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Any region can be regarded as a union of maximal neigh- 
borhoods of its points, and can be specified by the centers 
and radii of these neighborhoods; this set is a sort of "skele- 
ton" of the region. The storage required to represent a region 
in this way is comparable to that required when it is repre- 
sented by encoding its boundary. Moreover, the skeleton 
representation seems to have advantages when it is necessary 
to determine repeatedly whether points are inside or outside 
the region, or to perform set-theoretic operations on regions. 

!. l n l  r o , l uc t i on  

There  arc many pictorial data  processing problen~s 
which req~lir(~ the encoding and processing of irregularly 
shaped pl:~/ar regions. In general it; is irupraetieal to repre- 
sent su(h regions by explicitly enumerating their points, 
sitice the required st;orate capacity would be prohibitively 
l a n e  (though not infinite, since a digitized region con- 
tains only finitely many "points"). Instead, regions are 
usually described by encoding their boundaries. A bound- 
ary can be appro×imated piecewise by analytically simple 
curves, as in Sketchpad and its successors [1-3]. Alterna- 
tively, it can be approximated by a chain of segments 
taken from a fixed grid, as in the work of Freeman [4-5]. 

In this paper, an alternative approach to representing an 
arbitrary planar regioa is described. The  given region is 
described as a union of "maximal neighborhoods" of a 
certain "skeleton" set of its interior points. I t  is shown that  
this approach is comparat)le to chain encoding in storage 
requiremenls. At the same time, it can have significant 
advantages for certain types of region processing prob- 
lems, such as those in which it must  be determined whether 
or riot ~l given point is inside a given region, or in which 
the intersecti(m of two or more regions must be found. 

2. M a x i m a l  N e i g h b o r h o o d s  a n d  S k e l e t o n s  

A digitized image is usually given in the form of a 
rectangular m',Ltrix of elements (ai:) in which (i, j )  are 
the Cartesian .oor(linales of a "point"  and ag: is the den- 
sity of the (ligitiz(,(t image at tile point (i.e., the average 
density of the origimd image over the small region repre- 
sented by the ~'point"). Other digitized image configura- 
tions are t~ossiblc, for e×amt)le that using a hexagonal 
rather than rectangul:u' grid, which in fact seems to be 
preferable for some applications, t Iowever in what follows 
it; will be assmntd for simplicity that the given digital 
picture is i~ r~,~,tattgtll:l r matrix form. 

In order t~ dctine the eoncept of a ma,ximal neighbor- 

hood, one nmst specify a metric on the picture matrix. 
Let  P~ = a<,:, and Pe = a,,>h be two matrix elements 
(from now on: "points"),  and define d(P1,  P 2 ) =  
[ i, - i~ ] ÷ I jr - j~ I. I t  is easily verified that  this func- 
tion has the standard properties of a metric or "distance," 
namely 

d(P~,P2)  => O, a n d =  0 if and only if P ~ =  P2 (1) 

a(P, ,  = d(P , PO (2) 
d(/ , , ,  d ( & ,  + d(P , :',0 (3) 
for all points P1,  P2, Pa • 

[f r is a non-negative integer, the neighborhood 
of P0 = a¢0,s0 of radius r' is defined as the set of all P = ai: 
such that d(P, Po) =< r. Evidently, this neighborhood is 
just the square array of points centered at P0,  oriented 
diagonally and with side r +  1 points long, as shown in 
Figure 1. If r = 0, tile neighborhood reduces to Po itself) 

Fia. i. Neighborhood of the point P with radius 2. 

Let R be a region within the picture matrix M---in 
other words, R can be any subset of M. Let P0 by any 
point of R. Some neighborhood of P0 must always be con- 
tained in R, e.g., the neighborhood of radius 0. Let aR be 
the set of all neighborhoods (of points of R) which are 
contained in R. Since arty point of R is contained in at 
least one of these neighborhoods, their union is all of R, 
i.e., R = UN~zR iV. 

A neighborhood in ~ will be called maximal if it is not 
(properly) contained in any other such neighborhood. 
Sortie examples of maximal neighborhoods are shown in 
Figure 2. Since ~ZR is finite, any N C ~;R is contained in 
at, least one maximal neighborhood. Let ~ER C ~R be the 
set of maximal neighborhoods; thus R = U N ~  N. 

Any neighborhood is defined by specifying its center 
and radius. Since R is a union of maximal neighborhoods, 
it  can thus be completely described by giving the centers 
and radii of these neighborhoods. This is the method of 
region representation which will be studied in the re- 
mainder of this paper. 

