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CONVEX CLUSTERS IN A DISCRETE m-DIMENSIONAL SPACE*

JOHN L. PFALTZ+

Abstract. A simple procedure is used to dynamically create convex clusters of items in a discrete
m-dimensional space. Systems of difference equations are derived that describe the behavior of this cluster
formation under the assumption that individual clusters are either of bounded or unbounded size. These
equations are used to calculate the expected number and size of such clusters given the number n of items.

For an actual implemented database access and retrieval method, these results provide a way of
determining both the expected storage overhead and the expected retrieval costs.

Key words, attribute space, cluster, database, dynamic item entry, retrieval cost, file organization,
indexed-descriptor, partial-match retrieval, storage overhead

1. Introduction. In this paper we will consider the creation of convex clusters
formed by the random placement of items in a discrete m-dimensional space with
finite bounds. That is, items will be associated with points of the space that may be
denoted by m-tuples of integers (il, i2, ’, i,,), where 1 <-ii -< wi. Here wi denotes the
upper bound on that coordinate of the space. Two questions are of particular interest.
Given a clustering process and n items in the space"

a. What is the expected number of convex clusters?
b. What is the expected number of convex clusters containing precisely k items?
Although we have deliberately cast these problems in purely mathematical terms,

for instance "convex cluster" and "m-dimensional space", they have been motivated
by a very practical application, that of determining the expected retrieval cost and
expected storage overhead of an efficient information retrieval organization for very
large data files [8]. In this interpretation, cells of the m-dimensional space may be
viewed as buckets in an m-dimensional attribute space; items may be regarded as
data records; and clusters may be blocks in a data file. We will discuss these computer
applications more fully in 5 and 8.

2. Descriptors and convex clusters. Since every cell of the space can be identified
by an m-tuple (ia, i2,’’ ", i,,) of integers, we can equivalently identify the cell by a
descriptor consisting of m distinct bit strings called fields. In the/th field (of width wi
bits) only the th bit is set to 1. Thus

00100000 000001 0000100000 00000010

is a 4-field descriptor for the cell (3, 6, 5, 7) in a finite 4-dimensional space consisting
of 8 6 10 8 3840 cells. The use of bit descriptors instead of integer m-tuples
will at first seem awkward. But, in fact, this transformation simplifies the following
analysis.

Every cell in the space is, by itself, a convex subset. Although other definitions
of "convexity" in a discrete space are possible, we will adopt the convention that a
subset is convex if and only if it is a b b2 ’ b,,-cube. Thus in the 2-dimensional
15 15 space shown in Fig. l(a) (which is deliberately "small" for illustrative purposes;

* Received by the editors March 6, 1981, and in final revised form August 9, 1982. This research was
supported in part by the National Science Foundation under grant MCS80-17779.

r Department of Applied Math. and Computer Science, University of Virginia, Charlottesville, Virginia
22903.

We could equally well speak of "points" in the space. However, the term "cell" seems preferable
because we will be associating data items with such points in the space, and "cell" suggests that several
such items can be associated with (or stored in) that "cell".
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CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 735
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FIG. (a)
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Fzo. l(b)
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000010000000000 000000010000000

000001000000000 000000100000000

000001000000000 00000 000000000

Df 000000100000000 000001000000000

D! 000010000000000 000010000000000

000011100000000 000011 0000000 De Df Dg

FIG. (c)

normally m > 2) subsets $1,82 and $3 are convex subsets, while 84 and $5 are not.
For convex subsets one can form a descriptor by simply OR-ing the descriptsrs of
each of its cells. The descriptors of these convex bl bE ’ b,,-cubes are character-
ized by the fact that each field has b consecutive 1-bits set. Such convex subsets are
called clusters. Their associated descriptors are convex cluster descriptors, or just cluster
descriptors. D1, D2 and D3 in Fig. l(b) are convex descriptors associated with the
convex subsets $1, $2 and $3 respectively. D4 is the descriptor associated with $4; but
neither is convex. Note that there is no adequate descriptor for the set $5. By the
exten’t of a cluster, we mean the number of cells in the space comprising it; that is
extent bl bE X... X bin. (One can use "volume" as a synonym for extent.) In Fig.
1, extent (S2)= 4, extent (S2)= 12, and extent ($3)= 8.

Let Sl and 82 denote any convex subsets of a space, so that their corresponding
descriptors D1 and D2 are also convex. Clearly 81 $2 is convex (or void) and D1 ^D2,
if it exists, must be the convex descriptor of that intersection set. (To "exist", a
descriptor must have at least one bit set in each field.) In general, 81 LI $2 will not be
convex, and similarly D1 v D2 need not be a convex descriptor. Moreover D1 v D2
will not, in general, denote $1LIS2. If D1 v D2 is convex, it denotes the convex hull
Of 81 L.J S2.

In Fig. 1, $1 is the convex hull of the cells a:(11, 13) and b:(12, 12). $2 is the
convex hull of the points c:(5, 8), d:(6, 7), e:(6, 6), f:(7, 6) and g:(5, 5). See Fig. 1(c).
These are convex clusters. By the content of a cluster, we will mean the number of
items in it. For example, regarding $2 as a cluster of the items c, d, e, f and g implies
that content ($2) 5.
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736 JOHN L. PFALTZ

We will assume the following clustering algorithm. Let a new item I be entered
into the space at a cell with descriptor Dx. Let Dc be the descriptor of a cluster C.

Condition 1. The item I will be added to C only if Dx v Dc is convex. Dtv Dc
will be the new cluster descriptor.

