
Processes and Exceptions

1

an infinite loop

int main(void) {
while (1) {

/* waste CPU time */
}

}

If I run this on a lab machine, can you still use it?

…even if the machine only has one core?

2

timing nothing

long times[NUM_TIMINGS];
int main(void) {

for (int i = 0; i < N; ++i) {
long start, end;
start = get_time();
/* do nothing */
end = get_time();
times[i] = end − start;

}
output_timings(times);

}
same instructions — same difference each time?

3

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

4

doing nothing on a busy system

0 200000 400000 600000 800000 1000000

sample #

101

102

103

104

105

106

107

108

ti
m

e
 (

n
s)

time for empty loop body

5

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

6

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

6

time multiplexing

loop.exe ssh.exe firefox.exe loop.exe ssh.exeCPU:
time

...
call get_time

// whatever get_time does
movq %rax, %rbp

million cycle delay
call get_time

// whatever get_time does
subq %rbp, %rax
...

6

illusion: dedicated processor

time multiplexing: illusion of dedicated processor

including dedicated registers

sometimes called a thread

illusion is perfect — except for performance

7

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

8

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

8

OS and time multiplexing

starts running instead of normal program
mechanism for this: exceptions (later)

saves old program counter, registers somewhere

sets new registers, jumps to new program counter

called context switch
saved information called context

9

context

all registers values
%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

10

context switch pseudocode

context_switch(last, next):
copy_preexception_pc last−>pc
mov rax,last−>rax
mov rcx, last−>rcx
mov rdx, last−>rdx
...
mov next−>rdx, rdx
mov next−>rcx, rcx
mov next−>rax, rax
jmp next−>pc

11

contexts (A running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

12

contexts (B running)

%rax
%rbx
%rcx
%rsp
…
SF
ZF
PC

in CPU
Process A memory:
code, stack, etc.

Process B memory:
code, stack, etc.

OS memory:
%raxSF
%rbxZF
%rcxPC
… …

in Memory

13

memory protection

reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

14

memory protection

reading from another program’s memory?
Program A Program B
0x10000: .word 42

// ...
// do work
// ...
movq 0x10000, %rax

// while A is working:
movq $99, %rax
movq %rax, 0x10000
...

result: %rax is 42 (always) result: might crash

14

Recall: program memory

0xFFFF FFFF FFFF FFFF

0xFFFF 8000 0000 0000

0x7F…

0x0000 0000 0040 0000

Used by OS

Stack

Heap / other dynamic
Writable data

Code + Constants

15

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

16

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

17

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

18

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

19

address space mechanisms

next week’s topic

called virtual memory

mapping called page tables

mapping part of what is changed in context switch

20

context

all registers values
%rax %rbx, …, %rsp, …

condition codes

program counter

i.e. all visible state in your CPU except memory

address space: map from program to real addresses

21

The Process

process = thread(s) + address space

illusion of dedicated machine:
thread = illusion of own CPU
address space = illusion of own memory

22

time multiplexing really

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

= operating system

exception happens return from exception

23

exceptions

special control transfer
similar effect to function call
but often not requested by the program

usually from user programs to the OS

example: from timer expiring
keeps our infinite loop from running forever

24

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts
25

timer interrupt

(conceptually) external timer device

OS configures before starting program

sends signal to CPU after a fixed interval

26

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts
27

protection fault

when program tries to access memory it doesn’t own

e.g. trying to write to bad address

OS gets control — can crash the program
or more interesting things

28

synchronous versus asynchronous

synchronous — triggered by a particular instruction
particular mov instruction

asynchronous — comes from outside the program
timer event
keypress, other input event

29

exception implementation

detect condition (program error or external event)

save current value of PC somewhere

jump to exception handler (part of OS)
jump done without program instruction to do so

30

exception implementation: notes

I/textbook describe a simplified version

real x86/x86-64 is a bit more complicated
(mostly for historical reasons)

31

locating exception handlers

address pointer
base + 0x00
base + 0x08
base + 0x10
base + 0x18… …
base + 0x40… …

exception table (in memory)

exception table
base register handle_divide_by_zero:

movq %rax, save_rax
movq %rbx, save_rbx
...

handle_timer_interrupt:
movq %rax, save_rax
movq %rbx, save_rbx
...