The concept of representing a region by its set of maxi- 
mal neighborhoods has recently been proposed and studied 
by Blum [6]. Since the locus of centers of maximal neigh- 
borhoods often takes the form of a centrally located stick 

t It should be noted that other metrics could be defined on a. 
picture matrix, which would give rise to other neighborhood sys- 
tems. For example, one couM define d' (Pt, P2) = max ([iL - i~ I, 
I jl - j2]) and verify that it too is a metric. For d', the neighbor- 
hood of P0 of radius r is readily the square array of points centered 
~t P0, oriented horizontally and vertica.lly, and with side 2r -.÷- 1 
points long. t[owever, the metric d defined above seems to be lhe 
simplest for most eomputatiomfl purposes. 
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figure, the name "skeleton" has been suggested for it;, We 
can thus speak of R as being determined by specifying its 
skeleton together with the maximal neighborho+)d radius 
associated with each skeleton point. 

Algorithms for determining the skeleton points and 
their associated radii for any region in t~ digit~fl picture, 
given the boundary of the region, are described in [7]. 
Figure 3 shows the skeletons of a nutaber of different 
regions; each skeleton point is labeled with its radius 
:reduced modulo 10. Other Mgorithms, also described in 
[7], will regenerate the region from the skeleton. These 
Mgorithms produce the region boundary as a distinguished 
point set, but not as a linearly ordered chain+ 

3. Compar i son  of  Storage Requ i remen t s  

The amounts of storage required by the skeleton and 
boundary techniques of' region encoding will now be com- 
pared. Let R be a region on a digital picture; since the 
picture is discrete, the boundary of R is a polygon. Four 
methods of encoding R (:.art be considered: 

(a) The boundary of R is specified as an ordered se-. 
quence of straight line segments of given lengths 
and slopes. 

(b) The same as (a), but allowing only slopes in the 
eight principal directions (horizontal, vertical 
or diagonal) 

(e) The same as (b), but allowing only segments of 
length 1. 

(d) R is specified by the set of its skeleton points and 
their associated radii. 

Note that method (a) requires a possibly large number of 
bits to specify both the length and slope of each boundary 
segment, while methods (b)- (c)  require only three bits 
to encode slope, and method (c) requires no encoding of 
length. However, methods (b)- (c)  in general require 
successively greater nmnbers of boundary segments to 
specify R. Method (b) is used for purposes of comparison 
in the example which follows. 

To compare the relative amounts of storage required 
by these methods in practical situations, art outline map 
of southeast Asia (Figure 4) was manuMly digitized on a 
200X250 grid. Table [ gives the rmmber of straight line 
boundary segments [as in method (b)] and the number 
of skeleton points for each country on this map. Note 
that except for China and Burma, which have long 
straight lines as major parts of their boundaries, there 
are ahvays somewhat fewer skeleton points than boundary 
segments. (Note also that a skeleton point radius cannot 
exceed half the diameter of the picture, while a straight, 
bout~dary segment can be as long as the picture diameter; 
thus an arbitrary radius can be specified using one bit less 
than required to specify the length of a boundary segment. 
However, if tong straight boundary segments are very 
rare, apl)re('.i::~ble savings can be achieved by using Shan- 
non-F~mo techniques to encode boundary segment 
lengths.) On the other hand, specifying the slope of a 
boundary segment in method (b) requires only three bits, 
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A regiol~ defi+tod by mnxhmfl  t~(~igh[)~>rh~>ods of the 
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l:)l)lN't 'k, 1,'()I¢ 14'l(;{ilfli; 4 

\'umber . f  straight Ntttnber IL[ 

lgurma 338 371 
( :m~b()(lia 178 135 
(lhil,a 231 407 
1 ,a(,s 286 272 
T ha ilai,(/ 440 '102 
N. \'i(',l N~tm t97 183 
S. Viet Nam 262 244 

while specifyi~,g l, he posil.i(m of a skeleton poinl, requires 
~ number el' [)its which depends on the picture diameter 
(in the case of Figure 4:, roughly 16 bits). 

It can thus be concluded tha t  the skeleton method of 
encoding a region requires somewht~t more storage thtm 
(Io the boun&~ry methods, a.s exemplified by method (b). 
However, if fine picture is not too large, the storage re- 
quired is of the same order of magnitude. In particular, 
if the region has numy connected components or is multi- 
ply connected, lhe skeleton representation may actually 
be more eco~omical. Note, in fact, that  to represent the 
boundary of such a region, special coding schemes nl~w be 
needed to lirlk the disconnected parts of the boundary, 
whereas the skeleton method eat, be used without modifi- 
cation. In any case, for certain applications, the additional 
storage requirement may be more than offset by gains in 
processing speed. 

