
Computer Graphics: An Implementor’s Guide

Luther A. Tychonievich

May 5, 2008 – March 8, 2010



This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 United States Li-
cense. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

or send a letter to

Creative Commons
171 Second Street, Suite 300
San Francisco, CA 94105
USA

Preface

Although only marginally interested in this subject, I was
a teaching assistant for Brigham Young University’s senior-
level computer graphics class for four years, working with
two professors and several hundred students. That experi-
ence taught me that most students misunderstand the same
things. This booklet is designed to present ideas in such a
way that those particular problems will not arise.

I am aware that the pedagogy and terminology in this
booklet are not always those commonly in use. There are
topics that people ought to know which are not here, and
others that are breezed over rather glibly without citing the
people who spent years of their lives developing the tech-
niques discussed. This is intentional; my goal is to present
ideas in a way that is accessible and leads to implementa-
tions which are easy to understand and maintain. I find that
citing papers makes simple ideas seem less accessible to most
undergraduates, and the most optimal solutions possible is
usually a lot more brittle and difficult to get working than
are slightly less optimal but much cleaner versions.

It is also possible that some things I say are just plain
false. As I said, I am only marginally interested in graphics
and have not researched much of this. I have tried most of
it out myself and proven many facts to my own satisfaction,
but anyone who still thinks proofs or testing validates an
algorithm has not yet written enough algorithms. That said,
I am not intentionally misleading and will happily correct
errors or clarify misleading points if they are identified to
me.

—Luther Tychonievich
M.S. in Computer Science, BYU, 2008

lty@cs.byu.edu
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Chapter 1

Rasterization: Idea → Screen

1.1 Introduction to Rasterization

A raster display is a grid of pixels. Nearly all computers
use raster displays, and generally when people talk about
computer graphics they are talking about raster computer
graphics; other types of computer graphics do exist but will
not be discussed here.

Computer graphics is a family of techniques that fill a
raster display with color values to create a picture of some
“thing” defined inside the computer. Defining the “thing”s is
a bit tricky. It is presently not practically possible to express
the vast quantity of atoms that make up each object and then
simulate the optics that make those objects visible. Instead,
computer graphics works backwards: we figure out what we
can draw, and then approximate objects using those building
blocks. Because of this, we will discuss how to draw things
you might not think you wanted to draw, such as triangles
and conic sections; figuring out how to use these elements to
create nice pictures will come later.

There are two major and several minor means of drawing
something onto a raster display. While you could argue that

“rasterization” ought to be a general term for all such tech-
niques (and indeed some authors use it that way), in practice
it is often used as the name of one of the two major methods.
This method takes as input a description of an “object” to
draw and produces, as output, a list of pixels covered by that
object.

1.2 Normalized Device Coordinates →
Device Coordinates

“Device coordinates” identify each pixel by a pair of inte-
gers; hence the display surface usually runs from (0, 0) to
(width, height), though this may vary depending on the de-
tails of your screen. “Normalized device coordinates” iden-
tify each pixel by a pair of floating-point values such that the
corners of the display surface have the same coordinates no
matter what the surface is. Unfortunately, how the screen
is normalized varies to some degree: some go from (0, 0) to
(1, 1), others from (−1,−1) to (1, 1); directions also vary,
each normalization using its own corner for (1, 1). OpenGL
uses (−1,−1) in the bottom left by default.
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You can get OpenGL emulate device coordinate by call-
ing something like the following anytime the window changes
size:

void resize(width, height) {

glViewport(0, width, 0, height);

glMatrixMode(GL_PROJECTION); glLoadIdentity();

glMatrixMode(GL_MODELVIEW); glLoadIdentity();

glOrtho(0, width, 0, height, -1, 1);

}

Then you can access a pixel x, y with color r, g, b
(where 1 is full intensity) by glColor3f(r, g, b);

glVertex2f(x, y);.

If you are using a 2D graphics library, there is probably
some function like setPixel(x,y,color) which also accepts
device coordinates.

If yn is a normalized coordinate, ys0 is the minimal pixel y
(usually 0), and ys1 is the maximal pixel y (usually the height
of the window), the point-point line formula allows us to con-
vert between normalized and non-normalized coordinates:

(ys − ys0)(yn1 − yn0) = (yn − yn0)(ys1 − ys0).

