ C_{2} \circ C_{3} \circ C_{5} \\
C_{6}=C_{1} \circ C_{2} & C_{17}=C_{1} \circ C_{2} \circ C_{4} & C_{28}=C_{1} \circ C_{2} \circ C_{4} \circ C_{5} \\
C_{7}=C_{1} \circ C_{3} & C_{18}=C_{1} \circ C_{2} \circ C_{5} & C_{29}=C_{1} \circ C_{3} \circ C_{4} \circ C_{5} \\
C_{8}=C_{1} \circ C_{4} & C_{19}=C_{1} \circ C_{3} \circ C_{4} & C_{30}=C_{2} \circ C_{3} \circ C_{4} \circ C_{5} \\
C_{9}=C_{1} \circ C_{5} & C_{20}=C_{1} \circ C_{3} \circ C_{5} & C_{31}=C_{1} \circ C_{2} \circ C_{3} \circ C_{4} \circ C_{5} \\
C_{10}=C_{2} \circ C_{3} & C_{21}=C_{1} \circ C_{4} \circ C_{5} & \\
C_{11}=C_{2} \circ C_{4} & C_{22}=C_{2} \circ C_{3} \circ C_{4} &
\end{array}
$$

Table 1: Shortlex order labeling of cycles in any cycle system of rank 5
standard factorization for all cycles; so for example, $C_{10} \circ C_{19}=\left(C_{2} \circ C_{3}\right) \circ\left(C_{1} \circ C_{3} \circ C_{4}\right)=$ $\left(C_{1} \circ C_{2} \circ C_{4}\right) \circ\left(C_{3} \circ C_{3}\right)=\left(C_{1} \circ C_{2} \circ C_{4}\right)=C_{17}$.

3 Segments

In Figure 4 we had to use multiple lines to convey the position of the alternate basis cycle C_{4}. In this section we formalize this ad hoc procedure.

Let $\{x, z\} \in L$. The edge $\{x, y\}$ can be replaced by a path $\rho(x, z)=\left\langle x, y_{1}, \ldots, y_{k}, z\right\rangle$ where $\delta\left(y_{i}\right)=2$ in a process called subdivision. Similarly, such a path can be contracted back to a single edge. We call such paths, "segments" which we define more carefully below. Subdivision, or contraction, of segments will not change the essential structure of the cycle system; they are all topologically equivalent $[1,6]$. Many properties of cycle systems are determined by their segments. Nodes included in segments serve primarily as labels to reference them in figures.

An edge can belong to, or be a part of, several different cycles. By the edge membership operator, $\{x, y\} . \lambda$, we mean a function yielding the set of basic cycles $\left\{C_{i}\right\}$ such that the edge $\{x, z\} \subseteq \bar{C}_{i}$. By a segment $\left\langle x, \ldots, y_{i}, \ldots, z\right\rangle, 0 \leq i<n$ where $n \leq 0$, we mean a path sequence such that $\left\{x, y_{1}\right\} \cdot \lambda=\left\{y_{i}, y_{i+1}\right\} \cdot \lambda=\left\{y_{n}, z\right\} . \lambda$. Thus we can extend the edge membership operator to segments and define $\langle x, z\rangle . \lambda=\left\{y_{i}, y_{i-1}\right\} . \lambda$. We say the segment $\langle x, z\rangle$ is incident to x (and z).

In Figure 4(a) the segment $\langle c, g\rangle$ has $\langle c, g\rangle . \lambda=\left\{C_{2}, C_{2}\right\}$. In Figure 4(b) $\langle c, g\rangle . \lambda=\left\{C_{2}, C_{2}, C_{6}\right\}$. In both figures, $\langle d, h\rangle . \lambda=\left\{C_{3}\right\}$.

Lemma 3.1 If $C_{m}=C_{i} \circ C_{k}$ then for all $\langle x, z\rangle \in C_{m},\langle x, z\rangle \in \bar{C}_{i}$ or $\langle x, z\rangle \in \bar{C}_{k}$, but not both.
Proof: Since $\langle x, z\rangle \in \bar{C}_{i} \cup \bar{C}_{k} \backslash\left(\bar{C}_{i} \cap \bar{C}_{k}\right)$, the assertion follows.
Effectively, any segment remaining after a composition must have membership in precisely one of the composing basic cycles.

