Caching / Performance

cache operation (associative)

cache operation (associative)

cache operation (associative)

writing to caches

writing to caches

writing to caches

writing to caches

writeback policy

write-allocate

2-way set associative, LRU, writeback									
index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 x 00] \\ & \operatorname{mem}[0 x 01] \end{aligned}\right.$	0	1	011000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 60]{ }^{*} \\ & \operatorname{mem}[0 \times 61]]^{\star} \end{aligned}\right.$	* 1	1
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}$	0	0				0

writing $0 \times F F$ into address 0×04 ?
index 0, tag 000001

allocate on write?

processor writes less than whole cache block
block not yet in cache
two options:
write-allocate
fetch rest of cache block, replace written part
write-no-allocate
send write through to memory
guess: not read soon?

write-allocate

2-way set associative, LRU, writeback

index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\begin{aligned} & \operatorname{mem}[0 \times 00] \\ & \operatorname{mem}[0 \times 01] \end{aligned}$	0	1	011000	$\left.\operatorname{mem}[0 \times 60]_{\operatorname{mem}[0 \times 61]}^{*}\right\|_{\star} ^{\star}$	+ 1	1
1	1	011000	$\begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 x 63] \end{aligned}$	0	0				0

writing $0 \times F F$ into address 0×04 ?
index 0, tag 000001
step 1: find least recently used block

write-allocate

2-way set associative, LRU, writeback									
index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\left.\begin{array}{\|c\|} \hline \operatorname{mem}[0 \times 00] \\ \operatorname{mem}[0 x 01] \end{array} \right\rvert\,$	0	1	011000	$\left.\right\|_{\operatorname{mem}[0 \times 60]} ^{\left.\operatorname{mem}[0 \times 61]\right\|_{\star}}$	+ 1	1
1	1	011000	$\left\|\begin{array}{c} \operatorname{mem}[0 \times 62] \\ \operatorname{mem}[0 \times 63] \end{array}\right\|$	0	0				0

writing $0 x F F$ into address 0×04 ?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block

write-allocate

2-way set associative, LRU, writeback									
index	valid	tag	value	dirty	valid	tag	value	dirty	LRU
0	1	000000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 00] \\ & \operatorname{mem}[0 \times 01] \end{aligned}\right.$	0	1	011000	$\begin{array}{c\|} \hline 0 \times F F \\ \operatorname{mem}[0 \times 05] \end{array}$	1	0
1	1	011000	$\left\lvert\, \begin{aligned} & \operatorname{mem}[0 \times 62] \\ & \operatorname{mem}[0 \times 63] \end{aligned}\right.$	0	0				0

writing 0xFF into address 0×04 ?
index 0, tag 000001
step 1: find least recently used block
step 2: possibly writeback old block
step 3a: read in new block - to get mem[0×05]
step 3b: update LRU information

fast writes

matrix sum

```
int sum1(int matrix[4][8]) {
    int sum = 0;
    for (int i = 0; i < 4; ++i) {
        for (int j = 0; j < 8; ++j) {
            sum += matrix[i][j];
        }
    }
}
access pattern:
matrix[0][0], [0][1], [0][2], ..., [1][0] ...
```


matrix sum: spatial locality

matrix in memory (4 bytes/row)

$[0][0]$	iter. 0
$[0][1]$	iter. 1
$[0][2]$	iter. 2
$[0][3]$	iter. 3
$[0][4]$	iter. 4
$[0][5]$	iter. 5
$[0][6]]$	iter. 6
$[0][7]$	iter. 7
$[1][0]$	iter. 8
$[1][1]$	iter. 9
..	

matrix sum: spatial locality

matrix in memory (4 bytes/row)
8-byte [0][0] iter. 0 cache block? \qquad iter. 1 iter. 2 iter. 3 iter. 4 iter. 5 iter. 6
iter. 7 ter. 8 ter. 9

matrix sum: spatial locality

matrix in memory (4 bytes/row)
8-byte [0][0] iter. 0 miss cache block?