1.3 Terminology: vector 6= vector

Computer graphics uses several different sub-disciplines of
mathematics, which creates a few namespace collisions. Some
of these I’ll cleverly ignore, as the contexts are sufficiently
different not to cause confusion. One we need to make explicit
if the term “vector.” In linear algebra a vector is an element
of a vector space and, for our purposes, can be expressed as

a finite ordered list of real numbers:

~x , (x1, x2, . . . , xn)

~x+ ~y , (x1 + y1, x2 + y2, . . . , xn + yn)

~x− ~y , (x1 − y1, x2 − y2, . . . , xn − yn)

~x⊗ ~y , (x1 × y1, x2 × y2, . . . , xn × yn)

s~x , ~x× s , (x1 × s, x2 × s, . . . , xn × s)

~x÷ s , (x1 ÷ s, x2 ÷ s, . . . , xn ÷ s)

In geometry, there are several different uses of mathemati-
cal vectors, unfortunately including both Euclidean vectors
and homogeneous vectors, all commonly called “vectors”, as
well as Euclidean and homogeneous points. There is, to my
knowledge, no commonly accepted notation for distinguishing
between these, so I will introduce my own: −→x for a Euclidean
vector, −→x h for a homogeneous vector, x for a Euclidean point,
and xh for a homogeneous point.
Throughout this chapter (except as noted), everything we

know about a point we will dump into one big vector; for ex-
ample, if we know position x, y, z, normal nx, ny, nz, color
r, g, b, opacity α, and texture coordinates u, v we have a
12-vector for the point ~p = (x, y, z, nx, ny, nz, r, g, b, α, u, v).

1.4 Rasterizing a Line Segment

Suppose you have a line from ~p0 to ~p1 that you want to dis-
play. The mathematically correct solution to this problem
would be a blank screen—mathematical lines have no width
and cannot be seen. What we want instead is either (1) a
contiguous set of pixels which approximate the line or (2)
the set of all the pixels through which the line passes. The
first problem is easier, so we’ll address it first.
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∆~p
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~p2

d~p0

d~p

Figure 1.1: Rasterization of a line. Pixel locations are represented
by dots; filled pixels by squares.

1.4.1 DDA Line Drawing

We here present a version of the Digital Differential Analyzer
(DDA) line drawing algorithm, which draws a contiguous set
of pixels approximating a line. By contiguous we mean that,
for mostly horizontal lines, there is one pixel per column of
pixels; for mostly vertical lines we want one pixel per row of
pixels instead. This leads to the following algorithmic outline:

1. figure out if we step columns or rows,
2. find an increment to get from one column/row to the

next,
3. find the first column/row, and
4. use the increment and rounding to generate all the pixels.

This process is illustrated at a high level in Figure 1.1, given
formally in Algorithm 1.1, and discussed in more detail below.

Let’s assume we have the two endpoints ~p1 and ~p2. First,
we find the vector separating the endpoints, ∆~p = ~p2− ~p1. If
∆~p’s x has a larger absolute value than its y, we step columns;
otherwise we step rows. Let i be the index of that value; that

is ∆pi = x if we are stepping columns, ∆pi = y if we are
stepping rows. Let j be the index of the other xy coordinate.

If ∆pi is negative, swap ~p1 and ~p2, which causes every
element in ∆~p to be negated.

The increment to move between pixels, d~p, must have the
same direction as ∆~p, but should be length 1 in the i direc-
tion. This is trivially created by dividing by the length we
have:

d~p =
∆~p

∆pi

To find the first pixel, we want to round the ith compo-
nent of ~p1 to the nearest pixel value. If we do this directly,
however, we will generally change what line we draw, so we
need to tweak the other coordinates as well. This is easy to
do, however; if we want to change ~p1 i by r we can simply add
rd~p to ~p1. This observation results in

d~p0 = (dp1 ie − p1 i) d~p.

Now you want to draw the nearest pixel to the points
~p1 + d~p0, ~p1 + d~p0 + d~p, ~p1 + d~p0 + 2d~p, etc., up to but not
including ~p2. If you do include ~p2 then two lines sharing a
common end-point might both fill that point, which is slightly
inefficient and can create problems with transparency.