Condition 2. If there are two, or more, clusters Ca and C2 such that D v
and Dtv Dc2 are both convex, then I will be added to a cluster of minimal content,
i.e., containing the fewest items. This need not be a cluster of minimal extent, i.e.,
the smallest b x bE " b,,-cube. Note that, whenever an item is added to an existing
cluster C, its content is increased by one, its extent may, or may not, increase. Two
items may be entered into the same cell of the space, but they need not belong to
the same cluster. Condition 2 will not be used until we begin the analysis of 6.

Finally note that with this algorithm, which dynamically creates clusters as items
are entered and does not redefine cluster boundaries after the fact, the nature of the
formed clusters is dependent on the order of entry. For example, the items (1, 1),
(2, 2), (3, 3), (4, 4) entered in this order form a single cluster with descriptor (11110
11110... ); but entered in the order (1, 1), (4, 4), (2, 2), (3, 3) form two distinct
clusters with descriptors (11000 11000 and (00110 00110 ).

3. Halos and intersections. In this section, we calculate two values that will be
used in the probabilistic arguments of succeeding sections. Let C be any b b2 "b, cluster. If a new item is associated with a cell that is contained within, or is adjacent
to, C then that item may be added to C. The set of cells adjacent to C we call its
halo. Combined with its halo, the effective extent of C is (ba + ca) (b2 + e2)""
(b, +e,,), where l_-<e._<-2, l<-f<-m.

For field., ei counts the number of adjacent 0 bits in the descriptor, so for any
particular cluster C, e 1 or 2, depending on whether C is centrally placed in the
space with respect to attribute-/’. (Note that we will always assume that b.-< w.- 1,
since otherwise all bits in field, are set. Consequently we may assume ei 0.) Now we
need an expression for gi, the expected extent of a halo, in terms of bi, the extent of C.

Consider field, in Dc for any attribute/’. If the string of bi consecutive bits is in
the "interior" of the field, there are adjacent unset bit positions at either end, and
e. 2. If the string is in either "extreme" position there is only one adjacent unset
bit position and ei 1. We may thus let. 1 prob (extreme config.) + 2 prob (interior config.)

(3.1) 1. (bi + 1)/wi + 2. (wi-bi- 1)/wi

(2w.-bi- 1)/wi 2- (b. + 1)/wi,

where the probabilities of an "extreme" or "interior" configuration can be calculated
by examining the generation sequences of the possible configurations. We will assume
that (3.1) is valid even when using b., the expected number of bits set in field j. Clearly
g is a function of b, with g 2, when b - 1 and g - 1 when b w 1.

Let Ca and C2, be two clusters, both of extent b b2 " b,,. We will determine
their expected effective intersection, that is, the expected number of cells in the
intersection of Ca and C2 together with their halos. (Note that we have considerably
simplified the more general problem of expected intersection of clusters by assuming
that Ca and C2 are of identical extent. But it will suffice for our purposes.)

Again consider field, in Dcl and Dc, for any attribute/’, 1 _-</" _-< m. Let s and s2
denote the strings of b. consecutive 1-bits in each descriptor field respectively. Assume
that s is positioned anywhere in fieldi and that s2 is displaced exactly d positions to
the left of S1, O <-- d <--wi-bi.
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CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 737

For various values of d one can show that the amount of effective overlap (of
the descriptors and their halos) of S and s2 in field, is

i b
+ g if d 0,

overlap (d) bi d + 2 if 1 -<_ d -<_ bi + 1,
0 ifd>b.+ 1.

The probability of obtaining a displacement of d _>-0 bits is the probability of
locating sl in any position with at least d positions to its left times the probability of
locating sz in that position which is precisely offset by d bits. Thus

prob (offset d)
(w. d bi + 1)
(w-b + 1)2

hence the expected overlap in field, expressed in terms of the possible displacements
d of s2 relative to sl is

bi+l
exp (overlap)= overlap (0). prob (0)/ . overlap (d). prob (d)

d=l

b+ [(bi-d +2)(wi-d-b, + 1)](b, + ei) + a"l= (wi bi + 1)2
(3.2)

(which replacing the last term with the sum of the finite series becomes)

2wi-bi-1 (bi+l)(bi+2)(3wi-4bi)
=b+ +

w, 3 (wi-bi + 1)2

Although we have derived (3.2) under the assumption that bi is integral, we again
assume that the expression holds for real values, bi. (One of the most convincing
ways of verifying (3.1) and (3.2) is to work out and exhaustively count all possible
configurations for small values of b. and w., possibly for bi 2, w. 7.)

Let 37(n) denote the expected number of convex clusters given n items in the
space. Assume that n items, chosen independently from a uniform distribution on the
space, have been entered into the space, and that an (n + 1)-st item ! is entered.
According to the clustering algorithm of the preceding section, item I will be added
to an existing cluster if Dx v Dc is convex for some cluster C. Thus item ! will create
a new singleton cluster if and only if Dx v Dc is not convex for all C, and so one has
the difference equation

(3.3) ?(n + 1) ?(n) + A3,(n),

where Ay(n) prob WC,D v Dc is not convex), and 7(1) 1.
Since Dtv Dc is convex if and only if each field/" is convex

(3.4) prob (Dr v Dc is convex) 1-I (bi +

so that

(3.5)
p (n) prob (Dr v Dc is not convex)

1.0- I-I (bi+gi)
Wj
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738 JOHN L. PFALTZ

and thus

A,(n prob (VC, Dr v Dc is not convex)

(3.6) (prob (Dr v Dc is not convex))(")

( I (b-’ + g))
(")

=p(n)(")= 1.0
W

Note that expressions (3.4), (3.5) and (3.6) are valid only if the distributions of bits
set in distinct fields are uniform and independent. Initially we can assume this
uniformity. But in 6 we will have to recalculate (3.5) under a condition in which the
clusters are no longer uniformly distributed throughout the space. Independence will
be assumed throughout this paper, even though it is well known that in any particular
application the various attributes of the items represented in the space may exhibit
considerable dependency. Note also, that 7 (n) and p (n) are functions of n, the number
of items entered into the space as we have clearly indicated. So also are b. and gi; but
to keep the expressions to a reasonable size we have not always used either bi(n) or gi(n).

