Structured Predictions: Practical Advancements and Applications

Kai-Wei Chang

University of Virginia
Department of Computer Science

References: http://kwchang.net/talks/sp.html
Supervised learning

- **Input**
 - $x \in X$
 - An item x drawn from an instance space X

- **Output**
 - $y \in Y$
 - An item y drawn from a label space Y

Learned Model

$$y = f(x)$$

Target function

$$y = f^*(x)$$

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book
Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book.
Why is structure important?
Hand written recognition example

- What is this letter?
Structured Prediction

Assign values to a set of interdependent output variables

<table>
<thead>
<tr>
<th>Task</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part-of-speech Tagging</td>
<td>They operate ships and banks.</td>
<td>![Diagram: Pronoun - Verb - Noun - And - Noun]</td>
</tr>
<tr>
<td>Dependency Parsing</td>
<td>They operate ships and banks.</td>
<td>![Diagram: Root - They operate ships and banks.]</td>
</tr>
<tr>
<td>Segmentation</td>
<td>![Image]</td>
<td>![Image]</td>
</tr>
</tbody>
</table>
Challenge: Scalability Issues

- Large amount of data
- Complex decision structure

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Solution Methods

- Assume a graphical structure; optimize
 - Use within various structured predictions algorithms (e.g., CRF, Structured Perceptron, M3N, Structured SVM)
 [Lafferty+ 01, Collins02, Taskar04]
 - See our AAAI16 tutorial (https://goo.gl/TF7cGj)

- Learning to search approaches
 - Assume the complex decision is incrementally constructed by a sequence of decisions
 - E.g., LASO, dagger, Searn, transition-based methods
 - See our NAACL15 tutorials (http://hunch.net/~l2s)
Example: Dependency Parsing

Identifying relations between words

I ate a cake with a fork

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Graphical Model Approaches: Graph-Based Parser [McDonald+, 2005]

- Consider all word pairs and assign scores
- Score of a tree = sum of score of edges
- Can be formulated as a MST problem
 - Chu-Liu-Edmonds
Learning to search approaches
Shift-Reduce parser [Nivre03, NIPS16]

- Maintain a **buffer** and a **stack**
- Make predictions from left to right
- Three (four) types of actions: Shift, Reduce-Left, Reduce-Right

Dependency Parsing
```
I booked a ticket to Google
```

Credit: Google research blog
What We Care about

Prediction accuracy

- Stanford
- Chen+
- Ours (2012)
- Martschat+
- Ours (2013)
- Fernandes+
- HOTCoref
- Berkeley
- Ours (2015)

Training/test/dev speed

Query

- activity: cooking
- agent: woman
- food: vegetable

Learning signals

Fairness (data biases)

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Outline

Prediction accuracy

Training/test/dev speed

Query

Learning signals

Fairness (data biases)

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Structured prediction application: ESL Grammar Error Correction
[CoNLL 13, 14]

They believe that such situation must be avoided.

- situation
- a situation
- situations
- a situations
Structured prediction application: Algebra Word Problems [EMNLP 16]

Problem: Maria is now four times as old as Kate. Four years ago, Maria was six times as old as Kate. Find their ages now.

Equations: \[m = 4 \times n \text{ and } m - 4 = 6 \times (n - 4) \]

Solution: \[m = 40, n = 10 \]
Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book
Structured prediction application: Co-reference Resolution
[EMNLP 13a, ICML 14, CoNLL 11, 12, 15]

Proposed a novel, principled, linguistically motivated model

*Avg (MUC, B³, CEAF)

Latent forest structure

Winner of the CoNLL ST 12

Winner of the CoNLL ST 11

The state-of-the-art approach using NN&RL achieves 65.73 (Clark+16)
Co-reference Resolution Demo

Co-reference Resolution

- Learn a pairwise similarity measure (local predictor)

 Example features:
 - same sub-string?
 - positions in the paragraph
 - other 30+ feature types

- Key components:
 - Pairwise classification
 - Clustering (jointly or not?)

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book.
Decoupling Approach

A heuristic to learn the model [Soon+ 01, Bengtson+ 08, CoNLL11]

- **Decouple** learning and inference:
 - Learn a pairwise similarity function
 - Cluster based on this function

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
As a boy, Chris₁ lived in a pretty home called Cotchfield Farm. When Chris₂ was three years old, his father₃ wrote a poem about him₄. The poem was printed in a magazine for others to read. Mr. Robin₅ then wrote a book

Positive Samples

(Chris₁, him₄)

(Chris₂, him₄)

(Chris₁, Chris₂)

(his father₃, Mr. Robin₅)

Negative Samples

(Chris₁, his father₃)

(Chris₂, his father₃)

(him₄, his father₃)

(Chris₁, Mr. Robin₅)

(Chris₂, Mr. Robin₅)

(him₄, Mr. Robin₅)
[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [USA] and [Russia].
Greedy Best-Left-Link Clustering

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [USA] and [Russia].
[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [USA] and [Russia].
[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [USA] and [Russia].
Challenges

- Decoupling may lose information

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book.
Challenges

- In addition, we need world knowledge

As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him.

