CS 3330 Final	Exam - S	pring	2016
---------------	----------	-------	------

Name: Computing ID:			
Wr Bu As	tters go in the boxes unless otherwise specified (e.g., for C 8 write Letters clearly: if we are unsure of what you wrote you will globle and Pledge the exam or you will lose points. sume unless otherwise specified: little-endian 64-bit architecture		
Mu Vai Ma	%rsp points to the most recently pushed value, not to the next questions are single-selection unless identified as select-all ultiple-select: are all clearly marked; put 1 or more letters in the briable Weight: point values per question are marked in square brark clarifications: If you need to clarify an answer, do so, and oner of your answer box.	oox. rackets.	
Qu	uestion 1 [2 pt]: Which of the following is an example of pipelin	ing the crea	ition of books?
A B on C D	Person A is writing volume 2 while Person B is binding volume Person A drafts the contents while Person B creates the paper to Person A is writing one book while Person B is writing another all of the above none of the above	print it	Answer:
	formation for questions 2–3 otimization strategies are not restricted to code		
	nestion 2 [2 pt]: (see above) An online retail company buying a example of	package de	elivery company is
В	function inlining eliminating loop inefficiencies cache blocking loop unrolling multiple accumulators		Answer:

	testion 3 [2 pt]: (see above) This exam randomizes question order; grouping te this question and its pair) is intended to optimize your performance by utility.	
B C	cache blocking function inlining eliminating loop inefficiencies multiple accumulators loop unrolling	Answer:
Qu	estion 4 [2 pt]: Memory segments are defined by	
B C	data structures used by hardware only data structures used by both hardware and software data structures used by software only none of the above; they are just an abstraction	Answer:
Qu	estion 5 [2 pt]: An exception table is	
B C	an array a hash table a tree none of the above	Answer:
Th	formation for questions 6–8 re following questions ask about how each of the three main types of exceptioner two.	ons differ from the
Qu	estion 6 [2 pt]: (see above) Faults are different from other exception types	in that
B C	faults are not caused by running an assembly instruction faults never cause Aborts or Signals faults are handled by a different mechanism than other exceptions faults are intentionally triggered by user code faults always cause Aborts or Signals faults are never intentionally triggered by user code	Answer:
Qu	estion 7 [2 pt]: (see above) Traps are different from other exception types in	n that
В	traps are handled by a different mechanism than other exceptions traps never cause Aborts or Signals traps always cause Aborts or Signals	Answer:

D traps are not caused by running an assembly instruction
 E traps are always intentionally triggered by user code
 F traps are never intentionally triggered by user code

CS 33	330 Spring 2016 Final Exam	Variant O page 3 of 10	Email ID:	
A in B in C in D in	stion 8 [2 pt]: (see above) Internaterrupts are not caused by runraterrupts never cause Aborts or nterrupts always cause Aborts on terrupts are never intentionally nterrupts are always intentional	ning an assembly instructi Signals r Signals r triggered by user code	1 ,	pes in that Answer:
F in Infor Cons typ	nterrupts are handled by a differ mation for questions 9–10 ider the following C definitions: pedef struct node_t { TYPE	rent mechanism than othe	ode;	
Ques	pedef struct range_t { size stion 9 [2 pt]: (see above) Which)? If multiple options are tied fo	h list uses the least memor	ry overall (includ	ling both heap and
B r C T	YPE *list ange list The answer is different if TYPE is ode *list	char than if TYPE is int		Answer:
-	stion 10 [2 pt]: (see above) We are tied for largest, select all t	Thich list type puts the mathemethral that apply.	ost data on the	stack? If multiple
B r C T	The answer is different if TYPE is ange list YPE *list ode *list	char than if TYPE is int		Answer:
enab	stion 11 [2 pt]: All of the follow led without it? ssembly address size can differ	ring are enabled by virtua	-	h one would <i>not</i> be
C coaddro	nultiple processes can share the ode can be written using labels,	letting the assembler gene		Answer:
pose	stion 12 [2 pt]: Computers typi of allowing the kernel to create requently for the same reason th		•	-
A p	age tables should not have too r	nany levels		Answer:

B cache sets should not have too many entries
C pipelines should not be made too deep
D loops should not be unrolled too many times

Information for questions 13–14

For each of the following, assume u and v are both declared as unsigned ints. Select all that could apply for some values of u and v; for example, given "u v" you'd select <, =, and > I use \wedge as a carat and \sim as a tilde, both larger than usual for increased legibility.

Question 13 [2 pt]: (see above) (u<<16) & (u>>16) u

A =

B > **C** <

Question 14 [2 pt]: (see above) $u + \sim v$ u - v

A =

B >

C <

Answer:

Answer:

Information for questions 15–16

Thus far, fast-and-expensive storage has always been volatile (like SRAM, DRAM, and registers) and slow-and-cheap storage always nonvolatile (like tape, disk, and flash).