The difference equation (3.3) can now be simply expressed as

(3.7) qT(n + 1)= "r/(n)+o(n) ’(’).

4. Expected number of convex clusters. If we have an expression for b. as a
function of n, then we can calculate gj using (3.1), o(n) using (3.5), and /(n), the
expected number of convex clusters, using (3.7). We will set up and solve a difference
equation of the form

(4.1) bj(n + 1) bi(n + Abi(n ).

However, we will have to obtain Abi in a somewhat indirect manner.
Let B. denote the expected total number of 1-bits set in field/" of all cluster

descriptors Do Then

(4.2) b.(n)=B.(n)/T(n) and Ab.(n)=(T(n). AB.(n)-B.(n). A/(n))/y(n)z.
We may approximate y(n) by 37(n) and using (3.6), Ay(n) by p(n) ("). We thus need
only an expression for ABe..

Again we look at the incremental change in B resulting from the entry of a new
item, L If for all clusters C, Dr, Dc is not convex, then I will start a new cluster, and

Bi will be increased by 1. If for some C, Dr, Dc is convex, then a new bit may, or
may not, be set in the resulting descriptor field depending on the position of the bit
in the field. The probability of adding an extra bit and incrementing B. is

prob (incrementing Bi [Dr vDc is convex)= ej/(bi +ei)

(2wi -bi- 1)/[(bj + 2)wi -b. 1].

(Note that evaluating this expression for bi w.- 1 and bj 1 provides the bounds
1/wi <= prob < .) Thus the incremental change to/i as the result of entering a new
item is given by

(4.3)
ABi(n) 1 prob (VC, Dr v Dc is not convex)

+ prob (incrementing Bi) prob (:iC, Dr v Dc is convex)
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CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 739

or

(4.4) ABi(n) p ’ + (b. + 2)wi b-. 1
(1 p

(Note that in practice, (4.4) may be an upper bound for ABe., since for large n we
expect there may be several clusters C to which the item I could be added, and a
reasonable entry procedure might choose that "best" cluster C which minimizes the
increase in cluster extent, and thus B..)

Now, using (4.2)

Ab(n (/(n AB.(n )-B.(n A,r/(n ))//(n 2

(4.5)
(/7 +/.)p ((/ +.)p-Z)w-6")-I

((bi + 2)wi-bi-1)’

Expressions (3.7), (4.1) and (4.5) may now be used to set up a set of m + 1
difference equations in (q,/,..., b-) which, since the independent variable is an
integer, may be just evaluated iteratively. These are:

(n + 1) (n)+ Ay(n)= ,(n)+o(n)"(,
bi(n + 1) bi(n + Abi(n

(4.6)
b’.(n)+ (b-’(n)+(n))p(n)(")-[(b(n)+(n))o(n)(")-2]w-b(n)-I(( +2)w -/.- 1)q(n)

where 37(1)= 1,/;1(1) b-,,(1) 1, and using (3.5)

0 (n) 1.0 -1 w

Tables 2 (a, b, c) illustrate numerical solutions for three sets of such difference
equations. Initially nearly every new item begins a new cluster. The probability that
no Dt v Dc is convex, that is p 9, is close to 1.0. But as 37 and Ilib. (the expected cluster
extent) increase, the likelihood of an item jr being added to an existing cluster increases.

TABLE 2(a)
Numbers and extents of unbounded clusters in the space (8, 6, 10, 8).

w 8 6 10 8

10
20
40
60
100
150
200
300
400
500

?(n) /x(n) /2(n) b(n) b"4(n)

9.3 1.047 1.046 1.048 1.047
17.4 1.095 1.094 1.096 1.095
30.5 1.193 1.190 1.195 1.193
40.4 1.292 1.286 1.295 1.292
53.5 1.489 1.488 1.505 1.489
61.8 1.772 1.753 1.783 1.772
65.4 2.056 2.027 2.073 2.056
67.3 2.617 2.564 2.647 2.617
67.5 3.315 3.045 3.171 3.125
67.5 3.573 3.465 3.636 3.573

m 4, Iliw 3.840
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740 JOHN L. PFALTZ

TABLE 2(b)
Numbers and extents of unbounded clusters in the space (4, 7, 10, 15, 20).

w 4 7 10 15 20

10
20
40
60
100
150
200
300
400
5OO
600
700
8OO
900

1,000
1,500
2,000

9.9 1.006 1.006 1.006 1.006 1.006
19.6 1.011 1.012 1.012 1.012 1.012
38.6 1.023 1.024 1.024 1.025 1.025
56.8 1.034 1.036 1.037 1.037 1.037
91.2 1.057 1.061 1.062 1.062 1.063

