
Programming and
Data Structures

M.D. Mcllroy
Editor

Partial-Match
Retrieval Usin.g
Indexed Descriptor
Files
John L. Pfaltz and William J. Berman
University of Virginia

Edgar M. Cagley
General Services Administration

In this paper we describe a practical method of
partial-match retrieval in very large data files. A binary
code word, called a descriptor, is associated with each
record of the file. These record descriptors are then
used to form a derived descriptor for a block of several
records, which will serve as an index for the block as a
whole; hence, the name "indexed descriptor files."

First the structure of these files is described and a
simple, efficient retrieval algorithm is presented. Then
its expected behavior, in terms of storage accesses, is
analyzed in detail. Two different file creation
procedures are sketched, and a number of ways in
which the file organization can be "tuned" to a
particular application are suggested.

Key Words and Phrases: bit codes, storage access
cost, multiattribute, partial-match, retrieval

CR Categories: 3.74, 4.33, 4.34

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

W.J. Berman's research was supported in part by NASA contract
NAS 1-14862, J.L. Pfaltz's by Battelle contract DAAG29-76-D-0100.

Authors' present addresses: J.L. Pfaltz and W.J. Berman, Dept. of
Applied Mathematics and Computer Science, University of Virginia,
Charlottesville, VA 22903; E.G. Cagley, Mathematics and Computa-
tion Laboratory, General Services Administration, Charlottesville, VA
22903.
© 1980 ACM 0001-0782/80/0900-0522 $00.75.

522

1. Introduction

In this paper we are concerned with partial-match
retrieval [10] over large, on-line data files. Partial-match
retrieval (sometimes called "retrieval by secondary
keys") assumes that a set of attributes has been associated
with the records of a file. A specific record will have a
distinct (but not necessarily unique) value associated
with each attribute. A partial-match query specifies val-
ues for one or more attributes, thus defining a subset of
the file whose records have the specified values for
designated attributes.

In [13] several techniques for partial-match retrieval
are reviewed and four particular file structures are de-
scribed: record list (also known as "multilist"), cellular
list, record inverted list (often called "inverted files"),
and cellular inverted list. It is stated that "the inverted
list structure is generally preferred" [13, p. 266]. This
preference for the inverted file structure is reflected in its
use in such systems as ADABAS [6], System 2000 [6],
and SPIRES[12].

Because the technique of inverted files is so widely
used and understood, it is useful as a benchmark by
which to measure alternative techniques. One well-
known aspect of inverted files is that "in large, highly
inverted databases, the inverted directory, or index, be-
comes a large database itself" [5, p. 262]. In fact, "ex-
haustive indexes for all attributes will easily exceed the
size of the original file" [15, p. 133]. Therefore, only
those attributes which are deemed important enough are
inverted. The resulting storage overhead has been ob-
served to range from 10 percent to 70 percent of the
original file size (interpreting results from [5]). Of course,
with fewer attributes being inverted, the average retrieval
efficiency decreases and "very few "at~thors have sug-
gested practical and specific guide lines for selecting the
inversion keys optimally" [5, p. 261].

Another important, but possibly not as well-known,
characteristic of inverted files is that "the amount of
work [for retrieval] grows with the number of keys given,
while the expected number of records satisfying the
query decreases!" [10, p. 25]. This observation is con-
firmed by the results presented [5].

As database size and query complexity have in-
creased, many researchers have sought alternatives to the
inverted file technique. In [14], Vallarino develops a
framework for describing and comparing alternative
techniques that use bit-strings as compact representations
of data records. One alternative which Lefkovitz explores
is that of using superimposed coding [7, 8]. He concludes
that "the superimposed code, employed in sequential,
highly compacted search files bears further investigation
even though, for interactive search of large files, it is not
yet as efficient as the [inverted file technique]" [9, p. 10].
Roberts [11] has pursued the practical use of superim-
posed code descriptors developing "bit slice," as opposed
to "bit string," search algorithms (see also [14]) which
may be either hardware or software implemented.

Communications September 1980
of Volume 23
the ACM Number 9

In this paper, we present yet another approach to the
use of bit strings for partial-match retrieval. This ap-
proach, which we call "indexed descriptor files," fits
nicely within Vallarino's framework. However, this
method was originally developed in 1969 by E. Cagley,
and Cagley and his associates (D. Parrish, N. Ray, and
R. Vaughan) have spent over seven years using, refining,
and testing it.