1.4.2 DDA Grid Walking

Sometimes we want to find all the pixels a line passes through
instead of just an approximation. Given a particular ~q, the
line may pass through both dqje and bqjc, or it may pass
through only one of them. If it passes through two then the
point where the line passes between the two pixels is given

3



Algorithm 1.1 Basic DDA Algorithm

Input: points ~p1 and ~p2 in device coordinates
Purpose: draw a line conneting ~p1 and ~p2
1: ∆~p ⇐ ~p2 − ~p1
2: if |∆px| > |∆py| then — step in columns

3: i ⇐ indexof(x)
4: j ⇐ indexof(y)
5: else — step in rows

6: i ⇐ indexof(y)
7: j ⇐ indexof(x)
8: if ∆pi < 0 then
9: swap ~p1 and ~p2

10: ∆~p ⇐ −∆~p
11: d~p ⇐ ∆~p÷∆pi
12: d~p0 = (dp1 ie − p1 i) d~p
13: ~q ⇐ ~p1 + d~p0
14: while qi < p2 i do — note “<”, not “≤”

15: — note qi is already an integer; only qj needs to be

rounded. . .

16: plotPixel(round(qx), round(qy), qcolor)
17: ~q ⇐ ~q + d~p

by the intersection of j = bqjc+ 0.5 and the line:

qi +
0.5− qj + bqjc

dqj
;

if this number is more than 0.5 away from qi then the line
only passes through one pixel.
This observation creates the following modification of Al-

gorithm 1.1: replace line 16 with

offset ⇐ 0.5−qj+bqjc
dqj

if |offset| < 0.5 then
plotPixel(bqxc), bqyc, qcolor)
plotPixel(dqxe), dqye, qcolor)

else
plotPixel(round(qx), round(qy), qcolor)

You can also use the offset information to created an anti-
aliased line; I’ll leave this as an exercise for the reader.

1.5 Polygon Contents

To fill the pixels contained within a polygon, we use the DDA
algorithm first in y along the edges, then in x between them.
This really is the entirety of the polygon fill, as illustrated in
Figure 1.2 and made formal in Algorthim 1.2.
Note that rasterizing a triangle works very nicely, but ras-

terizing other shapes is a bit of a misnomer. You can use
the double DDA technique listed here for any polygon—we’ll
discuss how momentarily—but if not all the vertices are the
same color this can create some really strange looking results.
That said, people often ask for arbitrary polygons to be

filled. For rasterizing, either split them into triangles or use
the DDA technique along with what is called the “edge ta-
ble.” An edge table is just a list of edges, where an edge is a
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Figure 1.2: Rasterization of a polygon by first DDA-stepping up the
edges, then DDA-stepping between the edges. In Algorithm 1.2, this
image corresponds to being halfway through the DDA-line call on the
first iteration of the loop at line 9.

pair of connected vertices. The “global edge table” is the list
of all edges in the polygon. The “active edges” for a given
value of y are the edges which cross that y. If you consider an
edge to include its bottom endpoint’s y but not its top, and
ignore horizontal edges completely, then every y must have
an even number of active edges.

The algorithm then runs as follows.

1. Begin at the smallest y in the polygon.
2. DDA up all active edges, of which there are always an

even number.
3. At each y, DDA will give you a point for each active

edge. Sort these in x, then DDA between pairs of points
(1st and 2nd, 3rd and 4th, etc.).

Algorithm 1.2 Double-DDA Triangle Fill

Input: points ~pb, ~pm, and ~pt in device coordinates
Purpose: draw all pixels inside the triangle
1: assert(pb y ≤ pm y ≤ pt y)
2: Find d~p and initial ~q for (~pb, ~pm); call them d~qa and ~qa
3: Find d~p and initial ~q for (~pb, ~pt); call them d~qc and ~qc
4: while ~qa y < pm y do
5: DDA-Line(~qa, ~qc)
6: (~qa, ~qc) ⇐ (~qa + d~qa, ~qc + d~qc)
7: Find d~p and initial ~q for (~pm, ~pt); call them d~qe and ~qe
8: while ~qe y < pt y do
9: DDA-Line(~qe, ~qc)

10: (~qe, ~qc) ⇐ (~qe + d~qe, ~qc + d~qc)

1.6 Extensions of DDA

The basic DDA-based line and polygon drawing routines are
elegant and efficient, but are rather restricted in their appli-
cation. This section lists a number of extensions, some very
common, others more unusual.