$[0][0]$
$[0][1]$
$[0][2]$
$[0][3]$
$[0][4]$
$[0][5]$
$[0][6]$
$[0][7]$
$[1][0]$
$[1][1]$
.

iter. 5	hit
iter. 6	

iter. 6
iter. 8
iter. 9

block size and spatial locality

larger blocks - exploit spatial locality
... but larger blocks means fewer blocks for same size
less good at exploiting temporal locality

alternate matrix sum

```
int sum2(int matrix[4][8]) {
    int sum = 0;
    // swapped loop order
    for (int j = 0; j < 8; ++j) {
        for (int i = 0; i < 4; ++i) {
            sum += matrix[i][j];
        }
    }
}
access pattern:
matrix[0][0], [1][0], [2][0], ..., [0][1], ...
```


matrix sum: bad spatial locality

matrix sum: bad spatial locality

matrix in memory (4 bytes/row)				
8-bytecache block?	[0]	[0]	iter. 0	miss unless value not evicted for 4 iterations
	[0]	[1]	iter. 4	
	0	[2]	iter. 8	
	0]	3]	iter. 12	
	0]	4]	iter. 16	
	0]	5]	iter. 20	
	0]	6]	iter. 24	
	0]	7]	iter. 28	
	1]	0]	iter. 1	
	[1]	[1]	iter. 5	

conflict misses?

matrix in memory (4 bytes/row)

$[0][0]$	iter. 0
$[0][1]$	iter. 4
$[0][2]$	iter. 8
$[0][3]$	iter. 12
$[0][4]$	iter. 16
$[0][5]$	iter. 20
$[0][6]$	iter. 24
$[0][7]$	iter. 28
$[1][0]$	iter. 1
$[1][1]$	iter. 9
\ldots	...
$[2][0]$	iter. 3
$[2][1]$	iter. 11

conflict misses?

matrix in memory (4 bytes/row)			
set index 0?	[0]	[0]	iter. 0
	[0]	1]	iter. 4
set index 1?	[0]	[2]	iter. 8
	[0]	3]	iter. 12
set index 2?	[0]	[4$]$	iter. 16
	[0]	5]	iter. 20
set index 3 ?	[0]	6]	iter. 24
	[0]	7	iter. 28
set index 4?	[1]	[0]	iter. 1
	[1]	[1]	iter. 9
			iter 3
set index 0? (8 total sets)	[2]	[0]	iter. 31

associativity: avoiding conflicts

really hard to avoid cache conflicts with matrices, etc.
more associativity - less likely to have problems

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies

data cache miss rates:				
Cache size	direct-maped	2-way	8 -way	fully assoc.
1KB	8.63%	6.97%	5.63%	5.34%
2KB	5.71%	4.23%	3.30%	3.05%
4KB	3.70%	2.60%	2.03%	1.90%
16 KB	1.59%	0.86%	0.56%	0.50%
64 KB	0.66%	0.37%	0.10%	0.001%
128 KB	0.27%	0.001%	0.0006%	0.0006%

Data: Cantin and Hill, "Cache Performance for SPEC CPU2000 Benchmarks"
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data/

cache organization and miss rate

depends on program; one example:
SPEC CPU2000 benchmarks, 64B block size
LRU replacement policies

data cache miss rates:				
Cache size	direct-mapped	2-way	8 -way	fully assoc.
1KB	8.63\%	6.97\%	5.63\%	5.34\%
2 KB	5.71\%	4.23\%	3.30\%	3.05
4KB	3.70\%	2.60\%	2.03\%	1.90\%
16KB	1.59\%	0.86\%	0.56\%	0.50
64 KB	0.66\%	0.37\%	0.10\%	0.001
128 KB	0.27\%	0.001\%	0.0006\%	. 000

128 KB
Data: Cantin and Hill, "Cache Performance for SPEC CPU2000 Benchmarks" Data: Cantin and Hill, "Cache Performance for SPEC CPU2000 Benchmarks"
http://research.cs.wisc.edu/multifacet/misc/spec2000cache-data

is LRU always better?