In the next section, the technique of "disjoint coding"
is defined and its simplest use is described. Section 3
extends the simple concepts of disjoint coding to derive
the file structure and retrieval algorithm for indexed
descriptor files. Having described the retrieval algorithm,
its expected behavior is analyzed in Section 4. This
analysis includes exact and approximate expressions for
the number of expected storage accesses, together with
observed results from a real application of the technique.
In Section 5, the many possible algorithms for creating
and maintaining indexed descriptor files are divided into
"top-down" and "bottom-up" classes. Finally, Section 6
summarizes the results and remaining open questions
regarding indexed descriptor files.

Fig. 1. Example of disjoint coding.

vl (NAME) = B E R M A N , W I L L I A M J O S E P H }
Rk = v2 (B I R T H D A T E) 48 /8 /17

v3 (E M P L O Y E E #) 326
v4 (D E P A R T M E N T #) 34

T 1

w~ = 5 bits
wz = 3 '°
wa = 9 "
w4 = 7 "

w = 24 bits

1, if first letter is A - C
2, if D - J
3, if K - N
4, if O - T
5, if U - Z

1, if before 1930
T2 = 21 if between 1930 and 1950

3, if after 1950

Ta = E M P L O Y E E # (modulo 9) + 1

T4 = D E P A R T M E N T # (modulo 7) + 1

Fj F2 F3 F4

10000 010 001000000 0000001

2. Descriptors Created by Disjoint Coding

A descriptor D is simply a bit-string of w (for width)
bits. Each record, R, in a data file has associated with it
a descriptor, Dn. This descriptor is derived from the
values (Vl, v2 Vf)R of the fat tr ibutes of R. While the
particular method of creating a descriptor to reflect the
attribute values of a record is not critical in the discussion
of retrieval using indexed descriptor files, it may signifi-
cantly affect the efficiency of an implementation. A
traditional approach for creating descriptors is that of
superimposed coding [7, 8, 11]. We consider another
possibility, disjoint coding.

Disjoint coding begins by dividing each descriptor
into f disjoint fields (note that each record has . f attri-
butes). Each field ~ consists of wj bits and, therefore,

Z~=I w i = w (2.1)

Each of the fat t r ibutes has associated with it a transfor-
mation, Tj: {legal values of attribute-j} ~ [1, wj]. Then,
to encode or describe a record R, these transformations
are applied to each of the attribute values of R and the
Tj(vj)th bit in Fj is set to 1 (the remaining wj - 1 bits are
cleared to 0) for j = 1, 2 f For an example of
disjoint coding, see Figure 1.

As just described, each transformation Tj is single-
valued and, therefore, each descriptor will have exactly
f bits set to 1 (one in each of its fields). Equally possible
are transformations which set 2, or more, bits per field.
One may also use order-preserving transformations that,
with a modification to the retrieval algorithm presented
in this paper, allow for "range searching."

Before developing a partial-match retrieval algorithm,
it is useful to consider separately the creation of the

query descriptor, Q, and its basic properties. In a partial-
match query, attribute values are specified for only a
subset of the attributes. Let q _< f attribute values be
specified. The query descriptor Q is created in a manner
analogous to that of creating Dn from R. That is, the
transformation Tj is applied to the attribute value v} to
determine which bit in ~(Q) to set to 1. If for some
attribute j, vj is not specified in the query then no bit is
set in Fj(Q). Consequently, precisely q bits will be set in
the descriptor Q.

Since the descriptors Dn and Q have been constructed
using the same transformations, it is apparent that the
following proposition and obvious corollaries are true.

PROPOSITION 2.0. l f R satisfies the partial-match query,
then Q c..C_ DR.

COROLLARY 2.2. I f Q (Z DR, then R does not satisfy
the partial-match query.

COROLLARY 2.3. I f Q c_ DR, then R may, or may not,
satisfy the partial-match query.

Here the notation Q c_ DR means that every bit
position which is 1 in Q is also a 1 in DR, and the
notation Q ~ DR means that there is at least one bit
position which is 1 in Q and 0 in DR. These propositions
form the basis for all our retrieval algorithms.