The λ operator is well-defined, that is, never empty, because
Proposition 3.2 Let \mathcal{B} be a basis for \mathcal{C}, then for every segment $\langle x, z\rangle$ there exists $C_{k} \in \mathcal{B}$ such that $C_{k} \subseteq\langle x, z\rangle . \lambda$.

Proof: Let $\langle x, z\rangle \in \bar{C}_{m}$ for some $C_{m} \in \mathcal{C}$. If $C_{m} \in \mathcal{B}$ we are done. If not, $C_{m}=\{\circ Y\}$ for some $Y \subseteq \mathcal{B}$. The result follows from Lemma 3.1.

Proposition $3.3\langle x, z\rangle$ is a maximal segment if and only if $\delta(x)$ and $\delta(z) \geq 3$.
Proof: This follows directly from the definition.
Proposition 3.4 Let $\delta(y)=3$ where $\langle w, y\rangle,\langle x, y\rangle$, and $\langle y, z\rangle$ are its incident segements. Then $\langle w, y\rangle . \lambda \cup\langle x, y\rangle . \lambda=\langle w, y\rangle . \lambda \cup\langle y, z\rangle . \lambda=\langle x, y\rangle . \lambda \cup\langle y, z\rangle \cdot \lambda$.

Proof: We claim $\langle w, y\rangle . \lambda \subseteq\langle x, y\rangle . \lambda \cup\langle y, z\rangle . \lambda$, since if not, there exists a cycle $C_{i} \in\langle w, y\rangle . \lambda$, but $C_{i} \notin\langle x, y\rangle . \lambda$ and $C_{i} \notin\langle x, z\rangle . \lambda$. But C_{i} is a cycle so $\langle w, y\rangle \in \bar{C}_{i}$ implies either $\langle x, y\rangle$ ore $\langle y, z\rangle \in \bar{C}_{i}$. The same argument holds for all three possible containments, so the result follows.

In short, the edge membership operator of any two segments includes all participating basis cycles.
Corollary 3.5 If $\delta(y) \geq 3$, then for at least one segment, $\langle x, y\rangle,|\langle x, y\rangle . \lambda|>1$.
Figure 5 is an attempt to visualize a segment $\langle x, z\rangle$ in a 3-dimensional space. Here, $|\langle x, z\rangle . \lambda|=$ 4 and $\delta(x)=\delta(z) \geq 3$ as required by Proposition 3.3.

Figure 5: A segment $\langle x, z\rangle$ in 3-space.

4 Cycle Systems with Rank ≥ 3

Figure 6 illustrates two cycle systems of rank 3 using edge membership notation. Tracing $C_{7}=$

Figure 6: Cycle systems of rank 3.
$C_{1} \circ C_{2} \circ C_{3}$ is illustrative. In both systems, each segment for which $|\langle x, z\rangle . \lambda|$ is odd must be used in the cycle; but "even" segments can never be in $C_{1} \circ C_{2} \circ \cdots \circ C_{r}=\{\circ \mathcal{B}\}$.

We have included several unnecessary nodes to provide clarity. For example, the links $\langle x a b z\rangle$ in Figure 6(a) could be combined to create a maximal segment $\langle x, z\rangle$ with $\langle x, z\rangle . \lambda=\left\{C_{1}\right\}$.

Figure 7 shows two cycle systems of rank 4. We may consider the segments bounded by w, x, y, z as constituting the core of these systems. In the construction of Figure 7(b) we took advantage of Proposition 3.4.

