\qquad

CS 3330 Final Exam - Spring 2016

Name: \qquad
EXAM KEY
Computing ID: KEY
Letters go in the boxes unless otherwise specified (e.g., for C 8 write " C " not " 8 ").
Write Letters clearly: if we are unsure of what you wrote you will get a zero on that problem.
Bubble and Pledge the exam or you will lose points.
Assume unless otherwise specified:

- little-endian 64-bit architecture
- \%rsp points to the most recently pushed value, not to the next unused stack address.
- questions are single-selection unless identified as select-all

Multiple-select: are all clearly marked; put 1 or more letters in the box.
Variable Weight: point values per question are marked in square brackets.
Mark clarifications: If you need to clarify an answer, do so, and also add a $*$ to the top right corner of your answer box.

Question $1[2 \mathbf{p t}]$: Which of the following is an example of pipelining the creation of books?
A Person A is writing volume 2 while Person B is binding volume 1
B Person A drafts the contents while Person B creates the paper to print it
on
C Person A is writing one book while Person B is writing another book
D all of the above

Answer: A

E none of the above

Information for questions 2-3

Optimization strategies are not restricted to code...
Question 2 [2 pt]: (see above) An online retail company buying a package delivery company is an example of
A function inlining
B eliminating loop inefficiencies
C cache blocking
D loop unrolling
E multiple accumulators

Answer: A

\qquad

Question 3 [2 pt]: (see above) This exam randomizes question order; grouping related questions (like this question and its pair) is intended to optimize your performance by utilizing

A cache blocking
B function inlining
C eliminating loop inefficiencies
D multiple accumulators
E loop unrolling
Answer: A
Answer. A

Answer: C
A data structures used by hardware only
B data structures used by both hardware and software
C data structures used by software only
D none of the above; they are just an abstraction

Question 5 [2 pt]: An exception table is
A an array
B a hash table
C a tree
D none of the above

Information for questions 6-8

The following questions ask about how each of the three main types of exceptions differ from the other two.

Question 6 [2 pt]: (see above) Faults are different from other exception types in that
A faults are not caused by running an assembly instruction
B faults never cause Aborts or Signals
C faults are handled by a different mechanism than other exceptions
D faults are intentionally triggered by user code
E faults always cause Aborts or Signals
F faults are never intentionally triggered by user code

Question 7 [2 pt]: (see above) Traps are different from other exception types in that
A traps are handled by a different mechanism than other exceptions
B traps never cause Aborts or Signals
C traps always cause Aborts or Signals
D traps are not caused by running an assembly instruction
E traps are always intentionally triggered by user code

F traps are never intentionally triggered by user code
\qquad

Question 8 [2 pt]: (see above) Interrupts are different from other exception types in that
A interrupts are not caused by running an assembly instruction
B interrupts never cause Aborts or Signals
C interrupts always cause Aborts or Signals
D interrupts are never intentionally triggered by user code
E interrupts are always intentionally triggered by user code
Answer: A

F interrupts are handled by a different mechanism than other exceptions

Information for questions 9-10

Consider the following C definitions:

```
typedef struct node_t { TYPE data; node *next; } node;
typedef struct range_t { size_t length; TYPE *array; } range;
```

Question 9 [2 pt]: (see above) Which list uses the least memory overall (including both heap and stack)? If multiple options are tied for smallest, select all that apply.

A TYPE *list
B range list
C The answer is different if TYPE is char than if TYPE is int
D node *list
Answer: A options are tied for largest, select all that apply.
A The answer is different if TYPE is char than if TYPE is int
B range list
C TYPE *list
D node *list
Question 11 [2 pt]: All of the following are enabled by virtual memory; which one would not be enabled without it?
A assembly address size can differ from the amount of physical memory present
B multiple processes can share the same kernel memory
C code can be written using labels, letting the assembler generate their addresses
D code can be compiled without knowledge of what other processes will run concurrently with it

Question 12 [2 pt]: Computers typically have a special clock to generate exceptions for the purpose of allowing the kernel to create context switches. This clock should not generate exceptions too frequently for the same reason that

A page tables should not have too many levels
B cache sets should not have too many entries
C pipelines should not be made too deep
D loops should not be unrolled too many times
\qquad

Information for questions 13-14

For each of the following, assume u and v are both declared as unsigned ints. Select all that could apply for some values of u and v; for example, given " u \qquad v" you'd select $<,=$, and $>$
I use \wedge as a carat and \sim as a tilde, both larger than usual for increased legibility.
Question 13 [2 pt]: (see above) ($u \ll 16$) \& ($u \gg 16$) \qquad u

```
A =
B \(>\)
C \(<\)
```


Question 14 [2 pt]: (see above) $u+\sim v$ \qquad u - v

```
A =
B >
C <
```

Answer: B C

Information for questions 15-16

Thus far, fast-and-expensive storage has always been volatile (like SRAM, DRAM, and registers) and slow-and-cheap storage always nonvolatile (like tape, disk, and flash).