4. Comparison of Processing R e q u i r e m e n t s :  
Shad ing  

The standard method of deterntining whether a point 
lies inside or outside a region, given tile boundary of the 
region, is to draw ~t straight line from the point to the 
border of the picture and corral the number of times it 
intersects the boundary. If this number is odd, the point 
is inside; if even, outsi(le provided lhat the line is never 
tangent io lhe boundary. To carry out this procedure, each 
segment of the t)outld~try nlust be compared with the line 
in order to determine whether or not they intersect. 

If a region is given by specifying its skeleton, tile proce- 
dure for determining if :t given point P lies inside it :is 
analogous. The c(~(mlimttes i, j of the point must  be com- 
pared with the coordinates in., .j~ and radius 'r/~ of e~ch 
skeleton point P~,, . The point lies inside the region if ~md 
only i f [ i -  i k [ +  ] j  - j~.[ ~ 'rk for some k. Note that 
in general it; is necessary to make all of these comparisons 
only for points outside the region; if a point is inside, t.h:~t 
f,'wt is eslablished as soon as the lirst f',. satisfying the 
~d)ove relation is foun(l. 

Slu)r tc t t l s  ctm be  devised to reduce the numl )e r  of 

(:<)mp:u'is()ns a.ctu:dly retluired in /)oth lhe boundary a, nd 
skel(:gon cases, by using st)ecial methods of indexing the 
bou||(/ary s(~gm(qlts or skeleton points. (For the boundatT 
(Ease see, <g., IS;].) OIl(' c,'m, for example, (a) en('lose the 
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region in ~, set of rectangles, and determine analytically 
which rectangle(s) contain the skeleton points to be 
searched; (b) use a sweeping line technique which limits 
search to those skeleton points whose maximal neighbor- 
hoods intersect the line; (c) arrange the skeleton points 
in various types of lexicographic order. However, it is not 
difficult to exhibit cases in which these shortcuts fidl to 
yield significant savings. 

I t  car, be concluded from the foregoing that  since there 
are typically fewer skeleton points than boun da W seg- 
ments, and the comparison operations required in the 
skeleton case are considerably simpler, the skeleton repre- 
sentation has significant advantages if it is necessaw" to 
repeatedly determine whether points are inside or outside 
the given region. 

A specific application which does require many such 
determinations is that of shading a region, for example 
wit, h parallel straight lines. If the region is given in bound- 
ary form, the method described in the first paragraph of 
this section can be used to determine, for any given line, 
the segments of it which lie inside tim region. Repeating 
this proeess for other lines parallel to the given line will 
systematicMly generate the desired set of shading seg- 
ments. Note, however, that  virtually the entire process 
nmst be repeated for each line. 

An algorithm for parallel line shading of a region given 
in skeleton fm~n can proceed as follows: For any one line 
L,  the distance d,~ and direction 0k from any point on L 
to each skeleton poinl, Pk is first determined. These 
distances and directions can then be computed very easily 
for the other points on L, and for points on lines parallel 
to L,  by systematically incrementing the dk and 0k appro- 
priately. (Similar algorithms can be devised for shading 
a region with arty of a wide variety of other regular tex- 
tures. ) 

A FORTItAN routine has been written which outputs a 
shaded drawing of any region which has been stored in 
skeleton form. Specifically, this routine shades the specified 
region with straight lines of any orientation and density. 
Examples of the output of this routine for the map of 
Figure 4 are shown as Figures 5 and 6. These shaded maps 
were drawn by a Calcomp Model 565 Digital Incremental 

Plotter. 
Figures 5-6 also show region boundaries which were 

generated from the stored skeletons. This was done by 
the following procedure: A point known to be inside the 
region (e.g., a skeleton poin0 is picked, and a straight 
line is drawn from it until a point is found which is no 
longer inside tile region; this point must be on the bound  
aLv. With the direction of the straight line as a reference, 
the neighboring points are examined in a clockwise se- 
quence until ariel,her boundary point is found. Repeating 
this process will systematically generate the successive 
boundaw points, thus providing directly a Chain-encoded 
representalion of the boundary. 

5. Set-Theore t ic  Operat io , ls  on  Regions 

A frequently encountered problem in compute|" process- 
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Fro. 5, Shaded map produced from Figure 4, with 
four regions combined. 
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Shaded map pro(hKed from Figure 4, rescaled 

iug of map data. is that o[' <l<q¢~r:mhlii,~ the i d e  'section of 
two given regions or, more gem>rally, determining any 
giveu set-theoretic composite of a given collection of 
retie)is. If the rogimis are repre>euted mml3ti<~ly, ~ts in 
Sketchpad alut its desceudants, this t3t)e of m~mipulattion 
c!all be carried out in ihe am@ti<~l doma.im However, as 
the regious become complex their almlyl ic 21 :represent> 
ticm becomes uueconomictd. 