Question 15 [1 pt]: (see above) Suppose someone invents a new storage technology: it is about as fast as magentic disk but costs a lot less and is volatile. What should we use it for?

Select all that apply

A it be good for existing file systems

B it be good for existing virtual memory swapping

C it be good for existing cache hierarchies

D none of the above

Answer:

(see above) Suppose someone invents a new storage technology: it costs Question 16 [1 pt]: similar to SRAM but is a little faster and nonvolatile. What should we use it for?

Select all that apply

A it be good for existing file systems

B it be good for existing cache hierarchies

C it be good for existing virtual memory swapping

D none of the above

Answer:

Email ID:	

Question 17 [3 pt]: In the following diagram, indicate the control signals to give each pipeline register by putting a single letter in each box; use N for normal, B for bubble, and S for stall.

Assume that i_4 and i_5 resulted from incorrect speculative execution and should not be allowed to continue; that i_3 needs another cycle in the execute stage; and that all other instructions are OK and may continue to execute normally.

Some points are for picking the solution with the fewest stalls.

Stage:	F	D	E	M	W
Stage: Contains:	i_5	i_4	i_3	i_2	i_1
Answers:					

Question 18 [2 pt]: If we replace a set-associative cache with a different cache with half as many sets each containing twice as many lines (without changing block size),

- **A** the tag gets longer
- **B** the tag stays the same size
- **C** the tag gets shorter

Answer:

Question 19 [2 pt]: pushq is a 10-byte instruction. We can replace pushq with other operations (math and register-memory moves); how does the storage requirements for push change if we use other operations instead of pushq?

- A increases by more than 3 bytes
- **B** decreases by more than 3 bytes
- **C** increases by 2 or 3 bytes
- **D** changes by no more than 1 byte
- **E** decreases by more than 2 or 3 bytes

Answer:

Information for questions 20–23

Consider a floating-point format with 7 bits overall, 4 of which are exponent bits.

Question 20 [2 pt]: (see above) What exponent bits are used to represent $-\frac{5}{8}$? Answer as four bits, such as 0000

Answer:

Question 21 [2 pt]: (see above) Which of the following is true using this format?

- **A** 1.0 / 32.0 is 0.0
- **B** 6.0 + 1.0 is 6.0
- **C** (x x) == 0 is true for all x
- **D** None of the above

Answer:

Question 22 [2 pt]: (see above) What number is represented by the bits 0101010? Answer as a base-2 number such as -101.11

Answer:

D interruptE none of the above

Question 23 [2 pt]: (see above) What fraction bits are used to represent $-\frac{5}{8}$? Answer as two bits, such as 00	Answer:
Question 24 [0 pt]: Cognitive break. Write a joke or anecdote here, or doodle s ing, or just smile at the blank space worth 0 points and move on.	omething interest
Question 25 [2 pt]: Suppose we add a new ifun for OPq, mulq that require cycles in the Execute stage. That means execute may stall for a single operation impact pipeline hazards? Select all that apply	
 A Two consecutive OPqs will become a new kind of hazard. B The branch misprediction hazard may now result in more instructions being removed from the pipeline via bubbling. C The load-use hazard can now need more than a single cycle of stalling. D The return hazard can now need extra cycles of stalling. E None of the above 	Answer:
Information for questions 26–29 Various topics discussed during our exploration of exceptions enabled comme elements of a computer system. The following questions ask about these comme	
Question 26 [1 pt]: (see above) Communication from kernel to user is enabled	d by
 A fault B interrupt C signal D trap E none of the above 	Answer:
Question 27 [1 pt]: (see above) Communication from hardware to kernel is er	nabled by
A signal B trap C fault	Answer:

Question 28 [1 pt]:	(see above) Communication from user to kernel is enabled by	Ţ
---------------------	---	---

A trap

B interrupt

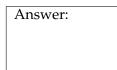
C signal

D fault

E none of the above

Answer:

Question 29 [1 pt]: (see above) Communication from kernel to hardware is enabled by


A signal

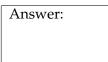
B fault

C interrupt

D trap

E none of the above

Question 30 [2 pt]: An exception handler is


A both user- and kernel-mode software

B both kernel-mode software and hardware

C primarily kernel-mode software

D primarily hardware

E primarily user-mode software

Information for questions 31–32

A binary tree can be stored in an array; entry i's left child is 2i and its right child is 2i + 1:

0	1	2	3	4	5	6	7	8	
(unused)	root	root.l	root.r	root.l.l	root.l.r	root.r.l	root.r.r	root.l.l.l	

Consider such an array used with a direct-mapped cache with 128 lines, each large enough to hold 4 array entries. Suppose the array is aligned so that entries 0, 1, 2, and 3 are in the same cache line.