130.7 1.086 1.092 1.093 1.095 1.096
166.6 1.117 1.123 1.126 1.127 1.128
228.7 1.178 1.188 1.192 1.195 1.196
279.6 1.241 1.255 1.261 1.265 1.267
320.9 1.307 1.326 1.333 1.338 1.340
354.1 1.375 1.399 1.408 1.415 1.418
380.4 1.445 1.475 1.486 1.494 1.498
401.0 1.518 1.554 1.567 1.576 1.581
416.8 1.593 1.635 1.650 1.662 1.667
428.7 1.669 1.719 1.736 1.750 1.756
453.0 2.062 2.152 2.185 2.209 2.222
456.1 2.431 2.571 2.623 2.661 2.679

m 5, Iliw 84,000

TABLE 2(C)
Numbers and extents of unbounded clusters in the space (5, 10, 15, 20, 25, 30).

wj 5 10 15 20 25 30

5OO
1,000
1,500
2,000
3,000
4,000
5,000

10,000
15,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000

q(n) (n) b(n) b(n) b(n) b(n) b-6(n)

494.3 1.007 1.007 1.007 1.008 1.008 1.008
977.2 1.014 1.015 1.015 1.015 1.015 1.015

1,449.1 1.021 1.022 1.023 1.023 1.023 1.023
1,909.9 1.029 1.030 1.031 1.031 1.031 1.031
2,799.6 1.044 1.046 1.046 1.046 1.047 1.047
3,647.5 1.059 1.061 1.062 1.062 1.063 1.063
4,455.2 1.074 1.077 1.078 1.079 1.079 1.079
7,934.0 1.154 1.161 1.163 1.164 1.165 1.166

10,585.1 1.241 1.253 1.257 1.258 1.259 1.260
12,538.7 1.335 1.353 1.359 1.361 1.363 1.364
14,827.8 1.550 1.582 1.592 1.596 1.599 1.601
15,705.5 1.791 1.841 1.857 1.864 1.869 1.872
15,936.6 2.040 2.119 2.135 2.146 2.152 2.157
15,975.1 2.279 2.377 2.407 2.421 2.430 2.435
15,978.9 2.502 2.625 2.663 2.681 2.692 2.700
15,979.1 2.707 2.858 2.904 2.927 2.940 2.949
15,979.2 2.900 3.077 3.132 3.159 3.175 3.186
15,979.2 3.079 3.285 3.349 3.380 3.400 3.411

m 6, I-liw 11,250,000D
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CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 741

Indeed, with the configuration of Table 2(a), which represents a fairly small 4-
dimensional space of IIiw 8.6.10.8 3,840 points, by the time n 300 items
have been entered the entire space has been effectively covered by 67 existing clusters.
p 0.0 and /(n)- constant, since all newly entered items are included in an existing
cluster. But bi(n) keeps increasing as the extent of individual clusters keeps growing.

Table 2(b) illustrates the behavior of clusters in a slightly larger 5-dimensional
space of IIiw. 4 7 10 15.20 84,000 cells. It is much the same, except that when
n 2,000 an expected 7 =456 clusters have been formed with an expected content
of n/C/=4.38 items and expected extent of II.b. 116,207 cells per cluster. At n-
1,500 there were virtually the same number of clusters, with expected content =3.31
but with an expected extent of only 47.15.

In a still larger 6-dimensional space of II.wi=5.10.15.20.25.30=
11,250,000 cells, after n 50,000 items have been entered there will be approximately

15,936 distinct clusters with an expected content of only 3.14 items per cluster.
After 100,000 items have been entered there will be nearly the same number of
clusters, but now each cluster will contain an expected 6.26 items.

5. Practical implications. Bit descriptors, as developed in this paper, can be the
key to very efficient multi-attribute file retrieval methods. We are primarily concerned
with a retrieval method called "indexed descriptor access" described in detail in [8].
References [1, 7, 10, 11] represent a sample of other multi-attribute retrieval methods
which are similar, or related in some way. Virtually all retrieval methods work most
effectively when "similar" items are stored together; that is are clustered in some
fashion. The item (or record) entry algorithm of 2 is one way of dynamically
organizing any data file.

The solution of the system of m + 1 difference equations in the preceding 4,
that calculate and bi, for 1 =<j_-< m, provide precisely the information needed to
estimate expected retrieval costs, assuming that we will let clusters contain an arbitrary
number of items. In [8] it is shown that

/ n 1-I b
yO Wj

denotes the expected number of accesses in the data file to respond to a query O
which conjunctively specifies some, or all, of the m item attributes. (Here, II.o
denotes a product involving those fields/" specified in the query.)

If, for example, all m attributes were specified in a retrieval query (normally
denoting at most a single record of the data file), then using the final values in Tables
2(a, b, c) and (5.-1), the expected storage accesses to the data file are:

file 1 (500 items) 2.831 accesses,

file 2 (2,000 items) 0.631 accesses,

file 3 (100,000items) 1.886 accesses.

Note that these values do not denote the total cost of retrieval using indexed
descriptor access. A few additional accesses must be made in one, or more, index
files. But it is not the purpose of this paper to discuss any retrieval method in detail.
Still we do want to indicate (1) that this dynamic clustering procedure can be used in
conjunction with an effective retrieval scheme; (2) that the resulting analyses can be
used to estimate expected retrieval costs; and (3) that retrieval in very large files need
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742 JOHN L. PFALTZ

be no more expensive than much smaller files--provided they are represented over
a sufficiently large attribute space.