1. Complexity: need an efficient algorithm
2. Modeling: learn the metric while clustering
3. Knowledge: augment with knowledge
Structured Learning Approach

Learn the similarity function while clustering

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Define a global scoring function:

Inference problem is too hard
Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book...
Linguistic Constraints

- **Must-link constraints:**
 - E.g., *SameProperName*, ...
- **Cannot-link constraints:**
 - E.g., *ModifierMismatch*, ...

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [USA] and [Russia].

- **Clustering with constraints** ([Basu+08, Zhi+14])
Inference in L3M [ICML 14, EMNLP 13]

- Represented using an ILP formulation [Scott+ 2004/2007]
- Inference can be done using a greedy heuristics.

\[y_{i,j} = 1 \iff i, j \text{ is an edge in the forest} \]

\[
\arg \max_y \sum_c S_{i,j} y_{i,j} \quad \text{s.t.} \quad Ay \leq b; \quad y_{i,j} \in \{0,1\}
\]

- Modeling constraints
- Linguistic constraints
[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [USA] and [Russia].
Loop until stopping condition is met:

For each \((x_i, y_i)\) pair:

\[
\bar{y}, \bar{h} = \arg \max_{y, h} w^T \phi(x_i, y, h)
\]

\[
h_i = \arg \max_h w^T \phi(x_i, y_i, h)
\]

\[
w \leftarrow w + \eta (\phi(x_i, y_i, h_i) - \phi(x_i, \bar{y}, \bar{h})), \quad \eta: \text{learning rate}
\]
Extension: Probabilistic L3M
[ICML 14, EMNLP 13a]

Define a log-linear model

\[\text{Pr}[\text{a clustering } C] = \sum \prod \text{Pr}[\text{edges in the forest}] = \prod_i \sum_{j \in e(i)} \text{Pr}[\text{edge}(j,i)] \]

\[\text{Pr}[\text{edge}(j,i)] \sim \exp(\mathbf{w} \cdot \phi(j,i)/\gamma) \quad (\gamma: \text{a parameter}) \]

\[
\begin{align*}
\min_{\mathbf{w}} \quad \text{LL}(\mathbf{w}) &= \beta \|\mathbf{w}\|^2 + \sum_d \log Z_d(\mathbf{w}) \\
&- \sum_d \sum_i \log(\sum_{j<i} \exp(\mathbf{w} \cdot \phi(i,j)/\gamma) C_d(i,j))
\end{align*}
\]
Coreference: OntoNotes-5.0 (with gold mentions)

Performance*

*Avg (MUC, B3, CEAF)

Better

Decoupled L3M

Probabilistic L3M

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Latent Left-Linking Model (L3M)
[ICML 14, EMNLP 13]

Advantages:
- Complexity: Very efficient
- Modeling: Learn the metric while clustering
- Knowledge: Easy to incorporate constraints (must-link or cannot-link)

Can be applied to other supervised clustering problems! e.g., the posts in a forum, error reports from users …
Outline

Prediction accuracy

Training/test/dev speed

Learning signals

Query

activity cooking
agent woman
food vegetable

Fairness (data biases)
Solution Methods

- Assume a graphical structure; optimize
 - Three ideas for improving learning/inference speed
 - See our AAAI16 tutorial (https://goo.gl/TF7cGj)

- Learning to search approaches
 - A programmable framework
 - See our NAACL15 tutorials (http://hunch.net/~l2s)
Graphical model approach: Speed up Inference/Learning

- **Observation 1**: some decisions are simpler than the others
- **Idea**: adaptively generate computationally costly features during test-time [AAAI 17]
Graphical model approach: Speed up Inference/Learning

- Observation 2: Many inference problems share the same solution
- Idea: Exploit this redundancy by caching old inference solutions [AAAI 15]
Amortized inference – key components

- Formulating the inference as an Integer Linear Programming
 \[
 \arg \max_{y \in \{0,1\}^n} \sum_c S_c y_c \quad s.t \quad A y \leq b
 \]

- A very general formulation [Roth & Yih 04, Sontag 10]
- Inference can be solved by any (exact or approximate) method
- A condition is being checked to determine if a new inference problem has the same solution as a previously observed problem. [Srikumar+ 12; Kundu+ 13]
Graphical model approach: Speed up Inference/Learning

- **Observation 3:** Inference can be solved in parallel
- **Idea:** Decouple inference and learning in the dual space
- **Works both in the multi-thread [ECML13] and the multi-machines [NIPS OPT 15, journal in preparation] settings**
Learning to search (L2S) approaches

1. Define a search space and features
2. Construct a reference policy (Ref) based on the gold label
3. Learning a policy that imitates Ref
Credit Assignment Problem

When making a mistake, which local decision should be blamed?

Existing L2S algorithms give

$$R(\pi) \leq R(\pi^{\text{ref}}) + o(1).$$
Learning to search approaches: Credit Assignment Compiler [NIPS16]

Sequential RUN(examples)

1: for $i = 1$ to len(examples) do
2: prediction ← predict(examples[i], examples[i].label)
3: loss(prediction ≠ examples[i].label)
4: end for

- Write the decoder, providing some side information for training

- Library functions:
 - predict: returns individual predictions.
 - loss: declares the joint loss.