(a)

(b)

Figure 7: Cycle systems of rank 4.
Figure 8 duplicates Figure 7 except that in both cases ((a) and (b)) $C_{15}=C_{1} \circ C_{2} \circ C_{3} \circ C_{4}$ is solid, while the segments not included in C_{15} are dashed. Observe that if $\langle x, z\rangle$ is not a segment

(a)

(b)

Figure 8: $C_{15}=C_{1} \circ C_{2} \circ C_{3} \circ C_{4}$ in perfect systems of rank 4.
of C_{15} then $|\langle x, z\rangle . \lambda|$ is even. Also observe the interesting structure at node z in Figure 8(a), and node w in Figure 8(b), where $\delta(w)=\delta(z)=4$. Nodes with $\delta(y) \geq 4$, such as in Figure 2, are not common. Since, $C_{1}, C_{2}, C_{3}, C_{4}$ comprising C_{15} is a basis, $\delta_{C_{15}}(w)=\delta(w)$.

Figure 9 shows two cycle systems of rank 5 .

4.1 Counting Bases in a Cycle System

Let a cycle system \mathcal{C} have rank r. Then it consists of all possible sets of r cycles, or $\sum_{i=1, \ldots, r} C(r, i)=$ 2^{r}, or $2^{r}-1$ non-empty cycles. For the case of $r=5$, there are $n_{r}=2^{r}-1=31$ non-empty cycles as shown in Table 1. Any subset Y of r cycles could be independent, or a basis set. (Any

Figure 9: Cycle systems of rank 5.
set of $n>r$ cycles must be dependent.) There are $C\left(n_{r}, r\right)$ ways of choosing these subsets. With $r=5, C(31,5)=169,911$. But not all of these collections need be independent. By Table 1, $C_{8}=C_{1} \circ C_{4}$, so any subset Y containing $\left\{C_{1}, C_{4}, C_{8}\right\}$ (which we will now abbreviate by the 3set $\{1,4,8\}$) cannot be independent. ${ }^{3}$ There exist 3055 -sets which contain $\{1,4,8\}$ as a subset and so must also be dependent; and 81,375 dependent 5 -sets which contain at least one other dependent subset.

A five element set Y may contain no dependent subset, yet still be dependent. Consider the 5 -set of cycles $\{10,12,15,27,28\}$. The composition $C_{10} \circ C_{12} \circ C_{15} \circ C_{27} \circ C_{28}=C_{\emptyset}$, so by Proposition 2.3 is dependent. (This is most easily seen by expressing each cycle in terms of its constituent basic cycles. Thus $\{10,12,15,27,28\}=\{(2 \circ 3),(2 \circ 5),(4 \circ 5),(1 \circ 2 \circ 3 \circ 5)$, $(1 \circ 2 \circ 4 \circ 5)\}$ or $\{(1 \circ 1) \circ(2 \circ 2) \circ(2 \circ 2) \circ(3 \circ 3) \circ(4 \circ 4) \circ(5 \circ 5)\}=C_{\emptyset}$.

Composition of the 5 -set of cycles $\{12,13,14,16,22\}$ yields C_{6}. It has no dependent subset; so is presumably independent. We can show that this is a basis set of \mathcal{C} by verifying that $C_{1}=C_{12} \circ$ $C_{14} \circ C_{16}$; that $C_{2}=C_{13} \circ C_{22}$; and similarily for C_{3}, C_{4} and C_{5}. Try it.

By taking advantage of the shortlex ordering and these properties of dependence, one can write a program to generate and count all independent and dependent sets of r cycles in a cycle system of rank $r .{ }^{4}$ Table 2 displays these counts. We note that no combination (set) of just two cycles can be dependent and every independent r-set corresponds to a basis set. The increasing percentage of dependent r-sets of cycles and increasing percentage of dependence caused by smaller included dependent subsets are suggestive. It appears that there are relatively few minimal dependent sets, or "circuits", compared with the number of maximal independent subsets. Unfortunately, this method of calculation is restricted to $r \leq 6$ because of integer overflow.

