Exceptions and Processes (con't)

Recall: Process

illusion of dedicated machine

thread + address space

thread = illusion of dedicated processor

address space = illusion of dedicated memory

Recall: thread

. | o

illusion of dedicated processor

time multiplexing: operating system alternates which
thread runs on the processor
programs run concurrently on same CPU

mechanism for operating system to run: exceptions

Recall: thread

. | o

illusion of dedicated processor

time multiplexing: operating system alternates which
thread runs on the processor
programs run concurrently on same CPU

mechanism for operating system to run: exceptions

Recall: thread

illusion of dedicated processor

time multiplexing: operating system alternates which
thread runs on the processor
programs run concurrently on same CPU

mechanism for operating system to run: exceptions

Recall: address space

illuision of dedicated memory

Program A
addresses

Program B
addresses

real memory

mapping

Program A code

(set by OS)

Program B code

Program A data

mapping _»| Program B data
(set by OS) [\
OS data
» = kernel-mode only

trigger error

Recall: protection

processes can't interfere with other processes
processes can't interfere with operating system

.. except as allowed by OS

mechanism 1: kernel mode and privileged instructions
mechanism 2: address spaces

mechanism 3: exceptions for controlled access

protection and sudo

programs always run in user mode

extra permissions from OS do not change this
sudo, superuser, root, SYSTEM, ..

operating system may remember extra privileges

OS process information

context: registers, condition codes, address space

OS tracks extra information, too:

process ID — identify process in system calls

user ID — who is running the process? what files can it
access?

current directory

open files

..and more

CPU doesn’t know about this extra information

Recall: Linux x86-64 hello world

.globl _start

.data
hello_str: .asciz "Hello, World!\n"
.text
_start:
movq $1, %rax # 1 = "write"

movq $1, %rdi # file descriptor 1 = stdout
movq S$hello_str, %rsi

movq $15, %rdx # 15
syscall

strlen("Hello, World!\n")

movq $60, %rax # 60 = exit
movq $0, %rdi

syscall

types of exceptions

interrupts — externally-triggered

timer — keep program from hogging CPU
|/O devices — key presses, hard drives, networks, ...

faults — errors/events in programs

memory not in address space (“Segmentation fault™)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

types of exceptions

interrupts — externally-triggered

timer — keep program from hogging CPU
|/O devices — key presses, hard drives, networks, ...

faults — errors/events in programs

memory not in address space (“Segmentation fault™)
divide by zero
invalid instruction

traps — intentionally triggered exceptions
system calls — ask OS to do something

aborts

aborts

something is wrong with the hardware
example: memory chip failed, has junk value

tell OS so it can do something

do what?7?

reboot?

10

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %rax, save_rax
/* key press here */

movq %rbx, save_rbx

11

exceptions in exceptions

handle_timer_interrupt:
save_old_pc save_pc
movq %rax, save_rax
/* key press here */

movq %rbx, save_rbx

handle_keyboard_interrupt:
save_old_pc save_pc
movqg %rax, save_rax
movqg %rbx, save_rbx
movq %rcx, save_rcx

exceptions in exceptions

handle_timer_interrupt:

save_old_pc save_pc
movq %rax, save_rax

/* key press here */

movq %rbx, save_rbx
N

solution: disallow this!

movq %ra
movqg %rb

11

interrupt disabling

CPU supports disabling (most) interrupts
interrupts will wait until it is reenabled

CPU has extra state:

Y

interrupts enabled?

Y

keyboard interrupt pending?

A

timer interrupt pending?

exception logic

Y

12

exceptions in exceptions

handle_timer_interrupt:
/* dnterrupts automatically disabled here */
save_old_pc save_pc
movq %rax, save_rax
/* key press here */
movq %rsp, save_rsp

call move_saved_state
enable_1interrupts

/* interrupt happens here! x/

13

exceptions in exceptions

handle_timer_interrupt:
/* dnterrupts automatically disabled here */
save_old_pc save_pc
movq %rax, save_rax
/* key press here */
movq %rsp, save_rsp

call move_saved_state
enable_1interrupts

/* interrupt happens here! x/

13

exceptions in exceptions

handle_timer_interrupt:

/* dnterrupts automatically disabled here */

save_old_pc save_pc
movq %rax, save_rax
/* key press here */
movq %rsp, save_rsp

call move_saved_state
enable_1interrupts

/* interrupt happens here! x/

A

4

handle_keyboard_interrupt:
save_old_pc save_pc

call move_saved_state

13

disabling interrupts

automatically disabled when exception handler starts

also done with privileged instruction:

change_keyboard_parameters:
disable_interrupts

/* change things used by
handle_keyboard_interrupt here *x/

enable_interrupts

14

a note on terminology (1)

real world: inconsistent terms for exceptions

we will follow textbook’'s terms in this course

the real world won't

you might see:
‘interrupt’ meaning what we call ‘exception’ (x86)
‘exception’ meaning what we call ‘fault’
‘hard fault’ meaning what we call ‘abort’
‘trap’ meaning what we call ‘fault’
...and more

15

a note on terminology (2)

we use the term “kernel mode”

some additional terms:

supervisor mode
privileged mode
ring O

some systems have multiple levels of privilege
different sets of priviliged operations work

16

on virtual machines

process can be called a ‘virtual machine’

programmed like a complete computer...

17

on virtual machines

process can be called a ‘virtual machine’

programmed like a complete computer...

but weird interface for /O, memory — system calls

can we make that closer to the real machine?

17

trap-and-emulate

privileged instructions trigger a protection fault

we assume operating system crashes

what if OS pretends the privileged instruction works?

18

trap-and-emulate: write-to-screen

struct Process {

AddressSpace address_space;
SavedRegisters registers;

I

void handle_protection_fault(Process *process)
// normal: would crash
if (was_write_to_screen()) {
do_write_system_call(process);
process—>registers—>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

}

19

trap-and-emulate: write-to-screen

struct Process {

AddressSpace address_space;
SavedRegisters registers;

I

void handle_protection_fault(Process *process)
// normal: would crash
if (was_write_to_screen()) {
do_write_system_call(process);
process—>registers—>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

}

19

was__write__to__screen()

how does OS know what caused protection fault?
option 1: hardware “type” register

option 2: check instruction:

int opcode = (*process—>registers—>pc & OxF0) >>
if (opcode == WRITE_TO_SCREEN_OPCODE)

20

trap-and-emulate: write-to-screen

struct Process {

AddressSpace address_space;
SavedRegisters registers;

I

void handle_protection_fault(Process *process)
// normal: would crash
if (was_write_to_screen()) {
do_write_system_call(process);
process—>registers—>pc +=

WRITE_TO_SCREEN_LENGTH;
} else {

}

21

trap-and-emulate: write-to-screen

struct Process {

AddressSpace address_space;
SavedRegisters registers;

I

void handle_protection_fault(Process *process)
// normal: would crash
if (was_write_to_screen()) {
do_write_system_call(process);
process—>registers—>pc +=
WRITE_TO_SCREEN_LENGTH;
} else {

}

21

system virtual machines

turn faults into system calls

emulate machine that looks more like ‘real’ machine

what software like VirtualBox, VMWare, etc. does

more complicated than this:

on x86, some privileged instructions don't cause faults
dealing with address spaces is a lot of extra work

22

process VM versus system VM

Linux process feature

real machine feature

files, sockets 1/O devices
threads CPU cores
mmap/brk 77

signals exceptions

23

signals

Unix-like operating system feature

like interrupts for processes:

can be triggered by external process
kill command /system call

can be triggered by special events

pressing control-C
faults

can invoke signal handler (like exception handler)

24

signal API

sigaction — register handler for signal
ki1l — send signal to process
pause — put process to sleep until signal received

sigprocmask — temporarily block some signals
from being received

... and much more

25

example signal program

void handle_sigint(int signum) {
write(l, "Got_signal!\n", sizeof("Got_signal!\n"))
_exit(0);

+

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {
printf("read_%s", buf);

.
b

26

example signal program

void handle_sigint(int signum) {
write(l, "Got_signal!\n", sizeof("Got_signal!\n"))
_exit(0);

}

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {
printf("read_%s", buf);

.
b

26

example signal program

void handle_sigint(int signum) {
write(l, "Got_signal!\n", sizeof("Got_signal!\n"))
_exit(0);

+

int main(void) {
struct sigaction act;
act.sa_handler = &handle_sigint;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
sigaction(SIGINT, &act, NULL);

char buf[1024];
while (fgets(buf, sizeof buf, stdin)) {
printf("read_%s", buf);