least recently used exploits temporal locality

making LRU look bad

* $=$ least recently used

	direct-mapped (2 sets)		fully-associative (1 set)	
read 0	miss:	$\operatorname{mem}[0] ;-$	miss:	$\operatorname{mem}[0]$, - *
read 1	miss:	$\operatorname{mem}[0] ; \operatorname{mem}[1]$	miss:	$\operatorname{mem}[0]^{*}, \operatorname{mem}[1]$
read 3	miss:	$\operatorname{mem}[0] ; \operatorname{mem}[3]$	miss:	$\operatorname{mem}[3], \operatorname{mem}[1]^{*}$
read 0	hit:	$\operatorname{mem}[0] ; \operatorname{mem}[3]$	miss:	$\operatorname{mem}[3]^{*}, \operatorname{mem}[0]$
read 2	miss:	$\operatorname{mem}[2] ; \operatorname{mem}[3]$	miss:	$\operatorname{mem}[2], \operatorname{mem}[0]^{*}$
read 3	hit:	$\operatorname{mem}[2] ; \operatorname{mem}[3]$	miss:	$\operatorname{mem}[2]^{*}, \operatorname{mem}[3]$
read 1	hit:	$\operatorname{mem}[2] ; \operatorname{mem}[1]$	hit:	$\operatorname{mem}[1], \operatorname{mem}[3]^{*}$
read 2	hit:	$\operatorname{mem}[2] ; \operatorname{mem}[1]$	miss:	$\operatorname{mem}[1]^{*}, \operatorname{mem}[2]$

constructing bad access patterns in general

step 1: fill the cache
step 2: keep accessing the thing just replaced
real question: what do typical programs do?
typically: locality (spatial and temporal)
typically: some conflicts in low-order bits

cache optimizations

	miss rate	hit time	miss penalty
increase cache size	better	worse	-
increase associativity	better	worse	worse
increase block size	depends	worse	worse
add secondary cache	-	-	better
write-allocate	better	-	worse
writeback	better	-	worse
LRU replacement	better	?	worse

total time $=$ hit time + miss rate \times miss penalty

a note on matrix storage

$A-N \times N$ matrix
represent as array
makes dynamic sizes easier:
float A_2d_array[N][N];
float *A_flat = malloc(N * N);
A_flat[i * N + j] === A_2d_array[i][j]

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int $\mathbf{i}=0 ; i<N ;++i)$
for (int $j=0 ; j<N ;++j)$

$$
\text { for (int } k=0 ; k<N ;++k)
$$

$$
B[i \star N+j]+=A[i \star N+k] \star A[k \star N+j] ;
$$

```
matrix squaring
    \(B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}\)
/* version 1: inner loop is k, middle is \(j * /\)
for (int \(i=0 ; i<N ;++i)\)
    for (int \(j=0 ; j<N ;++j)\)
        for (int \(k=0 ; k<N ;++k)\)
            \(B[i \star N+j]+=A[i \star N+k] * A[k \star N+j] ;\)
/* version 2: outer loop is k, middle is i */
for (int \(k=0 ; k<N ;++k)\)
    for (int \(i=0 ; i<N ;++i)\)
        for (int \(j=0 ; j<N ;++j)\)
            \(B[i \star N+j]+=A[i \star N+k] * A[k \star N+j] ;\)
```


matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
for (int $k=0 ; k<N ;++k)$
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$
/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i $=0 ; i<N ;++i)$
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

alternate view: cycles/instruction

performance

24

loop orders and locality

loop body: $B_{i j}+=A_{i k} A_{k j}$
kij order: $B_{i j}, A_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than ...
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $B_{i j}$ has temporal locality

loop orders and locality

loop body: $B_{i j}+=A_{i k} A_{k j}$
$k i j$ order: $B_{i j}, A_{k j}$ have spatial locality
kij order: $A_{i k}$ has temporal locality
... better than
$i j k$ order: $A_{i k}$ has spatial locality
$i j k$ order: $B_{i j}$ has temporal locality

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

/* version 1: inner loop is k, middle is $j * /$

```
for (int i = 0; i < N; ++i)
```

 for (int \(\mathrm{j}=0 ; \mathrm{j}<\mathrm{N} ;++\mathrm{j}\))
 for (int \(k=0 ; k<N ;++k)\)
 \(B[i * N+j]+=A[i * N+k] * A[k * N+j] ;\)
 /* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N ;++k)$
for (int i = 0; i<N; ++i)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N}$; ++j)
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

matrix squaring

$$
B_{i j}=\sum_{k=1}^{n} A_{i k} \times A_{k j}
$$

```
/* version 1: inner loop is k, middle is j*/
for (int i = 0; i < N; ++i)
    for (int j = 0; j < N; ++j)
        for (int k = 0; k < N; ++k)
            B[i*N+j] += A[i * N + k] * A[k * N + j];
```