Knowing how to create query descriptors, we may
illustrate these basic properties by first constructing a
trivial file structure that supports straightforward partial-
match retrieval. The data records are stored in a data
structure allowing random access to any record R. The
descriptors are stored sequentially. The partial-match
retrieval begins by forming the query descriptor Q. The
descriptor file is then sequentially scanned and each
descriptor DR is bit-wise compared with Q. If Q cc_ DR,
then the record R is accessed and its actual attribute

523 Communica t ions September 1980
of Volume 23
the ACM N u m b e r 9

values are compared with those specified in the query.
If Q ~= Dn, then by Corollary 2.2, R cannot possibly
satisfy the query and, therefore, need not be accessed.

Although we shall find that the use of "indexed"
descriptor files is far superior (in terms of disk accesses)
to this simple version of the partial-match algorithm, it
can be seen that if the descriptors are very much shorter
than their corresponding records, then a sequential
search of a descriptor file coupled with random access
into the data file might be superior to a simple sequential
search of the data file itself [9]. This comparison can be
especially favorable if the descriptor file and the data file
are stored on separate devices, thereby significantly re-
ducing seek time. Another consideration in favor of using
descriptors is that the bit-wise comparison can typically
be implemented in a few machine instructions, in con-
trast to the q attribute value comparisons that are other-
wise required.

3. Indexed Descriptor Files

A serious problem with the preceding algorithm is
that there are as many descriptors as there are records.
Thus, in very large data files, the number of disk accesses
required to scan the descriptor file can be unacceptable
[9]. A first improvement upon the algorithm is to asso-
ciate each descriptor with several records rather than
with a single record. Indeed, if the data records are
stored as a file of blocks containing several records, it is
quite natural to have a descriptor associated with all the
records in the block.

Let fl denote a block ofp~ data records, (Rk }. (We let
p~, for packing factor, denote the number of records
packed into block ft.) We may create a descriptor, Da,
for the entire block of records by letting

D/~ -- V p ~ l Dk (3.1)

where vkD~ denotes the bit-wise (or logical) OR of the
record descriptors of the block. Note that the ORing
operation preserves Proposition 2.1 and its corollaries; if
the query descriptor is not contained in the block descrip-
tor, Q ¢Z D~, then no record of the block can possibly
satisfy the query, so it need not be accessed. Now we can
modify our earlier retrieval procedure. Given a query
descriptor Q, the procedure sequentially searches a file
of block descriptors, called the first indexfile. If Q __c D~
then the block fl is accessed and the actual attribute
values (v~ vr)R of each of its pa records are compared
with the query values (v] Vq). If the partial-match
criteria is satisfied, this record R is added to the response
set.

If we let r denote the size of the data file (total number
of records R), and let p denote the average packing
factor, then the index file of block descriptors contains
[r/p] descriptors. Each block descriptor must be ac-
cessed since the file of descriptors is being searched
sequentially. To reduce the number of storage accesses

57.4

required in this sequential search, it is natural to pack
several of the block descriptors D B into a single block of
storage, especially since descriptors are short and of
equal, fixed length. A descriptor for such a block a can
be created by ORing each of the individual block de-
scriptors D B in a; that is,

D, = ~ / ~ Da. (3.2)

Readily, these derived descriptors may be accumu-
lated in a second descriptor file. And we may modify the
retrieval procedure to begin by sequentially searching
this second, and very much smaller descriptor file. If Q
c__ D,, then the block a in the first index file is accessed
from storage and Q is compared with each D B in a. If Q
cc_ D~, then the block fi of data records is accessed and
the actual record attribute values are compared with the
query attribute values.

Of course, the descriptors D~ in the second descriptor
file can themselves be blocked and ORed to form a third
index file, and so on. Since each file of descriptors in this
hierarchical structure serves as an index to the blocks of
the lower level file, we call them indexed descriptor files.
By convention, we let file(0) denote the file of data
records; file(l) denote the index file of its block descrip-
tors; file(2) denote the index file of its (file(l)) block
descriptors, and so on. If d denotes the depth of the
hierarchical structure, then index file(d) is the "highest"
level of the structure and the only one that needs to be
searched sequentially. We will parameterize our notation
for descriptors, blocks, the number of records, and pack-
ing factors by file level, i. Thus we have D(i), fi(i), r(i),
and p(i).