The expressions of the preceding section provide the means for numerically
calculating 37(n) and bi(n) as in Tables 2(a, b, c) and thereby calculating the average
number of items per cluster, n/(n). But the tables do not indicate the extreme
variability in either the extent or the content of these clusters. A few clusters have
large content, while most contain only one or two items. Intuitively, of the many
initially scattered singleton clusters, chance dictates that a few will begin to grow. But
then the probability that new items will be contained in, or adjacent to, these larger
clusters (that is, Dt v Dc will be convex) is greater, and so they tend to keep growing;
at least until the space is well covered by clusters.

If we are modeling an actual computer file organization in which items (or records)
with similar attributes are to be clustered (blocked) together in a data file, then the
presence of large clusters is unrealistic. There will be some finite upper limit on the
number of records that can form a physical block of the data file. Thus we really want
to derive the results of the preceding section, subject to the constraint that "no cluster
can contain more than kmax items".

In the next section we add this bounding constraint, and in so doing must use a
different analytic approach. The expected number of clusters with precisely k items,
1 =< k -< kmax, must be determined. The results are somewhat surprising, and in many
respects more revealing of the behavior of this clustering process in actual practice.

6. Number of clusters containing precisely k items. A k-cluster, Ck, is one
containing precisely k items, 1 =<k-<kmax. kmax denotes the maximum possible
content of (number of items in) any cluster. To express the expected number of these

-(k)(nk-clusters and their extents we could use a notation such as 3()(n), b) (n) and e.
to indicate a functional dependence on both k and n. But rigorous adherence to this
notation would lead to unwieldy expressions below. Moreover, we will show that
and e are not, in fact, dependent on n. Consequently, we will use an abbreviated
notation (k), b(k) and (k) and let the dependence on n in the case of /(k) be
tacitly understood. Now

kmax kmax

(6.1) 37 3(k), Bi Y’. bi(k)’/(k), b B
k=l k=l y

where the terms 2, Bi and bi on the left are identical to Z/(n), Bi(n) and bi(n) of preceding
sections.

We now concentrate on the behavior of just k-clusters. By definition, for all
1-clusters, b.(1) 1.0, for 1 -<] -< m. A new 2-cluster is formed by adding an item to
an existing 1-cluster. For each field/’ there is a distinct probability that the entered
item will add another bit to that field of the cluster descriptor. And since all 2-clusters
are formed in the same way, the expected number of bits per field in any single
2-cluster descriptor is that of all 2-clusters as a whole. Thus

[ bi(1) ]bi(2)=bi(1)+ 1-/.(1--i(1)j,

where the expression in brackets denotes the probability of adding a new bit to field.
of the cluster descriptor, assuming Dtv Dc is convex; and where gi(1) is calculated
from hi(l) using (3.1). In general, for 2 -< k -< kmax

(6.2) bi(k b(k 1)+ [1.0- b(k 1)/(b(k 1)+ g(k- 1))].
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CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 743

Note that bi(k), the expected number of bits set in fieldj of a k-cluster, and g.(k) are
both independent of n or 3,(k), the number of such clusters.

Let ! be a new item entered into the space. Following the clustering algorithm
of 2, by Condition (1) I will be added to some existing Ck only if D v Dc is convex,
and by Condition (2) if Dt v Dc, is not convex for any 1 --<_/" < k. The item I will start
a new singleton cluster only if Dt v Dck is not convex for any Ck, 1 =< k =< kmax-1.
(Note that I cannot be added to any kmax-cluster.) Consequently,

prob (adding I to a k-cluster, 1 <- k < kmax)
(6.3)

prob (C., I < k, D v Dc, is not convex), prob (Ck, D vDck is convex).

And, in general, the incremental change in 3(k) as a result of entering a new item I
into the space can be expressed by

(6.4) A/(k) =prob (adding/to a (k 1)-cluster- prob (adding/to a k-cluster).

The second term accounts for the fact that every time a (k + 1)-cluster is formed from
a k-cluster, 3,(k) is decreased by one. This expression must be modified in the case
of k 1 and k kmax. When k 1, the first term of (6.4) is the probability that
Dtv Dcj is not convex for any cluster, < kmax. When k kmax, the second term is
simply omitted.

The probabilities of (6.3) may be calculated in two different ways. First we assume,
as in preceding sections, that k-clusters are uniformly distributed through the space
in an independent manner, so that using (3.4) we have

prob (D vDck is convex) H (b(k)+g(k))/w,
/=1

where again this probability is independent of n. As in 3 and 4 we let p(k) denote
the probability that Dt v Dc is not convex for any particular k-cluster. Thus (6.3)
becomes

(6.5) prob (adding I to a .k-cluster, 1 <- k < kmax) I-I p (f) (i). 1.0 p (k) (k)],
i<k

which when substituted into (6.4) yields the following difference expressions

A35(1)= l-1 P(k)’-(1.O-p(1)’1)
k <kmax

A(k)= l-I p(i) s’j" (1.0-p(k-1)-1) 1-] p(i) s’)" (1.0-p(k)))
i<k-1 i<k

[I p(j)(’)
i<k -1

for 2 <_-- k <_- kmax 1, and

(6.6) z(kmax)

[(1.O-p(k 1)(k-1))-p (k 1)(-1) (1.O-p (k)())]

I-I p(i) "(i) [1.0-p(kmax- 1)?(kmax-1)].
<kmax-

With these one can set up kmax difference equations of the form

(6.7) 35()(n + 1)= 2()(n) + A2(k)

and evaluate them iteratively using 37(1)(1)= 1.0, 37(k)(1)= 0.0, 2-<_k =< kmax, as initial
conditions.