/* version 2: outer loop is k, middle is i */
for (int $k=0 ; k<N$; + k)
for (int i = 0; i < N; ++i)
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{N} ;++\mathrm{j}$)
$B[i * N+j]+=A[i * N+k] * A[k * N+j] ;$

L1 misses

L1 miss detail (2)

L1 miss detail (1)

conflict misses

powers of two - lower order bits unchanged
$A[k * 93+j]$ and $A[(k+11) * 93+j]$:
1023 elements apart (4092 bytes; 63.9 cache blocks)
64 sets in L1 cache: usually maps to same set A $[k * 93+(j+1)]$ will not be cached (next i loop) even if in same block as $A[k * 93+j]$

L2 misses

systematic approach (2)

$2 N^{3}+N^{2}$ loads
N^{3} multiplies, N^{3} adds
about 1 load per operation

```
```

for (int k = 0; k < N; ++k) {

```
for (int k = 0; k < N; ++k) {
    for (int i = 0; i < N; ++i) {
    for (int i = 0; i < N; ++i) {
            Aik loaded once in this loop (N}\mp@subsup{N}{}{2}\mathrm{ times):
            Aik loaded once in this loop (N}\mp@subsup{N}{}{2}\mathrm{ times):
            for (int j = 0; j < N; ++j)
            for (int j = 0; j < N; ++j)
            Bij},\mp@subsup{A}{kj}{}\mathrm{ loaded each iteration (if N big):
            Bij},\mp@subsup{A}{kj}{}\mathrm{ loaded each iteration (if N big):
            B[i*N+j] += A[i*N+k] * A [k*N+j];
```

 B[i*N+j] += A[i*N+k] * A [k*N+j];
    ```
about 1 load per operation

\section*{systematic approach (1)}
```

for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
B[i*N+j] += A[i*N+k] * A[k*N+j];

```
goal: get most out of each cache miss if \(N\) is larger than the cache:
miss for \(B_{i j}-1\) comptuation
miss for \(A_{i k}-N\) computations
miss for \(A_{k j}-1\) computation
effectively caching just 1 element

\section*{array usage: kij order}

for all \(k\) : for all \(i\) : for all \(j: B_{i j}+=A_{i k} \times A_{k j}\)
\(N\) calculations for \(A_{i k}\)
1 for \(A_{k j}, B_{i j}\)

\section*{array usage: kij order}

for all \(k\) : for all \(i\) : for all \(j: B_{i j}+=A_{i k} \times A_{k j}\)
\(N\) calculations for \(A_{i k}\) 1 for \(A_{k j}, B_{i j}\)

\section*{array usage: kij order}

for all \(k\) : for all \(i\) : for all \(j: B_{i j}+=A_{i k} \times A_{k j}\)
\(N\) calculations for \(A_{i k}\)
1 for \(A_{k j}, B_{i j}\)

\section*{array usage: kij order}


\section*{array usage: kij order}

for all \(k\) : for all \(i\) : for all \(j: B_{i j}+=A_{i k} \times A_{k j}\)
\(N\) calculations for \(A_{i k}\)
1 for \(A_{k j}, B_{i j}\)

\section*{a transformation}
```

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)
B[i*N+j] += A[i*N+k] * A[k*N+j];

```
split the loop over \(k\) - should be exactly the same (assuming even \(N\) )

\section*{a transformation}
```

for (int kk = 0; kk < N; kk += 2)
for (int k = kk; k < kk + 2; ++k)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)
B[i*N+j] += A[i*N+k] * A[k*N+j];

```
split the loop over \(k\) - should be exactly the same (assuming even \(N\) )

\section*{simple blocking}
```

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k<kk + 2; ++k)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)
for (int k = kk; k < kk + 2; ++k)
B[i*N+j] += A[i*N+k] * A[k*N+j];

```
now reorder split loop

\section*{simple blocking}
```

for (int kk = 0; kk < N; kk += 2)
/* was here: for (int k = kk; k < kk + 2; ++k)
for (int i = 0; i < N; i += 2)
for (int j = 0; j < N; ++j)
for (int k = kk; k < kk + 2; ++k)
B[i*N+j] += A[i*N+k] * A[k*N+j];

```
now reorder split loop

\section*{simple blocking - expanded}
```

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
B[i*N+j] += A[i*N+kk] * A[kk*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
}
}
}

```
```

simple blocking - expanded
for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
B[i*N+j] += A[i*N+kk] * A [kk*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
}
}
}