Question 15 [$\mathbf{1 ~ p t] : ~ (s e e ~ a b o v e) ~ S u p p o s e ~ s o m e o n e ~ i n v e n t s ~ a ~ n e w ~ s t o r a g e ~ t e c h n o l o g y : ~ i t ~ i s ~ a b o u t ~}$ as fast as magentic disk but costs a lot less and is volatile. What should we use it for?

Select all that apply

A it be good for existing file systems
B it be good for existing virtual memory swapping
C it be good for existing cache hierarchies
D none of the above

Question 16 [$1 \mathbf{~ p t] : ~ (s e e ~ a b o v e) ~ S u p p o s e ~ s o m e o n e ~ i n v e n t s ~ a ~ n e w ~ s t o r a g e ~ t e c h n o l o g y : ~ i t ~ c o s t s ~}$ similar to SRAM but is a little faster and nonvolatile. What should we use it for?

Select all that apply

A it be good for existing file systems
B it be good for existing cache hierarchies
C it be good for existing virtual memory swapping
D none of the above

Answer: B
\qquad

Question 17 [3 pt]: In the following diagram, indicate the control signals to give each pipeline register by putting a single letter in each box; use N for normal, B for bubble, and S for stall.

Assume that i_{4} and i_{5} resulted from incorrect speculative execution and should not be allowed to continue; that i_{3} needs another cycle in the execute stage; and that all other instructions are OK and may continue to execute normally.

Some points are for picking the solution with the fewest stalls.

Question 18 [2 pt]: If we replace a set-associative cache with a different cache with half as many sets each containing twice as many lines (without changing block size),

A the tag gets longer
B the tag stays the same size
C the tag gets shorter
Answer: A
\square

Question 19 [2 pt]: pushq is a 10-byte instruction. We can replace pushq with other operations (math and register-memory moves); how does the storage requirements for push change if we use other operations instead of pushq?
A increases by more than 3 bytes
B decreases by more than 3 bytes
C increases by 2 or 3 bytes
D changes by no more than 1 byte
E decreases by more than 2 or 3 bytes
Answer: C

Information for questions 20-23

Consider a floating-point format with 7 bits overall, 4 of which are exponent bits.
Question 20 [2 pt]: (see above) What exponent bits are used to represent $-\frac{5}{8}$?
Answer: 0110
Answer as four bits, such as 0000

Question 21 [2 pt]: (see above) Which of the following is true using this format?

A $1.0 / 32.0$ is 0.0
B $6.0+1.0$ is 6.0
C $(\mathrm{x}-\mathrm{x})=0$ is true for all x
D None of the above
Answer: D

Question 22 [2 pt]: (see above) What number is represented by the bits 0101010? Answer as a base-2 number such as -101.11
Answer: 1100
\qquad

Question 23 [2 pt]: (see above) What fraction bits are used to represent $-\frac{5}{8}$?
Answer: 01
Answer as two bits, such as 00

Question 24 [$\mathbf{~ p t] : ~ C o g n i t i v e ~ b r e a k . ~ W r i t e ~ a ~ j o k e ~ o r ~ a n e c d o t e ~ h e r e , ~ o r ~ d o o d l e ~ s o m e t h i n g ~ i n t e r e s t - ~}$ ing, or just smile at the blank space worth 0 points and move on.

Question 25 [2 pt]: Suppose we add a new ifun for OPq, mulq that requires four consecutive cycles in the Execute stage. That means execute may stall for a single operation, but does it also impact pipeline hazards?

Select all that apply

A Two consecutive OPqs will become a new kind of hazard.
B The branch misprediction hazard may now result in more instructions
Answer: E being removed from the pipeline via bubbling.
C The load-use hazard can now need more than a single cycle of stalling.
D The return hazard can now need extra cycles of stalling.

E None of the above

Information for questions 26-29

Various topics discussed during our exploration of exceptions enabled communication between elements of a computer system. The following questions ask about these communications

Question $26[1 \mathbf{~ p t}]:$ (see above) Communication from kernel to user is enabled by
A fault
B interrupt
C signal
D trap
E none of the above
Answer: C

Question 27 [1 pt]: (see above) Communication from hardware to kernel is enabled by
A signal
B trap
C fault
D interrupt
E none of the above

Answer: D

\qquad

Question 28 [1 pt]: (see above) Communication from user to kernel is enabled by
A trap
B interrupt
C signal
D fault
E none of the above

Answer: A

Question 29 [1 pt]: (see above) Communication from kernel to hardware is enabled by
A signal
B fault
C interrupt
D trap
E none of the above

Question 30 [$2 \mathbf{~ p t}$]: An exception handler is
A both user- and kernel-mode software
B both kernel-mode software and hardware
C primarily kernel-mode software
D primarily hardware
E primarily user-mode software

Answer: E

Answer: C

Information for questions 31-32
A binary tree can be stored in an array; entry i 's left child is $2 i$ and its right child is $2 i+1$:

0	1	2	3	4	5	6	7	8	\cdots
(unused)	root	root.l	root.r	root.l.1	root.l.r	root.r.l	root.r.r	root.l.1.1	\cdots

Consider such an array used with a direct-mapped cache with 128 lines, each large enough to hold 4 array entries. Suppose the array is aligned so that entries $0,1,2$ and 3 are in the same cache line.