Figure 2 illustrates a portion of an indexed descriptor
file of depth 2. In this example, the data records are
identified by four attributes which are represented by
fields of width 5, 3, 9, and 7 in a 24-bit descriptor. The
records in the data file(0) have been packed four records
per block. The descriptors in index file(l) have been
packed two descriptors per block. A more formal descrip-
tion of the retrieval procedure is given below.

procedure query (v'l Vq);
Given a set (v'~ v~} of q specified attribute values, I
apply the transformations to form a query descriptor
with q nonzero fields.

Q ~ (Ts(v~):for specified query attributes, j};
index Exhaustively file(d), search all descriptors in the highest level

for each D/~(d) in file(d) do
if Q cc_ D,(d) then search (fi, d - 1);

end

recursive procedure search (beta, level);
fetch block beta from storage;
I Examine all records or descriptors in this block. I
if level > 0

then I This is a block of descriptors in an index file. I
for each D,(level) in block beta do

if Q _ Dt~(level) then search (fl, level - 1)
else I This is a block of data records. [

for each R in block beta do
if (v vf) satisfy (v'l Vq)

then add R to response set;
end

Communications September 1980
of Volume 23
the ACM Number 9

Fig. 2. Portion of a Two-level Indexed Descriptor File Using Descriptors of Width, w = 24 bits.

Index File (1)

Index File(2) _._~.-----.--------~101100 llO OOlOlOlO0 O 0 0 0 1 0 1 ~ _ ~
]lllO0 llO OOlOlOlOl O000lll[~ 1 1 1 1 0 0 llO O00000101 O000011l ~

]Ill01 101 000110100 10011001 [,x]01101 101 000100100 0 0 0 1 1 0 0 ~ [[11001 101 000010100 1 0 0 0 1 0 0 |

Data File (0)

31000 100 000010000 0000001
30100 100 O0, cO0100 0000100
30100 OlO (," 000000 O000001
31000 l O 0 0 t 000000 O000100
10000 ~00 0o0000001 0000010
)0100 010 0u0000100 0000010

!01000 100 000000001 0000001
10000 010 000000100 0000010
00001 100 000100000 0001000
00100 001 000000100 0000100
00100 100 000100000 'r'~lO00
01000 100 000000100 0001000
10000 001 000010000 1000000
00001 100 000010000 1000000
01000 001 000010000 0000100
10000 001 000000100 0000100

To demonstrate the retrieval process, consider two
queries in which only two query attribute values have
been specified. Assume that the resulting query descrip-
tors are:

Q1 = 00001 000 000100000 0000000
Q2 = 00000 010 000000000 0000010

Query I will access only the 2nd block of index file(l)
and the 3rd block of the data file. Only the first record
of this block (9th data record in the file) could possibly
satisfy the query, although whether it does or not de-
pends on the actual attribute values associated with the
record and those specified in the query. Query 2 will
access the first block of file(l) and the 2nd block of the
data file(0). Either records 6 or 8 in the data file could
satisfy the query.

Before continuing with a quantitative analysis of the
retrieval procedure in the next section, we would like to
make three comments regarding Figure 2 which is illus-
trative of the general procedure, but misleading concern-
ing actual practice. First, a 24-bit descriptor is too small.
In a very large database one expects to use descriptors
with widths of 100 to 200 bits. Second, since descriptors
are normally much shorter than the records of the data
file, a packing factor, p(1) --- (2), for index file(l) is utterly
unrealistic. Packing factors on the order of 100 are more
normal. Third, the figure suggests that individual record
descriptors are stored in the data file. This is unnecessary,
and indeed, the search procedure never refers to a zero-
level descriptor. The data file consists of just the data
records themselves, with no additional stored informa-
tion. The concept of a zero-level record descriptor is only
useful in understanding the way data files are indexed,
and index files created.