[^2]| rank | $\begin{array}{r} \text { total } \\ \text { cycles } \end{array}$ | $\begin{array}{r} \text { total } \\ r \text {-sets } \end{array}$ | number independent | | number dependent | | number w. dependent sub-sets | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 3 | 3 | 100\% | 0 | 0\% | 0 | 0\% |
| 3 | 7 | 35 | 28 | 80\% | 7 | 20\% | 0 | 0\% |
| 4 | 15 | 1,365 | 840 | 61\% | 525 | 39\% | 420 | 80\% |
| 5 | 31 | 169,911 | 83,328 | 49\% | 86,583 | 51\% | 81,375 | 94\% |
| 6 | 63 | 67,945,521 | 27,998,208 | 41\% | 39,947,313 | 58\% | 39,072,369 | 98\% |

Table 2: Independent \& dependent subsets in cycle systems of rank r

It is known that the equation

$$
\begin{equation*}
n _i n d e p e n d e n t=\prod_{i=0, r-1}\left(2^{r}-2^{i}\right) / r! \tag{2}
\end{equation*}
$$

counts the number of independent sets in a projective geometry $P G(r, 2)$ of dimension r over a field of 2 elements [8, 23].

In Table 3, which has been generated by the equation (2), we see that the fourth column exactly matches that of Table 2 for $r \leq 6$. This illustrates the well-known cryptomorphism of matroids [20, 21], i.e. cycle systems are cryptomorphic to $P G(r, 2)$. In Table 3, we are primarily concerned

rank	total cycles	total r-sets	number independent	nbr ind \div nbr total	number dependent	nbr ind \div nbr dep
2	3	3	3	1.0	0	-
3	7	35	28	0.8	7	4.0
4	15	1,365	840	0.61538	525	1.6
5	31	169,911	83,328	0.49042	86,583	0.96240
6	63	$67,945,521$	$27,998,208$	0.41206	$39,947,313$	0.70087
8	255	3.9686×10^{14}	1.3264×10^{14}	0.33422	2.6422×10^{14}	0.50200
10	1,023	3.3100×10^{23}	1.0098×10^{23}	0.30507	2.3002×10^{23}	0.43900
12	4,095	4.5677×10^{34}	1.3448×10^{34}	0.29441	3.2229×10^{34}	0.41726
14	16,383	1.1446×10^{48}	3.3271×10^{47}	0.29066	8.1196×10^{47}	0.40976
16	65,535	5.5227×10^{63}	1.5982×10^{63}	0.28939	3.9245×10^{63}	0.40724
18	262,143	5.3345×10^{81}	1.5415×10^{81}	0.28897	3.7929×10^{81}	0.40642
20	$1,048,575$	1.0611×10^{102}	3.0651×10^{101}	0.28884	7.5465×10^{101}	0.40616

Table 3: Independent \& dependent subsets in cycle systems of rank r
with the ratios of independent r-sets to all r-sets (column 5) and independent r-sets to dependent r-sets (column 7). Readily, the former appears to converge to a constant $0.2887 \leq c_{1} \leq 0.2889$ and the latter to a constant $0.4059 \leq c_{2} \leq 0.4061$. That the relative abundance of independent and dependent r-sets should approach a constant value is rather surprising. We believe these are new results in the field of algebraic matroids [3, 13, 14].

Table 3 is clearly indicative of the rich combinatorial complexity to be found in cycle matroids of even relatively low rank.

Because of this complexity, cyclic structures have been suggested as possible underlying bases for molecular memory, particularly in organisms without neural systems [12, 15, 16, 17, 18], in molecular control structures [4, 10, 19], and in molecular information conduits [5,11]. They invite more research into their properties.
Acknowledgment: The author would like to thank Zvi Rosen of Florida Atlantic Univ. for pointing out the connection with projective geometries and the generating expression (2), and Robert Jamison of Clemson Univ. for his general comments on Section 2. An unknown referee also suggested many helpful changes.