```

More spatial locality in \(A_{i k}\)

\section*{simple blocking - expanded}
```

for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
B[i*N+j] += A[i*N+kk] * A[kk*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
}
}
}

```

Temporal locality in \(B_{i j} \mathrm{~s}\)
```

simple blocking - expanded
for (int kk = 0; kk < N; kk += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
B[i*N+j] += A[i*N+kk] * A[kk*N+j];
B[i*N+j] += A[i*N+kk+1] * A[(kk+1)*N+j];
}
}
}

```

Still have good spatial locality in \(A_{k j}, B_{i j}\)

\section*{improvement in read misses}

```

simple blocking - expanded

```
for (int k = 0; k < N; k += 2) {
```

for (int k = 0; k < N; k += 2) {
for (int i = 0; i < N; i += 2) {
for (int i = 0; i < N; i += 2) {
for (int j = 0; j < N; ++j) {
for (int j = 0; j < N; ++j) {
/* process a "block": */
/* process a "block": */
Bi+0,j += A A i+0,k+0 * A A k+0,j
Bi+0,j += A A i+0,k+0 * A A k+0,j
Bi+0,j += A A i+0,k+1 * A A k+1,j
Bi+0,j += A A i+0,k+1 * A A k+1,j
Bi+1,j += A A i+1,k+0 * A Ak+0,j
Bi+1,j += A A i+1,k+0 * A Ak+0,j
B}\mp@subsup{B}{i+1,j}{\prime\prime}+=\mp@subsup{A}{i+1,k+1}{*}\quad\star \mp@subsup{A}{k+1,j}{
B}\mp@subsup{B}{i+1,j}{\prime\prime}+=\mp@subsup{A}{i+1,k+1}{*}\quad\star \mp@subsup{A}{k+1,j}{
}
}
}
}
}

```
```

}

```
```


simple blocking (2)

same thing for i in addition to k ?

```
for (int kk = 0; kk < N; kk += 2) {
    for (int ii = 0; ii < N; ii += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
            for (int k = kk; k < kk + 2; ++k)
                    for (int i = 0; i < ii + 2; ++i)
                        B[i*N+j] += A[i*N+k] * A[k*N+j];
        }
    }
}
```


simple blocking - expanded

```
for (int k = 0; k < N; k += 2) {
    for (int i = 0; i < N; i += 2) {
        for (int j = 0; j < N; ++j) {
            /* process a "block": */
            Bi+0,j += A A i+0,k+0 * * A k+0,j
            Bi+0,j}+=\mp@subsup{A}{i+0,k+1}{*}*\mp@subsup{A}{k+1,j}{
            Bi+1,j += A A i+1,k+0 * * A k+0,j
            Bi+1,j += A A i+1,k+1 * * A k+1,j
        }
    }
}
```

Now $A_{k j}$ reused in inner loop - more calculations per load!

array usage (better)

N calculations for each $A_{i k}$
2 calculations for each $B_{i j}$ (for $k, k+1$)
2 calculations for each $A_{k j}$ (for $k, k+1$)

generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
        load and reuse I by K block of A:
        for (int jj = 0; jj < N; jj += J) {
            load and reuse K by J block of A, I by J block of B:
            for i, j, k in I by J by K block:
                    B[i * N + j] += A[i * N + k]
                            * A[k * N + j];
        }
    }
}
```


generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
        load and reuse I by K block of A:
        for (int jj = 0; jj < N; jj += J) {
            load and reuse K by J block of A, I by J block of B:
            for i, j, k in I by J by k block:
            B[i*N + j] += A[i * N + k]
            * A[k * N + j];
        }
    }
}
\(B_{i j}\) used \(K\) times for one miss
```


generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
            load and reuse I by K block of A:
            for (int jj = 0; jj < N; jj += J) {
                load and reuse K by J block of A, I by J block of B:
            for i, j, k in I by J by K block:
                    B[i*N + j] += A[i * N + k]
                    * A[k * N + j];
        }
    }
}
```

$A_{i k}$ used $>J$ times for one miss

generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
        load and reuse I by K block of A:
        for (int jj = 0; jj < N; jj += J) {
            load and reuse K by J block of A, I by J block of B:
            for i, j, k in I by J by K block:
                    B[i*N + j] += A[i * N + k]
                            * A[k * N + j];
        }
    }
}
```

$A_{k j}$ used I times for one miss

array usage: block

inner loop keeps "blocks" from A, B in cache

generalizing cache blocking