4. Analysis of Expected Accesses per Query

Let ~(i) denote the expected (or average) number of
l-bits in the j t h field, Fj, of a descriptor in file(i).
Readily, ij(i) _> 1. We begin by considering the proba-
bility that a given query descriptor Q is contained in
(satisfied by) a descriptor D(d) in the highest level index
file(d). Assuming a uniform distribution of the trans-

525

formed attribute values Tj(v i) (not of the attribute values
v1 themselves), the probability that Fj(Q) is contained in
the j t h field of D(d) is simply expressed by ~(d)/wi,
which is the expected bit density in 6(d) . Then the
probability of a match in file(d) is simply

pr(Q cc_ D(d)) = [I ~(d)/wj. (4.1)
j~Q

Consequently, the expected number of blocks ac-
cessed in file(d - 1) is the number of descriptors exam-
ined in file(d) times the probability that any examined
descriptor satisfes the query descriptor Q, or

E(Blocks accessed in file(d - 1)[Q) = b(d - 1)
= r(d).pr(_Q c D(d)) (4.2)
= r(d). I-I tj(d)/wj

jcQ

where we are using b(d - 1) to compactly denote the
expected number of blocks accessed in f i l e (d - 1).

Now consider a descripte, c D(d -1) in a block fl of
file(d - 1) that has been accessed in the query procedure.
We need the conditional probability that Q c D(d -1)
given that Q c De(d). Since Q c_ Da(d), all of the 1-bits
of Q are known to match 1-bits in DB(d); hence, the
"effective" width of any ~ in D(d - 1) is b.(d). Conse-
quently,

pr(Q c__ D(d - 1)[Q __c OB(d))
= H ~ (d - 1) / ~ (d) . (4.3)

J~Q

Now the expected number of blocks accessed in file
(d - 2) is the number of descriptors examined in file(d
- 1) (that is, the number of blocks accessed times the
average packing factor p(d - 1) for that file) times the
probability of a match for each such record examined.
Thus,

E(blocks accessed in file(d - 2)[Q) = b(d - 2)
= 6 (d - 1) . p (d - 1). n ~ (d - l)/~(d)

J~o (4.4)

= [r(d). YI ~(d)/wj] .p(d- 1). II t - (d- 1)/~(d)
J~Q j~Q

=r(d) .p (d- 1). rI ~ (d- 1)/wj.
jCQ

Communications September 1980
of Volume 23
the ACM Number 9

But since each descriptor in file(d) corresponds to a
block in file(d - 1), we have

r(d) . p (d - 1)= r (d - 1) (4.5)

SO,

E(blocks accessed in file(d - 2)1 Q) = b(d - 2) (4.6)
= r (d - l) n t } (d - 1)/wj.

J~Q

In a similar manner it is easy to show that, in general,

E(blocks accessed in file(/) [Q) = 6(0 (4.7)
= r (i + 1) II 7j(i + 1)/wj

jeQ

so that the total number of blocks accessed in the course
of retrieving records satisfying a query Q is given by

E(blocks accessed I Q)

= ~]d-ai=o /~(i) (4.8)
= 1~=~ r(i + 1). 1-I ~(i + 1)/wj.

jEQ

In this expression we have assumed that the highest
level index file(d) is core resident so that no blocks need
be accessed to sequentially examine it. If this is not the
case, then a constant term, b(d) = r(d)/p(d), must be
added to the expression above, since every block of
file(d) must be accessed.

We can get a feeling for the implications of expression
(4.8) by evaluating it for some representative numbers.
Let the data file consist of r(0) = 1,440,000 records.
Associated with these records will be 7 identifying attri-
butes, so that each descriptor will consist of 7 fields. Each
of these we make of width wj = 10 bits, so that w = 70
bits. If the 1.44 million records of the data file are
blocked with 24 records per block, there will be r(1) =
60,000 descriptors in index file(l). If these are in turn
blocked with 128 descriptors per block, then there will
be r(2) = 470 descriptors in index file(2). Five hundred
descriptors can reasonably reside in primary storage, so
file(2) can be exhaustively searched with no disk accesses.

Table I presents the average number of l-bits in each
of the descriptor fields of the two index files. If all 7
attributes (or descriptor fields) are specified in the query,
then FI7=, ~(2)/wj = .00249, and II7=~ ~(1)/wj = .0000544.
Substituting these into expressions (4.7) and (4.8) we
have

E(blocks accessed in file(l) [Q) = 1.172,
E(blocks accessed in file(0)[Q) = 3.264

and, therefore

E(blocks accessed, or disk accesses[Q) = 3.548.