1.6.1 Perspective-correct Interpolation

The basic technique discussed above interpolates everything
linearly, which is great for 2D drawing, but for perspective
drawing it does not preserve interiors of objects correctly (see
Figure 1.3). Fortunately, there is a simple fix which uses lin-
ear interpolation to create perspective-correct results. The
theory behind this method was first published in Jim Blinn’s
1992 “Hyperbolic Interpolation” and is cleanly explained in
Kok-Lim Low’s 2002 paper “Perspective-Correct Interpola-
tion,” which is freely available online. I present only the
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Figure 1.3: Equal divisions of a trapezoid, found by linear inter-
polation, and of a rectangle seen in perspective, found by hyperbolic
interpolation.

details for implementation.

The standard perspective projection involves division by
some depth value, which I will call w, such that we plot
point x, y at screen position x

w ,
y
w . The trick to hyperbolic

interpolation is to divide everything in the point by w except
w itself, which we divide by w2 instead. Thus if we had the
point

~p = [x, y, z, w, nx, ny, nz, r, g, b, u, v]

we would interpolate linearly using the point

~p′ =

[
x

w
,
y

w
,
z

w
,
1

w
,
nx

w
,
ny

w
,
nz

w
,
r

w
,
g

w
,
b

w
,
u

w
,
v

w

]
.

Then, at each point on the screen we would undo the division
by w by dividing by the interpolated 1

w .

To help clarify this process, consider a simple example of
drawing a line with points in (x, y, w, r, g, b)-format.

~p0: (−1, 0, 1, 1, 1, 0)
~p1: (3, 0, 3, 1, 0, 1)

mapped to hyperbolic space
~p0

′: (−1, 0, 1, 1, 1, 0)
~p1

′: (1, 0, 13 ,
1
3 , 0,

1
3)

step in x
∆~p: (2, 0, −2

3 , −2
3 ,−1, 13)

d~p: (1, 0, −1
3 , −1

3 , −1
2 , 16)

d~p0: (0, 0, 0, 0, 0, 0)

interpolated pixels
~p0

′ + d~p0: (−1, 0, 1, 1, 1, 0)
~p0

′ + d~p0 + d~p: (0, 0, 23 ,
2
3 ,

1
2 ,

1
6)

mapped back to Euclidean space
(−1, 0, 1, 1, 1, 0)
(0, 0, 1, 34 , 0,

1
4)

Note that the resulting middle color is significantly more sim-
ilar to the near point than it is to the far point, as we expect
for perspective interpolation

1.6.2 DDA-like technique for Polynomials

DDA is based on the observation that for any linear function
f(t), f(t+dt)−f(t) is the same value for all ts. We can write
this as a difference table, where each element in the last row
is the difference of the two elements above it, as follows:

t 0 1 2 3 4 5

f(t) = 2t+ 1 1 3 5 7 9 11
f(t+ 1)− f(t) 2 2 2 2 2

For a quadratic function, the first difference row is itself linear
and a second difference row will be constant:
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t 1 2 3 4 5 6

f(t) = t2 − 1 0 3 8 15 24 35
ft 1 3 5 7 9 11
ftt 2 2 2 2

In general, for a polynomial of order n, the nth differences
will be constant.
This observation allows us to draw any polynomial func-

tion using a DDA-like technique. For example, to plot
y = ax3 + bx2 + cx+ d stepping in x from xs to xe we do the
following:

1: Set yi∈{0,1,2,3} = a(xs + i)3 + b(xs + i)2 + c(xs + i) + d
2: Set y′i∈{0,1,2} = yi+1 − yi
3: Set y′′i∈{0,1} = y′i+1 − y′i
4: Set y′′′0 = y′′i+1 − y′′i = 6a
5: Set x = xs
6: while x < xe do
7: Plot x, y0
8: Add 1 to x
9: Add y′0 to y0

10: Add y′′0 to y′0
11: Add y′′′0 to y′′0
There is also a similar tool for plotting implicit polynomial
equations, as we shall see in the next section.

1.6.3 Drawing Implicit Curves

We just saw how to plot y = P (x) by stepping in x, which
is somewhat nice, but we can also plot implicit polynomial
equations of the form P (y, x) = 0. The first thing we need to
do this is to observe that the finite differences we have used
are the discrete analog of the derivative and may be written
out functionally; for example, the f(t) = t2 − 1 noted above

has a first difference of

ft = f(t+1)−f(t) = ((t+1)2−1)−((t)2−1) = t2+2t+1−1−t2+1 = 2t+1

and a second difference of

ftt = ft(t+1)−ft(t) = (2(t+1)+1)−(2(t)+1) = 2t+2+1−2t−1 = 2.