```
for (int kk = 0; kk < N; kk += K) {
    for (int ii = 0; ii < N; ii += I) {
        load and reuse I by K block of A:
        for (int jj = 0; jj < N; jj += J) {
            load and reuse K by J block of A, I by J block of B:
            for i, j, k in I by J by K block:
                    B[i*N + j] += A[i * N + k]
                            * A[k * N + j];
        }
    }
}
```

catch: $I K+K J+I J$ elements must fit in cache

array usage: block

$B_{i j}$ calculation uses strips from A
K calculations for one load (cache miss)

array usage: block

$B_{i j}$ calculation uses strips from A
K calculations for one load (cache miss)

array usage: block

$A_{i k}$ calculation uses strips from A, B
J calculations for one load (cache miss)

cache blocking efficiency

load $I \times K$ elements of $A_{i k}$, do $>J$ multiplies with each
load $K \times J$ elements of $A_{k j}$, do I multiplies with each
load $I \times J$ elements of $B_{i j}$, do K adds with each
bigger blocks — more work per load!
catch: $I K+K J+I J$ elements must fit in cache

cache blocking goal

fill the whole cache and do as much work as possible from that example: my desktop 32 KB L1 cache $I=J=K=48$ uses $48^{2} \times 3$ elements, or 27 KB . assumption: conflict misses aren't important

view 2: divide and conquer

```
partial_square(float *A, float *B,
    int startI, int endI, ...)
    for (int i = startI; i < endI; ++i) {
        for (int j = startJ; j < endJ; ++j) {
}
square(float *A, float * B, int N) {
    for (int ii = 0; ii < N; ii += BLOCK)
        /* segment of A, B in use fits in cache! */
        partial_square(
            A, B,
            ii, ii + BLOCK,
            jj, jj + BLOCK, ...);
}

\section*{cache blocking ugliness - fringe}

\section*{cache blocking ugliness - fringe}
```

for (int kk = 0; kk < N; kk += K) {
for (int ij = 0; ii < N; ii += I) {
for (int jj = 0; jj < N; jj += J) {
for (int k = kk; k < min}(kk+K,N) ; ++k) {,
// ...
}
}
}
}

```

\section*{cache blocking ugliness - fringe}
```

for (kk = 0; kk + K <= N; kk += K) {
for (ii = 0; ii + I <= N; ii += I) {
for (jj = 0; jj + J <= N; ii += J) {
// ...
}
for (; jj < N; ++jj) {
// handle remainder
}
}
for (; ii < N; ++ii) {
// handle remainder
}
}
for (; kk < N; ++kk) {
// handle remainder

```

\section*{what about performance?}



\section*{cache blocking and miss rate}


\section*{optimized loop???}
performance difference wasn't visible at small sizes until I optimized arithmetic in the loop
(by supplying better options to GCC)

1: loading \(B_{i, j}\) through \(B_{i, j+7}\) with one instruction
2: doing adds and multiplies with less instructions

\section*{optimized loop???}
performance difference wasn't visible at small sizes until I optimized arithmetic in the loop
(by supplying better options to GCC)

1: loading \(B_{i, j}\) through \(B_{i, j+7}\) with one instruction
2: doing adds and multiplies with less instructions but... how can that make cache blocking better???
```

register reuse

register reuse

```
```

for (int k = 0; k < N; ++k)

```
```

for (int k = 0; k < N; ++k)

```
```

for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i)
for (int i = 0; i < N; ++i)
for (int i = 0; i < N; ++i)
for (int j = 0; j < N; ++j)
for (int j = 0; j < N; ++j)
for (int j = 0; j < N; ++j)
B[i*N+j] += A[i*N+k] * A[k*N+j];
B[i*N+j] += A[i*N+k] * A[k*N+j];
B[i*N+j] += A[i*N+k] * A[k*N+j];
// optimize into:
// optimize into:
// optimize into:
for (int k = 0; k < N; ++k)
for (int k = 0; k < N; ++k)
for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i) {
for (int i = 0; i < N; ++i) {
for (int i = 0; i < N; ++i) {
float Aik = A[i*N+k]; // hopefully keep in re,
float Aik = A[i*N+k]; // hopefully keep in re,
float Aik = A[i*N+k]; // hopefully keep in re,
// faster than even cac
// faster than even cac
// faster than even cac
for (int j = 0; j<N; ++j)
for (int j = 0; j<N; ++j)
for (int j = 0; j<N; ++j)
B[i*N+j] += Aik * A [k*N+j];
B[i*N+j] += Aik * A [k*N+j];
B[i*N+j] += Aik * A [k*N+j];
}
}
}
}
}
}
can compiler do this for us?