This example was not created for this paper! E. Cagley
(who first proposed this kind of retrieval algorithm in
[3]) and his associates in the Mathematics and Compu-
tation Laboratory of the Federal Preparedness Agency
have created an indexed descriptor file to retrieve infor-
mation from a file of census data of this magnitude [4].
The descriptor widths (2 machine words), packing fac-

526

tors, and bit densities are those observed in their system.
In the two years that the implementation of this dynamic
file has been operational, it has been observed that an
average of between 3 and 4 disk accesses is sufficient to
respond to a query for a singly fully specifed record.

The preceding example assumes that all seven fields
are specified in a query. It will be illustrative to examine
the behavior of the system if just three of the fields are
specified. In this case there will be approximately 1,440
records (technically buckets) that may satisfy the query
specifications. Given the uneven distribution of l-bits in
the fields of the index descriptors, a query specifying
fields 1, 2, and 3 represents a "best case" situation, while
the specification of fields 5, 6, 7 represents a "worst case"
situation. We will examine both, even though the way
these index files were created [4] optimizes retrieval on
the first three fields at the expense of retrieval using the
last three fields (which, in fact, have never been used as

= n ; = , 7 A 1) / w , = a query). II}=~ ~(2)/wj .00396, and a
.001. Thus, in the best case, it is expected that 1.861 + 60
= 61.861 disk accessed must be made to retrieve approx-
imately 1,440 records. In the worst case query. I-[7:5 ~(2)/

II)=5 ~(1) /wj = .259. Now the expected w / = .874 and 7
number of disk accesses to respond to the query is 411.09
+ 1555.2 = 1966.29 to retrieve the same number of
records.

While expression (4.8) gives the exact expected num-
ber of disk accesses, it is not always an easy one to use
in practice since it presumes a knowledge of which
attribute fields have been specified in the query in order
to evaluate the right-hand product. Frequently, only the
total number, q, of attributes specifed in Q is known. We
may simplify expressions (4.7) and (4.8) by assuming that
the bit density in any single field is nearly the same as
the overall average bit density bd(i) of the entire descrip-
tor D. That is, we assume that

~(i)/wj -~ b'--d(i) expected bits in D(i) = < 1.0
width of D

for all fields Fj in any index file(i). While this assumption
of the relative invariance of bit densities per field is
dependent on the particular method of creating the file
structure, and may thus be invalid (as in the preceding
example), we have found that the approximation often
yields surprisingly accurate predicted access costs. Fur-

Table I. Average number of l-bits in descriptor fields, ~ of two index
files. (Note: The uneven distribution of bits in these fields is a charac-
teristic of the particular way this file was created.)

6 ~ (2) 7:. (l)
1 1.0 1.0
2 1.1 1.0
3 3.6 1.0
4 7.2 2.1
5 9.3 3.7
6 9.5 7.3
7 9.9 9.6

Communicat ions September 1980
of Volume 23
the ACM Number 9

thermore, the simplified form highlights important fea-
tures of retrieval using indexed descriptor structures.
And this form is more amenable to standard optimization
techniques. Using this approximation, expression (4.7)
becomes

E(blocks accessed in file(i) I q)
r(i + l).b--d(i + 1) q (4.9)

and expression (4.8) becomes

E(blocks accessed I q)
,~ Y.d~o~ [r(i + 1).b"-d(i + 1)q]. (4.10)

Since the density of i-bits in the descriptors of index
file(i + 1), b d (i + l) < 1.0, the factor on the right
decreases, often dramatically, as q increases. Conse-
quently, as the number of attribute values specified in a
query increases, the cost of retrieval decreases - - in con-
trast to standard inverted list retrieval in which the cost
actually increases.

From expression (4.10), it is seen that the expected
number of blocks accessed when responding to a query
is not only a function of the number q of query attributes
specified; but it is als__o a function of the size, r(i), and
average bit density, bd(i), of each index file(i). Readily,
one seeks to minimize retrieval cost by minimizing r(i)
(that is, increasing p(i - 1)) and by minimizing the bit
densities bd(i) . Unfortunately, we should emphasize that
the twin goals of both increasing the average packing
factor while decreasing the average bit density are nor-
mally incompatible. As more descriptors are ORed to
form a block descriptor, the number of bits in that block
descriptor tends to increase. Controlling and optimizing
these two parameters is just one of the interesting design
problems associated with indexed descriptor files.