The iterative evaluation of this set of equations yields values which are reasonably
close to those values obtained in practice. For example, the maximum relative error
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744 JOHN L. PFALTZ

Then we set w FI
1 -clusters

between the expected 37(n) calculated in this fashion, and the actual y(n) observed
in more than 50 generated clustered files over different attribute spaces is less than 0.19.

However, it is intuitively evident that k-clusters may not be independently
distributed throughout the space. This leads to a second way of determining at least
the first two differences of (6.6).

Consider just the case of 1-clusters. A new 1-cluster will be created by a newly
entered item only if it is not within or adjacent to any existing k-cluster, k < kmax.
1-clusters are formed only in that portion of the space not covered by k-clusters.
(Note that in this dynamic process, 1) 1-clusters which were formed at any earlier
time may exist in other portions of the space if they have not been subsequently
enlarged; and 2) once a cluster has its maximal possible content, kmax, it no longer
affects the clustering process--it is effectively no longer there.)

Now for 1-clusters we can re-evaluate (6.3) as

prob (adding I to a 1-cluster) prob (! a 1-cluster C, Dtv Dc is convex)

prob (D v Dcj is convex)- prob (Dt v Dc, and Dtv Dcj are convex)
i,i

i,i,k

where the sums are run over all 1-clusters C, Ci, Ck. The first term of this expansion
is simply

3(1) l-I (b(1) + j(1)) w..
If the 1-clusters were uniformly distributed then the second term would be

(37(21)) exp (overlap in field)/ w,

into which we could substitute (3.2).
But (3.2) was derived assuming that the clusters were distributed over the entire

space. They are not. They are confined to a much smaller portion of the space, and
the expected intersection is higher than that predicted by (3.2). We can approximately
account for this by replacing the actual field widths, w., in (3.2) with apparent field
widths, call them w ., where I-li w total volume of space not covered by k-clusters,
2 =< k _-< kmax. We approximate this reduction factor by

FI-’- I-[ p(k) el(k).
k2

w. Since b.(1)= 1.0 for all j, (3.2) becomes, in the case of

exp (overlap)=-----[3wi +4w -8]
Wi

and (6.3) becomes

prob (adding I to a 1-cluster)

(6 8) 1
/(l).l-I(/.(1)+gi(1))- (1)

(3wi +4wi-8/wi +.... wi 2

where the third and succeeding terms of the expansion are ignored.
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CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 745

There are enough approximations in this refined derivation to make it unreliable
for larger k-clusters. But observation of the clustering process indicates that the
distribution of k-clusters becomes more nearly uniform as k kmax anyway. We have
found that use of the alternate computation of prob (adding ! to a 1-cluster) in the
first two differences of (6.6) leads to slightly more accurate expected values when
compared to actual behavior. This refinement was used to generate Figs. 3(a, b, c)
and Tables 5 and 6 of the following section.

However calculated, the behavior of the solutions of the set of difference equations
(6.7) is quite interesting. As one would intuitively expect, only 1-clusters are formed
initially. Later, as these begin forming 2-clusters with successively entered items (which
in turn serve as the nuclei of 3-clusters), the number of 1-clusters, 39(1), decreases.
As shown in Fig. 3(a) (which denotes the same space as Table 2(a), but with kmax 5),
2(1), 3(2),..., 37(kmax-1) all oscillate periodically. But this periodic behavior dies
out and an equilibrium is achieved in which 2(1), /(2),..., ?(kmax-1) become
effectively constant. Only 37(kmax) will be monotone increasing.

Once equilibrium is attained, the expected number of all clusters, /(n), can be
expressed by the simple linear equation

(6.9) /(n)=c +c2(n -c3),

where Cl )-’-k<kmax "(k), c2 1/kmax and c3 "-k<kmax k /(k).
In Figs. 3(b, c), which duplicate the spaces of Tables 2(b, c) subject to the

constraints of kmax 4 and 3 respectively, the oscillation of 2 (1), , 37 (kmax 1)
is less apparent, since the amplitude is small and with much longer period; but the
steady state behavior is evident.

7. How accurate are these solutions? Given the dimensions (il, i2,"’, ira) of
any particular attribute space, one may use (4.6), or (6.7) to derive an expected /(n).
TO test their accuracy a number of files were actually created using the insertion
algorithm of 2 and randomly generated data.

First, we verify the expected number of clusters with unbounded content predicted
by (4.6). The expected 37(n) for spaces of dimensions (8, 6, 10, 8) given in Table 2(a).
Table 4 compares those expected values with those of the test files. Five test files of
500 records each were created with no constraint on maximum cluster content, ?(n)
is seen to be consistently greater than /(n). The derivation of (4.6) takes no account
of the variability of either cluster extent or content. All probabilities are based on an
average cluster content IIjbj. However, the creation of unbounded clusters by the entry
algorithm of 2 tends to be unstable with respect to perturbations from the mean. A
cluster which is already large is more likely to "capture" a newly entered item than
a smaller cluster. Thus large clusters tend to become very large, eventually dominating
the space, while the remaining clusters remain small. Condition (2) of the entry
procedure minimizes this instability somewhat, but not completely.