References

[1] Geir Agnarsson and Raymond Greenlaw. Graph Theory: Modeling, Applications and Algorithms. Prentice Hall, Upper Saddle River, NJ, 2007.
[2] Markus Sällman Almén, Karl JV Nordström, Robert Fredriksson, and Helgi B Schiöth. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biology, page 14 pages, August 2009.
[3] Andreas Dress and Lászlo Lovász. On some combinatorial properties of algebraic matroids. Combinatorica, 7(1):39-48, 1987. doi:10.1007/BF02579199.
[4] Steffen Frey and Dirk Görlich. A Saturated FG-Repeat Hydrogel Can Reproduce the Permeability of Nuclear Pore Complexes. Cell, 130:512-523, Aug. 2007.
[5] Ivan Gális, Emmanuel Gaquerei, Shree P. Pandey, and Ian T. Baldwin. Molecular mechanisms underlying plant memory in JA-mediated defence responses. Plant, Cell and Environment, 32:617-627, 2009. doi: $10.1111 / \mathrm{j} .1365-3040.2008 .01862 . x$.
[6] Jonathan L. Gross and Thomas W. Tucker. Topological Graph Theory. Dover Publ., Mineola, NY, 1987. (republished 2012).
[7] Frank Harary. Graph Theory. Addison-Wesley, 1969.
[8] Gary Gordon nd Jennifer McNulty. Matroids: A Geometric Introduction. Cambridge Univ. Press, 2019. ISBN 978-0521-76724-8.
[9] David L. Neel and Nancy Ann Neudauer. Matroids You Have Known. Mathematics Magazine, 82(1):26-41, Feb. 2009.
[10] Samir S. Patel, Brian J. Belmont, Joshua M. Sante, and Michael F Rexach. Natively Unfolded Nucleoporins Gate Protein Diffusion across the Nuclear Pore Complex. Cell, 129:83-96, April 62007.
[11] Reiner Peters. Intro. to Nucleocytoplasmic Transport: Molecules and Mechanisms. Methods in Molecular Biology, 322:235-258, 2006. doi:10.1007/978-1-59745-000-03_17.
[12] John L. Pfaltz. Human Have a Distributed, Molecular Long-term Memory. In Tom Mitchell, Leon Iasemidis, and Ning Zhong, editors, 2018 Internat. Conf. on Brain Informatics, BI 2018, pages 1-12 (B203), Arlington, TX, Dec. 2018.
[13] Zvi Rosen. Computing Algebraic Matroids. pages 1-15, April 2014. arXiv:1403.8148v2.
[14] Zvi Rosen, Jessica Sidman, and Louis Theran. Algebraic Matroids in Action. Amer. Math. Monthly, 127(3):199-216, March 2020. doi.org/10.1080/00029890.2020.1689781.
[15] Thomas D. Schneider. A brief review of molecular information theory. Nano Commun Netw., 1(3):173180, 2010. doi:10.1016/j.nancom.2010.09.002.
[16] Wayne S. Sossin. Molecular memory traces. Prog. in Brain Res., 169:3-25, 2008.
[17] J. David Sweatt. Retrieval: Molecular mechanisms . In H.L. Roediger III, Y. Dudai, and S.M. Fitzpatrick, editors, Science of Memory: Concepts, pages 209-213. 2007.
[18] Natalie C. Tronson and Jane R. Taylor. Molecular mechanisms of memory reconsolidation. Nature Review Neuroscience, 8(4):262-275, 2007.
[19] Karstan Weis. The Nuclear Pore Complex: Oily Spaghetti or Gummy Bear? Cell, 130:405-407, August 102007.
[20] D.J.A. Welsh. Matroid Theory. Academic Press, 1976.
[21] Neil White. Theory of Matroids. Cambridge University Press, Cambridge, UK, 1986.
[22] Hassler Whitney. On Abstract Properties of Linear Dependence. Amer. J. of Math., 57:509-533, 1935.
[23] Peyton Young and Jack Edmonds. Matroid Designs. J. of Research, Nat. Bureau of Standards, Math. Sciences, JNBBAU 77B:14-44, Jan.-June 1973.

[^0]: ${ }^{1}$ In graph theory, the term "span" usually refers to a tree whose nodes include all $y \in N$. Since a tree has no cycles, it has no connection to our usage which is taken from the notion of spanning vectors in a vector space.

[^1]: ${ }^{2}$ This is derived from the graphic cycle matroid, described in Section 1, in which circuits (or cycles) are the minimal dependent sets.

[^2]: ${ }^{3}$ By an n-set, we simply mean a set of n distinct elements/cycles.
 ${ }^{4}$ In the case of $r=3$, accuracy was verified by exhaustive examination. In the case of $r=4,5,6$, large samples of independent and dependent sets, as well as dependencies based on dependent subsets were verified. Source code for this C^{++}program is available from the author.