Question 31 [2 pt]: (see above) If code accesses root, then root.l, then root.l.l, then root.1.1.l, etc.; how many entries can we accesses before we have to evict one of the other entry's cache lines? Answer as a base-10 number.

Question 32 [2 pt]: (see above) Which method of tree traversal would have the best spatial locality?

A pre-order depth first
B in-order depth-first
C breadth-first
D post-order depth first
E all of the above have the same locality

Answer: C

Information for questions 33-36
In a multi-level page table,
\qquad

Question 33 [2 pt]: (see above) If part-way through following the page table the MMU hardware finds the read-only bit set and the CPU is attempting to write to memory,
A stop; the next page table will be in RAM but will also be marked read-only
B stop; the next page table might not even be in RAM half-credit
C keep going, only stopping if the last page table is marked read-only
D keep going; even if the last page table is marked read-only it is the OS,

Answer: A

Question 34 [2 pt]: (see above) Which of the following tells the location of the first page table?
A the PO
B the VPN from high-order bits of the address
C the TLB
D the VPN from low-order bits of the address
E the PTBR
F sometimes one of the above, sometimes another, depending on if we have a hit or not

Question 35 [2 pt]: (see above) The last VPN used is
A an index into a page containing data (not a page table)
B it depends on if there is a page fault or not
C an index into a page table

Answer: C

Question 36 [2 pt]: (see above) In the common case where there are 3 or 4 levels of page table and several thousand pages are allocated in a few contiguous regions of virtual memory, table storage \div data storage is

A less than $\frac{1}{100}$
B between $\frac{1}{2}$ and 2
C between 2 and 100
D more than 100
E between $\frac{1}{2}$ and $\frac{1}{100}$

Information for questions 37-39
Consider 38-bit virtual addresses and 4-byte page-table entries, where each PTE stores 8 bits of metadata (executable, protected, etc).

Question 37 [2 pt]: (see above) If you have 256-byte pages, then the largest possible physical address space is how many bytes? Answer as a power of two, such as 16B or 128GB.

```
Answer: 4GB
(24+8=32)
```

\qquad

Question 38 [2 pt]: (see above) If you want to have a single-level page table
and to fit the entire page table in one page of memory, what is the smallest page size (in bytes) you could use? Answer as a power of two, such as 16B or 128GB.

Answer: 1MB

Answer: 2KB
and to fit each page table in one page of memory, what is the smallest page size (in bytes) you could use? Answer as a power of two, such as 16B or 128GB.

Question 40 [2 pt]: Suppose we wanted to add a conditional call instruction to Y86-64. Conditional call (i.e., callg, callge, etc.) would require

Select all that apply

A new branch prediction logic (beyond that already present for jXX)
B more than the 9 bytes needed to encode call
C more register read- or write-ports than call
D none of the above

Information for questions 41-42

The translation lookaside buffer is a cache that
Question 41 [2 pt]: (see above) Produces as output
A the physical page number from an address
B entire physical addresses half-credit
C all the virtual page numbers from an address
D entire virtual addresses
E a single virtual page number from an address
\square

F none of the above

Question 42 [2 pt]: (see above) Takes as input
A all the virtual page numbers from an address
B a single virtual page number from an address half-credit
C entire virtual addresses half-credit
D entire physical addresses
E the physical page number from an address
F none of the above
Question 43 [2 pt]: Which of the following assembly snippets is removed by the assembler and not present in the binary?
A nop
B loop:
C addq \%rax, \%rcx
D jg loop
\qquad

Question 44 [2 pt]: After profiling your code you find that it is spending 20\% of its time evaluating the comparison statement in the innermost for loop; and 50% of its time accessing elements of an array.

Which of the following optimizations would give the biggest speedup? Assume the optimizations add no overhead not explicitly mentioned.

A add an extra 30% to the runtime to set up, then split the entire program to run in parallel on two processors saves 20\%
B reorder loops to reduce memory access times by 30% saves 15%
C blocking to reduce memory access times by 50%, but increase loop comparison time by $1.5 \times$ saves 15%

Answer: A

D $10 \times$ loop unrolling saves 18%

Question 45 [2 pt]: Suppose physical memory is larger than the virtual address space. Which of the following can benefit from swapping?

Select all that apply

A a single user process by itself
B multiple concurrent user processes
C a single user process and the kernel
D none of the above

Answer: B

-

Pledge:

On my honor as a student, I have neither given nor received aid on this exam.

Your signature here