If it were practical to create unbounded clusters and retrieve items from them,
then either a revised algorithm or a refined analysis would be essential. Since this is
not so, Table 4 (and similar unprinted comparisons) should be sufficient to convince
us of at least the basic correctness of (4.6). In contrast, with bounded cluster creation
as considered in the preceding section, the behavior of the entry algorithm is "self-
correcting" with respect to cluster extent. Large clusters still grow more rapidly. But
once their content reaches kmax, they no longer affect the entry procedure; they
cannot dominate the space.
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CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 747

TABLE 4
Comparison of expected vs. observed numbers of clusters in the space (8, 6, 10, 8), with unbounded

cluster content.

10
20
40
60
8O
100
150
200
300
400
5OO

expected observed /(n)
?(n) file file 2 file 3 file 4 file 5

9.4 10 10 9 9 10
17.4 17 20 18 18 19
24.5 28 31 32 31 31
40.4 34 39 39 43 42
47.9 37 45 44 46 50
53.5 39 51 47 52 53
61.8 44 60 54 57 54
65.5 46 60 55 60 55
67.3 48 63 55 61 59
67.5 48 63 55 61 59
67.5 48 63 55 61 59

To verify the more important derivation presented in 6, we have calculated the
expected ?(n) and /(1),..., /(kmax) using (6.7) for each of the same three spaces
given in the preceding examples; and then executed a series of five actual clustering
runs for each. Maximum cluster bounds of kmax 5, 4 and 3 respectively were used.
The choice of these bounds is derived from tables 2(a, b, c). These represent, in each
case, the average content of a cluster when the space was first "effectively covered".
Larger, or smaller, cluster bounds may be dictated by other constraints in individual
applications; but in the absence of such constraints these bounds will yield optimal
retrieval performance. Indeed, the major value in practice of the derivation of 4 is
to be able to establish approximately optimal cluster bounds.

Table 5 compares the expected numbers of clusters with the observed means of
the five test files generated over the space with dimensions (8, 6, 10, 8). Only the
expected total clusters, 37(n), and the expected 1-clusters and 5-clusters, /(1) and
3(kmax) are displayed. The value of 3(n) is quite accurate. The expected value deviates

TABLE 5
Comparison of expected vs. observed numbers of bounded clusters in the space (8, 6, 10, 8); max. cluster

content kmax 5.

20
60
100
200
300
400
500
600
700
80O
900

1,000

expected observed
/(n mean

17.4 17.4
40.3 38.0
54.1 50.2
73.5 69.6
88.1 90.4
106.0 113.2
126.1 127.6
146.2 148.4
166.1 168.4
186.1 188.4
206.1 208.6
226.1 229.4

expected observed
</(1) mean

15.2 16.2
27.4 25.4
29.5 28.0
25.7 21.8
21.2 2O.O
19.5 16.8
19.6 17.8
19.5 20.0
19.4 21.9
19.5 20.8
19.5 21.6
19.5 18.0

expected observed
/(5) mean

0.0 0.0
0.6 0.6
2.8 3.4

15.6 16.6
37.6 37.8
60.2 55.2
80.6 76.2

100.4 98.2
120.4 119.8
140.5 138.8
160.5 156.4
180.5 177.6
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748 JOHN L. PFALTZ

from the observed mean by at most -7.2 when n 400. This corresponds to a maximum
relative error of 0.068.

The estimation of expected k-clusters is somewhat less accurate. An initial periodic
behavior as shown in Fig. 3(a) can be seen in all individual runs; but the phase and
amplitude of these periods, being largely determined by random events, can be very
variable. For example, when n 800, the observed values of ,(1) were 21, 17, 17,
17 and 32 with a mean of 20.8, but standard deviation of 5.81. However, by n 500
the predicted equilibrium and consequent general stability are apparent in most
individual cluster systems.

Table 6 displays a similar comparison of expected versus observed numbers of
clusters in files clustered over the slightly larger space with dimensions (4, 7, 10, 15,
20). The prediction of expected total clusters is somewhat better. A maximum relative
deviation from the observed mean of 0.016 occurs when n 800. Again the estimations
of /(1) and /(4) are less accurate.

TABLE 6
Comparison of expected vs. observed numbers of bounded clusters in the space (4, 7, 10, 15, 20); max.

cluster content kmax 4.

100
2OO
3OO
4OO
5OO
6OO
7OO
8OO
9OO

1,000
1,100
1,200
1,300
1,400
1,500
1,600
1,700
1,800
1,900
2,000

expected observed
37(n) mean

91.0 91.6
165.9 166.4
227.9 229.0
280.2 277.5
325.2 322.2
364.7 365.0
400.0 397.3
432.1 425.2
461.8 455.0
489.7 485.2
516.2 510.8
541.6 537.7
566.6 560.6
590.6 588.8
614.5 614.0
638.2 638.9
661.8 664.2
685.5 687.6
709.1 712.0
732.9 738.6

expected observed
(1) mean

83.3 83.6
139.4 139.8
176.6 177.4
200.9 198.8
216.6 211.5
226.5 229.0
232.3 233.0
235.6 226.0
237.1 227.6
237.4 229.8
236.9 229.3
236.0 232.0
234.7 235.5
233.3 229.0
231.8 232.6
230.2 234.2
228.7 235.4
227.3 231.3
225.8 234.3
224.6 229.7

expected observed
(4) mean

0.2 0.0
1.7 1.6
5.5 6.0

11.9 12.2
20.9 20.4
32.2 33.4
45.8 45.4
61.4 68.2
78.9 79.0
98.0 95.5
118.6 119.5
140.4 139.8
163.3 161.0
187.0 179.5
211.4 203.0
236.3 228.7
261.5 249.7
287.0 269.8
312.6 303.7
338.2 326.8