5. File Creation, Record Entry

The nature of the retrieval process using indexed
descriptor files is independent of the particular way the
file may have been created, even though its actual per-
formance may be significantly affected by parameters
established by the creation algorithm, that is, average
bits in field-j of file(i), ~(i), and the number of records
per index file, r(i). There is no "single" way to create
indexed descriptor files. Indeed, this file structure admits
several creation and/or entry procedures which may be
selected, and then tuned for a particular application.
These procedures fall into two broad classes which we
call "bottom-up" and "top-down" file creation processes.

In "bottom-up" file creation, the data file is first
organized by any desired method (it is not a function of
the indexed descriptor file structure). For example, the
records of the file described in Section 4, and in Table I,
were first sorted lexicographically on the subfields of
their descriptors. Then the first p(0) data records are
packed into a single block and its block descriptor
formed to b e c o m e the first record in index file(l). The

527

next p(0) data records are packed into a block, its block
descriptor formed, and added to index file(l), and so on.
The first p(1) records (block descriptors) in index file(l)
are packed into a single block and its block descriptor
formed to become the first record of index file(2), and so
on .

Readily, this method of file creation is optimal with
respect to storage overhead, since every storage block is
fully packed, except possibly the last block in any file.
And given that the file has already been organized in
some fashion, it is fast, requiring only a single sequential
pass through the data file ORing and creating block
descriptors as it goes. Readily, this method of file creation
is best for static files, but it can be appropriate in the
case of moderately dynamic files using a record insertion
algorithm which simply enters the new record into the
last partially filled block, and ORs its descriptor to each
"covering" block descriptor. Since this latter portion of
the file is randomly organized (by order of record inser-
tion), the entire data file may be periodically reorganized
and a new indexed descriptor file structure created over
it.

Highly dynamic files are more easily maintained using
"top-down" record entry. Here we assume an existing
file structure with only partially filled blocks. Using the
descriptor of a new record, the entry procedure searches
the tree-structured index file to find the "best" data block
in which to insert this new record--if a "best" block
exists. The concept of "best" is normally a heuristic one
which may be based on a large number of criteria, such
as the number of new bits added to a block descriptor,
or the Hamming distance between the old and new block
descriptors. Similarly, several search algorithms may be
used, such as depth-first, breadth-first, or ordered search.
In all "top-down" entry procedures, the new record
descriptor D is compared with the block descriptors in
the highest level file(d). Each time a decision is made
whether or not the associated block in file(d - 1) should
be accessed and D compared with its descriptors, and so
on. Both the adequacy of the resulting data organization
and the efficiency of the entry procedure (in terms of
storage accesses) are highly dependent on the particular
parameters employed in the search process and its deci-
sions. Some of the subtle interactions are too involved to
discuss adequately in this paper.

It is apparent that each block descriptor in an index
file "describes" a subcluster, cluster, or supercluster of
records in the data file, depending on its level in the
index. With "bottom-up" creation these descriptors
merely reflect the clustered organization imposed upon
the data file a priori. In "top-down" creation, the records
of the data file are clustered "on the fly." Again, the
actual clustering is determined by the particular search
strategies and decision heurisms employed. Still the de-
scriptor files form a useful vehicle for recording the
existing structure on which decisions are based, and for
concepturally studying (in retrospect) various clustering
phenomena, such as cluster overlap.

Communications September 1980
of Volume 23
the ACM Number 9

Record deletion is nearly trivial in indexed descriptor
files. The record is simply deleted from its data block; a
new block descriptor is recalculated, with covering block
descriptors rewritten and recalculated as necessary. At
most two or three storage accesses are involved.

6. Conclusions

As shown in the preceding sections, partial-match
retrieval using indexed descriptor files is certainly com-
petitive, in terms of storage accesses, with the traditional
inverted file technique; and when several attributes are
specified in the partial-match query, it is superior.

We may also be concerned with the issue of storage
overhead and its associated cost. This is a difficult prob-
lem to analyze precisely since it is dependent on the
length of the data records, the width of their descriptors,
the packing factors used in the various files, etc. How-
ever, we may observe that no additional information
need be added to the data file (one need not store the
block descriptor in its block); the only storage overhead
is associated with the index files themselves. Given a
reasonable packing of the data file, say p(0) > 10, then
one relatively short descriptor record is inserted into the
first index file for each 10 or more data records. Higher
level index files may be even more highly compressed.
Thus, with a "bottom-up" descriptor index we may
expect storage overhead costs of less than 10 percent of
the total data file. Cagley reports a typical storage over-
head of 5 percent in his applications [4].