Question 31 [2 pt]: (see above) If code accesses root, then root.l, then root.l.l, then root.l.l.l, etc.; how many entries can we accesses before we have to evict one of the other entry's cache lines? Answer as a base-10 number.

Answer:

Question 32 [2 pt]: (see above) Which method of tree traversal would have the best spatial locality?

A pre-order depth first

B in-order depth-first

C breadth-first

D post-order depth first

E all of the above have the same locality

Answer:

Information for questions 33–36

In a multi-level page table,

Question 33 [2 pt]:	(see above) If part-way through following the page table the MMU hardware
finds the read-only b	oit set and the CPU is attempting to write to memory,

A stop; the next page table will be in RAM but will also be marked read-only

B stop; the next page table might not even be in RAM

C keep going, only stopping if the last page table is marked read-only

D keep going; even if the last page table is marked read-only it is the OS, not the MMU hardware, that enforces read-only

Answer:

Question 34 [2 pt]: (see above) Which of the following tells the location of the first page table?

A the PO

B the VPN from high-order bits of the address

C the TLB

D the VPN from low-order bits of the address

E the PTBR

F sometimes one of the above, sometimes another, depending on if we have a hit or not

Answer:

Question 35 [2 pt]: (see above) The last VPN used is

A an index into a page containing data (not a page table)

B it depends on if there is a page fault or not

C an index into a page table

Answer:

Question 36 [2 pt]: (see above) In the common case where there are 3 or 4 levels of page table and several thousand pages are allocated in a few contiguous regions of virtual memory, table storage \div data storage is

A less than $\frac{1}{100}$

B between $\frac{1}{2}$ and 2

C between 2 and 100

D more than 100

E between $\frac{1}{2}$ and $\frac{1}{100}$

Answer:

Information for questions 37–39

Consider 38-bit virtual addresses and 4-byte page-table entries, where each PTE stores 8 bits of metadata (executable, protected, etc).

Question 37 [2 pt]: (see above) If you have 256-byte pages, then the largest possible physical address space is how many bytes? Answer as a power of two, such as 16B or 128GB.

Answer:

Question 38 [2 pt]: (see above) If you want to have a single-level page table and to fit the entire page table in one page of memory, what is the smallest page size (in bytes) you could use? Answer as a power of two, such as 16B or 128GB.	Answer:
Question 39 [2 pt]: (see above) If you want to have a three-level page table and to fit each page table in one page of memory, what is the smallest page size (in bytes) you could use? Answer as a power of two, such as 16B or 128GB.	Answer:
Question 40 [2 pt]: Suppose we wanted to add a conditional call instructional call (i.e., callg, callge, etc.) would require Select all that apply	on to Y86-64. Condi-
 A new branch prediction logic (beyond that already present for jXX) B more than the 9 bytes needed to encode call C more register read- or write-ports than call D none of the above 	Answer:
Information for questions 41–42 The translation lookaside buffer is a cache that	
Question 41 [2 pt]: (see above) Produces as output	
 A the physical page number from an address B entire physical addresses C all the virtual page numbers from an address D entire virtual addresses E a single virtual page number from an address F none of the above 	Answer:
Question 42 [2 pt]: (see above) Takes as input	
 A all the virtual page numbers from an address B a single virtual page number from an address C entire virtual addresses D entire physical addresses E the physical page number from an address F none of the above 	Answer:
Question 43 [2 pt]: Which of the following assembly snippets is removed by not present in the binary?	y the assembler and
<pre>A nop B loop: C addq %rax, %rcx D jg loop</pre>	Answer:

Question 44 [2 pt]: After profiling your code you find that it is spending 20% of its time evaluating the comparison statement in the innermost for loop; and 50% of its time accessing elements of an array.

Which of the following optimizations would give the biggest speedup? Assume the optimizations add no overhead not explicitly mentioned.

A add an extra 30% to the runtime to set up, then split the entire program to run in parallel on two processors

B reorder loops to reduce memory access times by 30%

C blocking to reduce memory access times by 50%, but increase loop comparison time by $1.5 \times$

D $10 \times \text{loop unrolling}$

Answer:	

Question 45 [2 pt]: Suppose physical memory is larger than the virtual address space. Which of the following can benefit from swapping?

Select all that apply

A a single user process by itself

B multiple concurrent user processes

C a single user process and the kernel

D none of the above

Answer:

..... Pledge:

On my honor as a student, I have neither given nor received aid on this exam.

Your signature here