Table 7 was compiled to test the validity of the difference equations (6.7) in
large files, where the payoff of any clustering procedure is most pronounced. To
generate Table 7, five files of 40,000 items each were clustered over the still larger
space of dimensions (5, 10, 15, 20, 25, 30). This represents a space of more than 11
million virtual cells. The maximum relative deviation of the predicted mean 37(n) from
the observed mean is 0.01. That any system of 1-point boundary difference equations
should attain this measure of accuracy after 40,000 steps attests to the inherent stability
of the difference expressions of (6.6).
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CONVEX CLUSTERS IN DISCRETE m-DIMENSIONAL SPACE 749

TABLE 7
Comparison of expected vs. observed number of bounded clusters in the space (5, 10, 15, 20, 25, 30)’

max. cluster content kmax 3.

1,000
2,00O
3,000
4,000
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000

expected observed
37 (n) mean

977.O 987.3
1,908.5 1,907.5
2,796.2 2,811.6
3,642.1 3,658.4
4,448.9 4,472.8
7,984.7 8,006.3

10,892.1 10,886.3
13,374.3 13,387.0
15,565.1 15,663.2
17,554.1 17,748.0
19,403.1 19,672.9
21,156.1 21,542.4

expected observed
37(1) mean

955.0 975.0
1,824.3 1,819.2
2,614.5 2,646.0
3,332.2 3,376.3
3,983.7 4,032.7
6,436.4 6,452.0
7,925.5 7,911.1
8,802.5 8,810.6
9,285.4 9,436.4
9,514.3 9,827.8
9,582.0 9,983.1
9,551.5 10,133.7

expected observed
37(3) mean

0.9 0.8
7.2 4.7

22.9 24.1
48.O 56.8
86.O 97.2

467.0 452.5
1,141.3 1,130.4
2,053.9 2,043.7
3,155.2 3,122.3
4,406.0 4,341.9
5,775.7 5,684.0
7,239.4 7,121.8

8. Summary and conclusions. The asymptotic behavior of (n), the expected
number of clusters in a finite m-dimensional space, depends on assumptions about
the clusters themselves. If the clusters are unbounded, as in 4, then bj, and hence
cluster extent, are monotone increasing as a function of n until the space is effectively
covered by a few clusters so that 37 (n) --> c. And in 6, where a constraint of a maximum
cluster content is imposed, ;/(n)-->cl +c2(n --Ca).

In actual computer applications the latter model is more realistic, since practical
considerations invariably impose an upper limit on the number of items that may be
clustered in a data file. Its linear behavior has profound implications. In very large
data bases, a dynamic clustering algorithm which left many blocks of the data file
only partially filled with items would impose intolerable storage overhead. The fact
that convex clustering procedures attain an equilibrium, with a fixed upper bound on
the number of partially filled physical blocks is crucial. Indeed, the overhead of unused
storage, as a percent of the total data file, actually decreases as n becomes large.

Expected storage accesses per query can also be derived from this model by first
using (6.2) to calculate bj(k) for 1 =<k -<kmax, and then using (6.1) to calculate b(n)
for l<-/’_-<m. With the large file of Fig. 3(c), when n 100,000 one obtains "(n)
40,793 and bj(n)=l.801, 1.845, 1.860, 1.867, 1.871 and 1.874 respectively for
/" 1, 2,..., 6. Comparing these values with those of Table 2(c), one finds more
clusters (40.793 vs. 15,979) of smaller extent (40.46 vs. 1327.81 cells per cluster). By
using these values, one can now show that to retrieve a single item from the file, an
expected (n). I-[=1 ff.(n)/w=O.1467 accesses to the data file will be required.
Retrieval performance of this order, which is considerably better than that described
in 5 and which has been verified in actual data files, is impressive.

Readily, the analyses of this paper were undertaken to determine the expected
behavior of a particular access and retrieval method (described in [8] and [9]), that
represents the attributes of data items by bit descriptors to form a descriptor for a
block of several items. This is not an original access method. The first known reference
to this technique seems to be [7]. Edgar Cagley independently discovered this approach
and, moreover, was the first to implement it in a practical system [5]. Our system
closely follows Cagley’s design; indeed he provided it, although we use a different
clustering mechanism.
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Many retrieval systems have employed binary descriptors to represent items; but
most form the descriptor by superimposed coding which does not separate distinct
attributes; [3] and [10] are representative examples (the latter provides an extensive
list of further references). Superimposed coding is superior for a different set of
retrieval problems, those for which a single attribute of an item may have a set of
values; and leads to a different kind of analysis.

Retrieval of items in an m-dimensional cellular bucket space has been analyzed
in 1 ], [4]. Since the access method is different, neither item descriptors nor clustering
is employed, these results are not directly transferable, but there are some definite
similarities. In particular they show that as the size of the conceptual attribute space
increases, the cost of retrieval decreases.

There is an abundance of "clustering algorithms" in the literature; [2] and [6]
provide fine surveys. Most operate over continuous m-dimensional spaces assigning
centroids to created clusters and computing metric distances between them. Moreover
most require that all the items be known at the time of clustering; newly entered
items may cause a restructuring of the clusters. A dynamic data base requires a
one-pass procedure that can organize its items "on the fly". Ours is unusual, but
hardly unique, cf. [11 ]. Much of its appeal lies in the fact that it is conceptually simple
and easy to implement, that its expected behavior can be analyzed and its performance
predicted, and that it works well in practice.
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