In index files that have been created by a "top-down"
entry procedure which uses a heuristically guided process
to "cluster" records and thus reduce descriptor bit dens-
ities, we do not fully pack the blocks in the data file so
room will be left for later insertions. In this case we have
observed storage overhead costs of from 20 to 40 percent
of the data file, depending on how finely tuned the entry
procedure is.

The issue of "tuning" an indexed descriptor system is
an interesting one--precisely because it is possible to do
so. Consider the problem of a record attribute which is
seldom used in retrieval, but may be important when it
is specified. With inverted files it is an all or nothing
decision; either that attribute is inverted (with the same
attendant costs as with inverting any other attribute) or
it is not (forcing a sequential search of the entire file for
retrieval on this attribute). In these files, the designer
may decide on the relative importance of any attribute
and allocate a proportional number of bits w in the
descriptor. Both [1, 2] give formulae for optimally setting
the dimensions of a bucket space, which are suggestive,
but not quite accurate in this situation since they are
based on a different expression for the expected number
of storage accesses per query. By the same token, one
may tune the system by using a deeper structure of three
or more index files; this seems, however, to be unneces-
sary with files of less than a million records.

Received 3/79; revised 2/80; accepted 4/80

References
1. Aho, A.V., and Ullman, J.D. Optimal partial-match retrieval
when fields are independently specified. Trans. Database Systs. 4, 2
(June 1979), 168-179.
2. Berman, W.J., and Pfahz, J.L. Multi-dimensional bucket arrays.
DAMACS Tech. Rep. TR-16-78, Univ. of Virginia, March 1978.
3. Cagley, E.M. A retrieval strategy for large, multi-key files
requiring frequent updating. TR-75, Executive Office of the President
(Office of Emergency Preparedness), Dec. 1971.
4. Cagley, E.M., et al. Information Management System Reference
Manual. GSA/FPA/MCL TM-208, Oct. 1976.
5. Cardenas, A.F. Analysis and performance of inverted data base
structures, Comm. ACM. 18, 5 (May 1975), 253-263.
6. DATAPRO Res. Corp. A Buyer's Guide to Data Base
Management Systems, 1974.
7. Files, J.R., and Huskey, H.D. An information retrieval system
based on superimposed coding. Proc. AF1PS Fall Joint Comptr.
Conf., Vol. 35, AFIPS Press, Arlington, Va., 1969.
8. Knuth, D.E. The Art of Computer Programming, Vol. 3. Addison-
Wesley, Reading, Mass., 1973.
9. Lefkovitz, D. The large data base file structure dilemma. Rep.
76-5, Univ. of Penn. Moore School, 1976.
10. Rivest, R.L. Partial-match retrieval algorithms. SlAM J.
Comptng. 5, 1 (March 1976), 19-50.
I1. Roberts, C.S. Partial-match retrieval via the method of
superimposed codes. Proc. IEEE, Vol. 67, No. 12 (Dec. 1979), pp.
1624-1642.
12. Schroeder, J., et al. Stanford's Generalized Data Base System.
Internat. Conf. on Very Large Data Bases, Framingham, Mass., Sept.
1975.
13. Severance, D.G., and Carlis, J.V. A practical approach to
selecting record access paths. Comptng. Surveys 9, 4 (Dec. 1977), 259-
272.
14. Vallarino, O. On the use of bit maps for multiple key retrieval.
ACM S1GPLAN Notices 11 (March 1976), 108-114.
15. Wiederhold, G. Database Design. McGraw-Hill, N.Y., 1977.

Corrigendum. Reports and Articles

Robert F. Ling, "General Considerations on the Design
of an Interactive System for Data Analysis," Comm.
A C M 23, 3 (March 1980), 147-154.

In the Acknowledgments section on page 153, the
author expressed special thanks to one of the Associate
Editors. Through an unfortunate error the wrong Asso-
ciate Editor was named. The correct editor should have
been Michael Marcotty. The error is deeply regretted.

52.8 Communications September 1980
of Volume 23
the ACM Number 9