.
b

26

x86-64 Linux signal delivery (1)

suppose: signal happens while foo () is running

OS saves registers to user stack

OS modifies user registers, PC to call signal handler

the stack

address of __restore_rt

saved registers

PC when signal happened

local variables for foo

stack pointer
when signal handler started

stack pointer
before signal delivered

27

x86-64 Linux signal delivery (2)

handle_sigint:
ret
__restore_rt:
// 15 = "sigreturn" system call

movq $15, %rax
syscall

__restore_rt is return address for signal handler

sigreturn syscall restores pre-signal state

needed to handle caller-saved registers
also might unblock signals (like un-disabling interrupts)

28

signal handler unsafety (0)

void foo() {

/* SIGINT might happen while foo() is running
char *p = malloc(1024);

}

/* signal handler for SIGINT
(registered elsewhere with sigaction() */
void handle_sigint() {
printf("You_pressed_control-C.\n");

}

29

signal handler unsafety (1)

void foo() {

/* This malloc() call interrupted */
char *p = malloc(1024);

}

void *malloc(size_t size) {

to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void handle_sigint() {
printf("You_pressed_control-C.\n");

¥ 30

signal handler unsafety (1)

void foo() {

/* This malloc() call interrupted */
char *p = malloc(1024);

}

void *malloc(size_t size) {

to_return = next_to_return;
/* SIGNAL HAPPENS HERE */
next_to_return += size;
return to_return;

}

void handle_sigint() {
printf("You_pressed_control-C.\n");

¥ 30

signal handler unsafety (2)

void handle_sigint() {
printf("You_pressed_control-C.\n");
}

int printf(...) {
static char xbuf;

buf = malloc()

31

signal handler unsafety: timeline

foo starts

> malloc: to_return = next_to_return;

|—> handle_sigint

|—> printf
malloc: to_return = next_to_return;
> malloc: next_to_return += ...}

\d
printf: store/use returned buf

Y
foo: malloc returns pointer printf is using!

32

signal handler unsafety (3)

foo() {
char *p = malloc(1024)... {
to_return = next_to_return;
handle_sigint() { /* signal delivered here */
printf("You_pressed_control-C.\n") {
buf = malloc(...) {

to_return = next_to_return;
next_to_return += size;
return to_return;

}

}
}
next_to_return += size;
return to_return;
}
/* now p points to buf used by printf! x/

33

signal handler unsafety (3)

foo() {
char *p = malloc(1024)... {
to_return = next_to_return;
handle_sigint() { /* signal delivered here */
printf("You_pressed_control-C.\n") {
buf = malloc(...) {

to_return = next_to_return;
next_to_return += size;
return to_return;

}

}
}
next_to_return += size;
return to_return;
}
/* now p points to buf used by printf! x/

33

signal handler safety

POSIX (standard that Linux follows) defines
“async-signal-safe” functions

these must work correctly in signal handlers no
matter what they interrupt

includes: write, _exit

does not include: printf, malloc, exit

34

blocking signals

avoid having signal handlers anywhere:

can instead block signals

sigprocmask system call
signal will become “pending” instead
OS will not deliver unless unblocked

analagous to disabling interrupts

35

alternatives to signal handlers

first, block a signal

then use system calls to inspect pending signals
example: sigwait

or unblock signals only when waiting for 1/0
example: pselect system call

36

synchronous signal handling

int main(void) {
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGINT);
sigprocmask (SIG_BLOCK, SIGINT);

printf("Waiting for_ SIGINT_.(control-C)\n");

if (sigwait(&set, NULL) == 0) {
printf("Got _SIGINT\n");

}

37

example signals

signal default action | description

SIGINT terminate control-C

SIGHUP | terminate terminal closed
SIGTERM | terminate request termination
SIGTSTP | stop control-Z
SIGSEGV | terminate Segmentation fault
SIGILL terminate lllegal instruction

38

example signals

signal default action | description

SIGINT terminate control-C

SIGHUP | terminate terminal closed
SIGTERM | terminate request termination
SIGTSTP | stop control-Z
SIGSEGV | terminate Segmentation fault
SIGILL terminate lllegal instruction

38

example signals

signal default action | description

SIGINT terminate control-C

SIGHUP | terminate terminal closed
SIGTERM | terminate request termination
SIGTSTP | stop control-Z
SIGSEGV | terminate Segmentation fault
SIGILL terminate lllegal instruction