Because of this we can also define mixed differences as
fxy(x, y) = fx(x, y + 1)− fx(x, y). To help solidify this idea,
consider the differences for f(x, y) = 2x2y:

fx = 2y(x+ 1)2 − 2y(x)2 = 4xy + 2y
fy = 2x2(y + 1)− 2x2(y) = 2x2

fxx = (4(x+ 1)y + 2y)− (4(x)y + 2y) = 4y
fxy = (4x+ 2)(y + 1)− (4x+ 2)(y) = 4x+ 2
fyy = 2x2 − 2x2 = 0
fxxy = 4(y + 1)− 4(y) = 4
fxxx = 4y − 4y = 0

Note that the ordering of the differences does not matter; fyx
will always be the same as fxy.
To plot implicit equations, we begin by evaluating the func-

tion and all of its differences at some point x, y. We can now
find the value of the function at an adjacent point using DDA
additions: To increment y we add f∗y to f∗ in increasing or-
der (e.g., fx += fxy before fxy += fxyy); to decrement it we
subtract f∗y from f∗ in decreasing order (e.g., fxy += fxyy
before fx += fxy). Similarly, to increment x we add f∗x to
f∗ in increasing order, while to decrement it we subtract f∗x
from f∗ in decreasing order.
Plotting a curve then amounts to moving in x and y in

order to keep f and f + fx (or f and f + fy) of different
signs. There are some optimizations and pathological cases
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as well; see Van Aken & Novak, “Curve-drawing algorithms
for raster displays” ACM TOG (April 1985) pp. 147–169 for
a discussion.

1.6.4 Just Integers, No Division

We can pose the DDA technique without any division, and
if we do we can also draw shapes with integer inputs us-
ing only integer math. To do this, notice for a DDA line
stepping in y, the denominator of all coordinates is ∆y.
Thus, given x = a b

∆y on one row, where a = bxc, on

the next row it is x′ = a + b+∆x
∆y . Let i = ∆x ÷ ∆y

and r = ∆x (mod ∆y) and we can rewrite that as x′ =
(a+i)+ b+r

∆y . This allows the following method for increment-
ing y:

1: Set b = b+ r
2: Set a = a+ i
3: if b ≥ ∆y then
4: Set a = a+ 1
5: Set b = b−∆y

If no division is available, we can also
write

1: Set a = a+∆x
2: while b ≥ ∆y do
3: Set a = a+ 1
4: Set b = b−∆y

For software running on modern PC hardware, this method
of avoiding divisions has little perceptible runtime difference
from the straight DDA on floating-point data. However, for
simpler embedded processors or custom-made hardware it is
noticeably faster, and in all cases it avoids the roundoff error
present in floating-point DDA.

1.6.5 About Names

We have discussed the DDA algorithm in vector form be-
cause that seems to be the cleanest version to understand. In
graphics literature, DDA is usually presented in an element-
by-element form instead; DDA-based polygon fill is called
linear scan-line interpolation (and often presented without
that d~p0s, an omission that causes neighboring polygons to
overlap), and the integer-only technique for lines is called the
Bresenham line algorithm. The implicit curve plotting rou-
tine was published as the midpoint algorithm, named after
an optimization where the next pixel is analytically reduced
to one of two pixels and the sign at the midpoint of the two
is used to pick which one to plot.

1.6.6 Example: Midpoint Circle Algorithm

This example walks through using the implicit DDA in the
integer-only form with some additional optimizations, to-
gether known as the midpoint circle algorithm.

The goal is to draw a circle, centered at the origin, with
radius r. We first note that it suffices to draw an eighth
of the circle, since by symmetry we know that if we plot
pixel (x, y) we will also plot pixels (−x, y), (−x,−y), (x,−y),
(y, x), (−y, x), (−y,−x), and (y,−x). We will pick, arbitrar-
ily, to generate points on the top half of the left side of the
circle, where 0 ≤ y ≤ −x; the rest of the circle we will create
using symmetry.