- An analogy to Factorie [McCallum+09]
Credit Assignment Compiler [NIPS 16]

Sequential_RUN(examples)

1: for \(i = 1 \) to \(\text{len}(\text{examples}) \) do
2: \(\text{prediction} \leftarrow \text{predict}(\text{examples}[i], \text{examples}[i].\text{label}) \)
3: \(\text{loss}(\text{prediction} \neq \text{examples}[i].\text{label}) \)
4: end for

- Runs \text{Run()} \ many \text{times} \ to \ learn \text{predict()} \ that \ yields \ low \text{loss()}.
 - \(\Rightarrow \) \text{turns} \text{Run()} \ and \ training \ data \ into \ model \ updates
- Reduce a joint prediction problem to (cost-sensitive) multi-class problems.
Libraries for Structured Predictions

- **Illinois-SL**: graph-based structured prediction
 - Support various algorithms; parallel ⇒ very fast
- **Vowpal-Wabbit**: credit assignment compiler
 - A general online learning library
 - Support search-based structured prediction

Provide a nice platform
- for developing novel methods
- for collaboration
- for education

More easy-access tools; More collaborations
Outline

Prediction accuracy

Training/test speed

Query

Learning signals

Fairness (data biases)
Weak Supervision Challenges
[CRRI grant]

- Implicit Supervision
 - Loss is not decomposable and can be estimated only when the entire output structure is derived

- Structured Contextual Bandit
 - Only a few (single) structured labels can be observed.

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Implicit Supervision

- Consider algebra word problem

Maria is now four times as old as Kate. Four years ago, Maria was six times as old as Kate. Find their ages now.

- Build semantic parser to translate question to an equation system

\[m = 4 \times n \text{ and } m - 4 = 6 \times (n - 4). \]

- Then answer can be derived: \(m=40, n=10 \)
Implicit Supervision [EMNLP 16]

\[m = 4 \times n \text{ and } \\
\quad m - 4 = 6 \times (n - 4). \]

m=40, n=10

Maria is now four times as old as Kate. Four years ago, Maria was six times as old as Kate. Find their ages now.

Kai-Wei Chang (http://kwchang.net/talks/sp.html)
Structured Contextual Bandit Setting [ICML15]

- Loss of only a single structured label can be observed

Font size

Color

Position
A Search Problem

Diagram showing a search process with a user query leading to a search engine, followed by various content and advertisements.
Prediction accuracy

Training/test speed

Learning signals

Fairness (data biases)

Outline
Human Bias in Structured model
[in submission]

❖ A visual semantic role labeling system
[Mark+16]

<table>
<thead>
<tr>
<th>Query</th>
<th>activity</th>
<th>cooking</th>
</tr>
</thead>
<tbody>
<tr>
<td>agent</td>
<td>woman</td>
<td></td>
</tr>
<tr>
<td>food</td>
<td>vegetable</td>
<td></td>
</tr>
<tr>
<td>container</td>
<td>bowl</td>
<td></td>
</tr>
<tr>
<td>tool</td>
<td>knife</td>
<td></td>
</tr>
<tr>
<td>place</td>
<td>kitchen</td>
<td></td>
</tr>
</tbody>
</table>
Word Embeddings can be Dreadfully Sexist [nips16]

\[v_{\text{man}} - v_{\text{woman}} + v_{\text{uncle}} \sim v_{\text{aunt}} \]

<table>
<thead>
<tr>
<th>he: ___</th>
<th>she: ___</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncle</td>
<td>aunt</td>
</tr>
<tr>
<td>lion</td>
<td></td>
</tr>
<tr>
<td>surgeon</td>
<td></td>
</tr>
<tr>
<td>architect</td>
<td>___</td>
</tr>
<tr>
<td>beer</td>
<td></td>
</tr>
<tr>
<td>professor</td>
<td></td>
</tr>
</tbody>
</table>
Debiasing Learning Models

- **Idea1**: Remove problematic correlation
 - E.g., remove gender bias subspace in WE

- **Idea2**: Set corpus-wise constraints to calibrate the gender ratios
 - **Technique**: Inference can be done by Lagrange relaxation
Structured Prediction – an active direction

- Landscape of methods in Deep∩Structure
 - Deep learning/hidden representation
 e.g., seq2seq, RNN, SP-energy network
 - Deep features, traditional factor graph inference
 e.g., LSTM+CRF, graph transformer networks,
- What is the right way to encode structures?
- How to constrain the output
- How can we leverage different learning signals?
Conclusions

Goal: Practical Structured Prediction Approaches

Tutorials/Workshops:
1. AAAI-16: Learning and Inference in SP Models
2. NAACL15: Hands-on Learning to Search for SP
3. EMNLP 16, 17: workshop SP for NLP

References/Code/Demos:
 http://kwchang.net
 Illinois-SL: a structured learning package
 Vowpal Wabbit: an online learning library