38

reflecting exceptions

Linux turns faults into signals

allows process’s signal handler to try running, e.g.:

save a debug log when crashing

emulate a missing instruction

39

special signals

SIGKILL — always terminates a process

SIGSTOP — always stops a process

both cannot have a signal handler
might register one, but will never be called

40

setjmp /longjmp

jmp_buf env;

main() {
if (setjmp(env) == 0) { // like try {

read_file()

} else { // like catch
printf("some_error_happened\n");

}
read_file() {

%%.(open failed) {
longjmp(env, 1) // like throw

41

implementing setjmp/longjmp

setjmp:
copy all registers to jmp_buf
.. including stack pointer

longjmp
copy registers from jmp_buf
.. but change %rax (return value)

42

setjmp psuedocode

setjmp: looks like first half of context switch

setjmp:
movq %rcx, env—>rcx
movq %rdx, env—>rdx
movq %rsp + 8, env—>rsp // 4+8: skip return valu

save_condition_codes env—>ccs
movq 0O (%rsp), env—>pc

movq $0, %rax // always return 0
ret

43

longjmp psuedocode

longjmp: looks like second half of context switch

longjmp:
movq %rdi, %rax // return a different value
movq env—>rcx, %rcx
movq env—>rdx, %rdx

restore_condition_codes env—>ccs

movq env—>rsp, %rsp
jmp env—>pc

44

setjmp weirdness — local variables

Undefined behavior:

int x = 0;
if (setjmp(env) == 0) {

X += 1;
longjmp(env, 1);
} else {
printf("%d\n", Xx);
}

45

setjmp weirdness — fix

Defined behavior

volatile int x = 0;
if (setjmp(env) == 0) {

X += 1;
longjmp(env, 1);
} else {
printf("%d\n", x);
}

46

on implementing try/catch

could do something like setjmp()/longjmp()

but setjmp is slow

47

low-overhead try/catch (1)

main() {
printf("about_to_read_file\n");
try {
read_file();
} catch(...) {
printf("some_error_happened\n");
}
¥
read_file() {

if (open failed) {
throw IOException();
}

48

low-overhead try/catch (2)

main: main_catch: read_file:

ce movq S$str, %rdi pushq %ri12

call printf call printf ee
start_try: jmp end_try call do_throw

call read_file v
end_try: end_read:

ret popq %rl2

ret
lookup table

program counter range action recurse?
start_try to end_try jmp main_catch |no
read_file to end_read popq %rl2, ret |yes
anything else error —

49

low-overhead try/catch (2)

main: main_catch: read_file:

ce movq S$str, %rdi pushq %ri12

call printf call printf e
start_try: jmp end_try call do_throw

call read_file v
end_try: end_read:

ret popq %rl2

ret
lookup table

program counter range action recurse?
start_try to end_try jmp main_catch |no
read_file to end_read popq %rl2, ret |yes
anything else error —

49

low-overhead try/catch (2)

main: main_catch: read_file:

ce movq S$str, %rdi pushq %ri12

call printf call printf ee
start_try: jmp end_try call do_throw

call read_file v
end_try: end_read:

ret popq %rl2

ret
lookup table

program counter range action recurse?
start_try to end_try jmp main_catch |no
read_file to end_read popq %rl2, ret |yes
anything else error —

49

low-overhead try/catch (2)

read_file:
pushqg %rl2

call do_throw

main: main_catch:
ce movq S$str, %rdi
call printf call printf

start_try: jmp end_try
call read_file

enfgzry' not actual x86 code to run

track a “virtual PC" while looking for catch block

lookup table \ |

program counter range action \ recurse?
start_try to end_try jmp maﬂ_catch no
read_file to end_read popq %rl2, ret |yes

anything else

error

49

lookup table tradeoffs

no overhead if throw not used

handles local variables on registers/stack, but..

larger executables (probably)

extra complexity for compiler

50

summary

exceptions — mechanism to for OS to run

to help out user programs
in response to external events
in repsonse to errors

process — “virtual machine” illusion
thread + address space

signals — process analogy to exceptions

setimp/longjmp —
try/catch-like C feature

51

next time: address space

illuision of dedicated memory

real memory

Program A mapping Program A code

addresses (set by OS) ‘ Program B code

Program A data

Program B mapping A Program B data

addresses (set by OS) N

OS data

trigger error