…
…
…

32

running the exception handler

hardware saves the old program counter

identifies location of exception handler via table

then jumps to that location

OS code can save registers, etc., etc.

33

exception handler structure

1. save process’s state somewhere
2. do work to handle exception
3. restore a process’s state (maybe a different one)
4. jump back to program
handle_timer_interrupt:
mov_from_saved_pc save_pc_loc
movq %rax, save_rax_loc
... // choose new process to run here
movq new_rax_loc, %rax
mov_to_saved_pc new_pc
return_from_exception

34

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

35

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

35

added to CPU for exceptions

new instruction: set exception table base

new logic: jump based on exception table

new logic: save the old PC
to special register or to memory

new instruction: return from exception
i.e. jump to saved PC

35

why return from exception?

not just ret — can’t modify process’s stack
would break the illusion of dedicated CPU

reasons related to address spaces, protection (later)

36

exceptions and time slicing

loop.exe ssh.exe firefox.exe loop.exe ssh.exe

exception table lookup

timer interrupt

handle_timer_interrupt:
...
...
set_address_space ssh_address_space
mov_to_saved_pc saved_ssh_pc
return_from_exception

37

defeating time slices?

my_exception_table:
...

my_handle_timer_interrupt:
// HA! Keep running me!
return_from_exception

main:
set_exception_table_base my_exception_table

loop:
jmp loop

38

defeating time slices?

wrote a program that tries to set the exception table:

my_exception_table:
...

main:
// "Load Interrupt
// Descriptor Table"
// x86 instruction to set exception table
lidt my_exception_table
ret

result: Segmentation fault (exception!)

39

privileged instructions

can’t let any program run some instructions
allows machines to be shared between users (e.g. lab
servers)
examples:

set exception table
set address space
talk to I/O device (hard drive, keyboard, display, …)
…

processor has two modes:
kernel mode — privileged instructions work
user mode — privileged instructions cause exception
instead

40

kernel mode

extra one-bit register: “are we in kernel mode”

exceptions enter kernel mode

return from exception instruction leaves kernel mode

41

program memory (two programs)

Used by OS

Program A

Stack

Heap / other dynamic
Writable data

Code + Constants

Used by OS

Program B

Stack

Heap / other dynamic

Writable data
Code + Constants

42

address space

programs have illusion of own memory
called a program’s address space

Program A
addresses

Program B
addresses

mapping
(set by OS)

mapping
(set by OS)

Program A code
Program B code
Program A data
Program B data

OS data
…

real memory

trigger error

= kernel-mode only

43

kernel services

allocating memory? (change address space)

reading/writing to file? (communicate with hard
drive)

read input? (communicate with keyborad)

all need privileged instructions!

need to run code in kernel mode

44

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts
45

Linux x86-64 system calls

special instruction: syscall

triggers trap (deliberate exception)

46

Linux syscall calling convention

before syscall:

%rax — system call number

%rdi, %rsi, %rdx, %r10, %r8, %r9 — args

after syscall:

%rax — return value

on error: %rax contains -1 times “error number”

almost the same as normal function calls
47

Linux x86-64 hello world

.globl _start

.data
hello_str: .asciz "Hello,␣World!\n"
.text
_start:
movq $1, %rax # 1 = "write"
movq $1, %rdi # file descriptor 1 = stdout
movq $hello_str, %rsi
movq $15, %rdx # 15 = strlen("Hello, World!\n")
syscall

movq $60, %rax # 60 = exit
movq $0, %rdi
syscall

48

approx. system call handler

sys_call_table:
.quad handle_read_syscall
.quad handle_write_syscall
// ...

handle_syscall:
... // save old PC, etc.
pushq %rcx // save registers
pushq %rdi
...
call *sys_call_table(,%rax,8)
...
popq %rdi
popq %rcx
return_from_exception

49

Linux system call examples

mmap, brk — allocate memory

fork — create new process

execve — run a program in the current process

_exit — terminate a process

open, read, write — access files
terminals, etc. count as files, too

50

system calls and protection

exceptions are only way to access kernel mode

operating system controls what proceses can do

… by writing exception handlers very carefully

51

careful exception handlers

movq $important_os_address, %rsp

can’t trust user’s stack pointer!