```
```

can compiler do this for us?

```
```

can compiler do this for us?

```
```

```
    for (int k 0, k < N, ++k)
```

 for (int k 0, k < N, ++k)
    ```
    for (int k 0, k < N, ++k)
        * Aik * A[k*N+j];
```

 * Aik * A[k*N+j];
    ```
        * Aik * A[k*N+j];
```


overlapping loads and arithmetic

| | load | | | load |
| :---: | :---: | :---: | :---: | :---: |
| ultiply | multiply | multiply | multiply | multip |
| add | add | add | | add |
| speed of load might not matter if these are slower | | | | |

can compiler do register reuse?

```
Not easily - What if A=B?
```

```
for (int k = 0; k < N; ++k)
```

for (int k = 0; k < N; ++k)
for (int i = 0; i < N; ++i) {
for (int i = 0; i < N; ++i) {
// want to preload A[i*N+k] here!
// want to preload A[i*N+k] here!
for (int j = 0; j < N; ++j) {
for (int j = 0; j < N; ++j) {
// but if A = B, modifying here!
// but if A = B, modifying here!
B[i*N+j] += A[i*N+k] * A[k*N+j];
B[i*N+j] += A[i*N+k] * A[k*N+j];
}
}
}
}
}

```
}
```


Automatic register reuse

Compiler would need to generate overlap check:

```
if ((B > A + N * N || B < A) &&
    (B + N*N>A + N*N ||
        B + N * N < A)) {
    for (int k = 0; k < N; ++k) {
        for (int i = 0; i < N; ++i) {
            float Aik = A[i*N+k];
            for (int j = 0; j < N; ++j) {
                    B[i*N+j] += Aik * A [k*N+j];
            }
        }
    }
} else { /* other version */ }
```


cache blocking: summary

reorder calculation to reduce cache misses:
make explicit choice about what is in cache perform calculations in cache-sized blocks get more spatial and temporal locality temporal locality - reuse values in many calculations
before they are replaced in the cache spatial locality - use adjacent values in calculations before cache block is replaced

"register blocking"

```
for (int k = 0; k < N; ++k) {
    for (int i = 0; i < N; i += 2) {
            float Ai0k = A[(i+0)*N + k];
            float Ailk = A[(i+1)*N + k];
            for (int j = 0; j < N; j += 2) {
            float Akj0 = A[k*N + j+0];
            float Akj1 = A[k*N + j+1];
            B[(i+0)*N + j+0] += Ai0k * Akj0;
            B[(i+1)*N + j+0] += Ailk * Akj0;
            B[(i+0)*N + j+1] += Ai0k * Akj1;
            B[(i+1)*N + j+1] += Ailk * Akj1;
        }
    }
}
```


avoiding conflict misses

problem — array is scattered throughout memory
observation: 32 KB cache can store 32 KB contiguous array
contiguous array is split evenly among sets
solution: copy block into contiguous array

avoiding conflict misses (code)

process_block(ii, jj, kk) \{
float B_copy[I * J];
/* pseudocode for loop to save space */
for $\mathrm{i}=\mathrm{ii}$ to $\mathrm{ij}+\mathrm{I}, \mathrm{j}=\mathrm{jj}$ to $\mathrm{jj}+\mathrm{J}:$
B_copy[i $\star \mathrm{J}+\mathrm{j}]=\mathrm{B}[i \star N+j] ;$
for $i=i i$ to $i i+I, j=j j$ to $j j+J$,
B_copy $[i \not * J+j]+=A[k \star N+j] * A$
for all i, j:
$B[i * N+j]=B _c o p y[i * J+j] ;$
\}

prefetching

processors detect sequential access patterns
e.g. accessing memory address $0,8,16,24, \ldots$?
processor will prefetch 32,48 , etc.
another way to take advantage of spatial locality
part of why miss rate is so low