The following is ~m alger))Inn for directly dei,ennining 
Che skeleton i'epresenl,:d;ion of ),he intx;rsecl, io21 A f"l /7 of 
two regions, giv2m ttle slceh;to:n rep 'es(i2{,alions of A aid 
of  B.  

Let P,  be a skeleton poinl, for A, a.lid .~', lhe correspond- 
mg radius; let Qs, 87 be defiited ~ma.logousiy for B. If P is a 
poinl in A f"] B, then there exist i mid j such that 

d(P, P¢) ~ 'r, ; d(I',  Os) -~ sj. 

For any point P, leC .r be the largest integer such that 

d(P, t ' i )  ÷ r =< 'r, f o r son l e i ;  

similarly, let, s be llhe largest int, eger such that  

d (P ,  Oj) +s=<  ss for some ,7. 

Let  t be the smaller of 9' and s. If t < 0, P is not lit A ~ B; 
while if t ~ 0, P is in A FI B, and the neighborhood of P 
of radius t is the largest neighborhood of P contained in 
ANB, 

Order the set of such (P, t) in deseending order of their 
t's. if  t is m~ximal, P must be a skeleton poinL If t is not 
maximal, P is a skeleton point if and only if it has no 
horizontal o2" vertical neighbor P '  such thal~ the corre- 
sponding t' is greater than t. (The number of operations 
required to implement this algorithm can be reduced by 
an order of m a g n i t u d e  by apply ing  var ious  shortcut0s, as 
indicated ill Sect, ion 4.) 

Another algorit~hm earl be used to obtain the skeleton 
of the set-theoretic difference of A and B. With notation 
as above, define 

8(P, A) = miru {d(P, P~) - r d .  

I t  is easily seen theft if 8(Q5, A ) > s~., then (Qj is a skeleton 
point of B-A ; whereas if 5(Qi,  A ) <= as, the neighborhood 
of Qj of radius ,s's is not con t;aiued in B--A. Moreover, if P 
is ~ skeleton point of B--A which is nol; 'a. skeleton poinf0 of 
A, its associated radius musl be 8(1 ), A ) - I ,  and its 
neighborhood of this radius lntlst be conic{tined in the 
maxima] neighborhood of seine skeleton point of B wlfich 
is not a skeleton point of B A. T/2ese necess:~ry conditions 
are not sufficient; however, the set of poinls which they 
define can be reduced to tile true skeleton of B--A by tile 
procedure described in lille preceding par))graph. 

The union of the skeletons of A :rod/,* gives it skeleton- 
type representat)ion for d U B. This set is nell the skelet,0~ 
of A U B unless A and B are disjoint; however, it~ si0ill 
completely defines A U B, eveu if solnewii{tt redtuidant, lY, 

( C<mtim~ed or, ,p(,(/e 125) 
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l"or tape-orietlied systems, the [{ti;AI) and PI{IXT state- 
menis were cha~lged to IHi~AI) I N P U T  TAl'l,; or READ 
([, j) arid WI{ITN OUTPUT TAPE or W l H T E  (i,./). (2) 
l:or sonic systems, CALL I ;XIT  was changed to STOP. 
(3) For some sys tems,  lhe 1; was dropped from library 
fltnction names.  

+\ tratlslatiott  p ro g ram has been wt ' i t ten to t rausla te  the 
source (leeks from t"oe'r~AN II -1)  to [;'ORTICAN IV. 

:lcl:~owled!lmCnt++. Tim au thors  are i ndeb t ed  to Dr. 
Carl F. Kossack  for advice eoaeern ing  the  programs and  
to the [lcferee for advice  on this paper.  

The n a m e  SLat -Pack  is a shor t  name  for Biostat is t ieal  
f ' rograInmiIlg P a c k a g e  and  grew out. of usage and  the fact 
that  all tit(: p rogran is  are stored on an  I B S [  1316 disk pack. 

Since the  pal)or was written, several  o ther  similar  
packages with the  same name  have been called lo the 
a t tea t ion  of the authors ,  namely,  one a t  the  Univers i ty  of 
California at Berke ley  a n d  one d i s t r ibu ted  by  the  Univlte 
Division of Spe r ry  R a n d  Corp. 

[IE(:EIVEI) N[AY, 1966; REVISED SEPTEMBER, 1966 
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PFALTZ AND ROSENFELD--cont'd from p. 122 

grad so can still be used to represent +l U t~. In Figure 5, 
t, his method was used to ([etertllitle the union (>f C:im- 
bodia, l+aos, :rod North and South Viet Nam. 
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