need to have own stack in kernel-mode-only memory

need to check all inputs really carefully

52

reading keyboard input

int main(void) {
char buf[1024];
/* read a line from stdin −−−

waits for keyboard input */
if (fgets(buf, sizeof buf, stdin) != NULL) {

printf("You␣typed␣[%s]\n", buf);
}

}

fgets uses read system call

53

keyboard input timeline

read_input.exe read_input.exe

trap — read system call

interrupt — from keyboard

= operating system

54

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

55

system call wrappers

library functions to not write assembly:
open:

movq $2, %rax // 2 = sys_open
// 2 arguments happen to use same registers
syscall
// return value in %eax
cmp $0, %rax
jl has_error
ret

has_error:
neg %rax
movq %rax, errno
movq $−1, %rax
ret

55

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

56

system call wrapper: usage

/* unistd.h contains definitions of:
O_RDONLY (integer constant), open() */

#include <unistd.h>
int main(void) {
int file_descriptor;
file_descriptor = open("input.txt", O_RDONLY);
if (file_descriptor < 0) {

printf("error:␣%s\n", strerror(errno));
exit(1);

}
...
result = read(file_descriptor, ...);
...

}

56

types of exceptions

interrupts — externally-triggered
timer — keep program from hogging CPU
I/O devices — key presses, hard drives, networks, …

faults — errors/events in programs
memory not in address space (“Segmentation fault”)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts
57

a note on terminology

the real world does not use consistent terms for
exceptions

we will follow textbook’s terms in this course

the real world won’t

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘fault‘ meaning what we call ‘fault’ or ‘abort’ (ARM)
… and more

58

signals

Unix-like operating system feature

like interrupts for processes:

can be triggered by external process (instead of
device)

kill command/system call

can be triggered by special events
pressing control-C

can invoke signal handler
59

signal API

sigaction — register handler for signal

kill — send signal to process

pause — put process to sleep until signal received

sigprocmask — block some signals from being
received until ready

… and much more

60

example signal program

#include <signal.h>
#include <unistd.h>

void handle_sigint(int signum) {
write(1, "Got␣signal!\n", sizeof("Got␣signal!\n"));
_exit(0);

}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
sigaction(&act);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {

printf("read␣%s", buf);
}

}

61

signal delivery (1)

signal happens while foo() is running

OS writes stack from to user stack

OS modifies registers to call signal handler

address of __restore_rt
saved registers
PC when signal happened
local variables for foo…

the stack

stack pointer
before signal delivered

stack pointer
when signal handler started

62

signal delivery (2)

handle_sigint:
...
ret

...
__restore_rt:

// 15 = "sigreturn" system call
movq $15, %rax
syscall

__restore_rt is return address for signal handler

system call restores pre-signal state, then returns

63

signal handler unsafety (1)

void *malloc(size_t size) {
...
to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void foo() {
/* This malloc() call interrupted */
char *p = malloc(1024);
p[0] = 'x';

}

void handle_sigint() {
// printf might use malloc()
printf("You␣pressed␣control−C.\n");

}

64

setjmp/longjmp

C flow control
jmp_buf env;

main() {
if (setjmp(env) == 0) { // like try {
...
read_file()
...

} else { // like catch
printf("some␣error␣happened\n");

}
}

read_file() {
...
if (open failed) {

longjmp(env, 1) // like throw
}
...

}

65

implementing setjmp/lonjmp

setjmp:
copy all registers to jmp_buf
… including stack pointer

longjmp
copy registers from jmp_buf
… but change %rax (return value)

66

setjmp weirdness — local variables

Undefined behavior:
int x = 0;
if (setjmp(env) == 0) {

...
x += 1;
longjmp(env, 1);

} else {
printf("%d\n", x);

}

67

setjmp weirdness — fix

Defined behavior:
volatile int x = 0;
if (setjmp(env) == 0) {

...
x += 1;
longjmp(env, 1);

} else {
printf("%d\n", x);

}

68

on implementing try/catch

could do something like setjmp()/longjmp()

but want try to be really fast!

instead: tables of information indexed by program
counters:

where register values are stored on stack/in other
registers
where old program counters are stored on stack
where catch blocks are located

69

	The Process Concept
	Time Multiplexing
	memory Protection
	Implementation: Role of the OS