The implicit equation of a circle is P (x, y) = x2+y2−r2 =
0. We will start at the point (−r, 0), since we know it is one we
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want to plot, and find the following initial finite differences:

P (−r, 0) = 0

Px(−r, 0) = [2x+ 1]x=−r = −2r + 1

Py(−r, 0) = [2y + 1]y=0 = 1

Pxx = Pyy = 2;

all the other differences are zero. This is enough to write
a basic form of the algorithm, Algorithm 1.3: Note that we

Algorithm 1.3

Input: Integer radius r
Purpose: Plot the interior border of the circle
1: (x, y) ⇐ (−r, 0)
2: P ⇐ 0
3: (Px, Py) ⇐ (−2r + 1, 1)
4: (Pxx, Pxy, Pyy) ⇐ (2, 0, 2)
5: while y < −x do
6: Plot the eight points (±x,±y),(±y,±x)
7: Increment y
8: Add Py to P
9: Add Pyy to Py

10: if P > 0 then
11: Increment x
12: Add Px to P
13: Add Pxx to Px

do not need a while loop for incrementing x because in the
region we selected, the slope never drops below one, so for
each step x either stays the same or increments exactly once.
This code is both efficient and accurate as long as you only

wish to color pixels inside the circle. Often, however, people

want to color the pixels that are as close to the boundary
as possible; this is done using the “midpoint” version of the
algorithm. The idea is simple; instead of finding the initial
value of P at the first pixel, we find the value at the midpoint
of the first pixel and the next pixel outward from it; that is,
P (−r− 1

2 , 0) = −r− 1
4 and Px(−r− 1

2 , 0) = −2r. We can get
rid of the 1

4 by observing that if P = 0 then 4P must also
equal zero, giving us initial values of

P = −r − 1

Px = −8r

Py = 4

Pxx = Pyy = 8.

If we plug these directly into the algorithm presented earlier,
we will be evaluating the polynomial at the midpoint between
two pixels (hence the name “midpoint algorithm”) and plot
those pixels closest to the actual circle itself.

1.7 Fragment Shading: All the
Per-Pixel Details

So far we have discussed how to use the mathematical de-
scription of an object to generate a set of pixels, each with
a color, position, normal, and whatever else you want to in-
terpolate. In real-time graphics each of these pixels is called
a fragment and the code that translates them into color on
the screen is called the fragment shader. Fragment shaders
are nice because their runtime performance is dictated by
the number of pixels on the screen rather than the number
of polygons displayed.

The simplest fragment shader sets the color of the pixel on
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the screen to be the color interpolated to the fragment.

Usually, people use depth buffering to draw only the clos-
est fragment at each pixel. Do do this, simply create store
a depth value for each pixel. Then, for each fragment, if its
depth is closer than the stored depth, draw it and update
the stored depth; otherwise, discard it. This is called depth-
buffering or z-buffering.

You can also light each pixel individually. This process
is called Phong shading (not to be confused with Phong
lighting) or per-pixel lighting. Phong shading takes as
input the interpolated object color, pre-device-coordinate-
transform vertex position, and vertex normal of a fragment.
These are combined using your favorite lighting model (see
Section 2.5) to find the color to plot. Note that applying a
lighting model to the vertices and interpolating the lit color
is called Gouraud shading; most graphics cards default to
Gouraud shading.

Texture mapping is done by interpolating texture coordi-
nates to each fragment and looking up the appropriate color
from a texture image. Typically, texture coordinates are
specified in the range [0, 1) so you’ll want to do a device-
coordinate-like transformation before doing the texel lookup.
There is no reason to restrict textures to storing color infor-
mation; bump mapping, stores an offset for the normal in
the texture (which only works if you do Phong shading, since
Gouraud ignores per-fragment normals). Procedural textures
generate texture valued through a function rather than via
an image lookup.

Mip-mapping is a way of improving textures by having a
number of versions of the texture stored at different resolu-
tions. The resolution selected is based on the magnitude of
the texture coordinate elements of d~p: larger values means

neighboring texels are farther apart in texture coordinate
space and calls for a lower-resolution texture image. Often
several neighboring texels in several neighboring levels of the
mip map are combined via some sort of weighted average to
create a smoother looking scene.

Fog is just a function of the depth of a pixel, like the depth
buffer. More distant fragments have more of their own color
replaced by the fog color.

It is possible to do transparency in a rasterizing system;
just keep part of the existing color on the screen, and blend
it with the new fragment’s color. This requires that fragments
are generated in the right order. Typically, this is done by
drawing all opaque objects first, then sorting the transparent
polygons based on their depth and drawing the most distant
ones first. Alternately, you can store a linked list of all the
fragments on a particular pixel, then sort them and draw
them as a post-processing step. Neither of these techniques
is particularly fast.

1.8 Rasterization-time clipping

You never want to draw pixels off of the screen, both for
memory security and speed reasons. There are lots of ways
to do clipping, but rasterization-time clipping is the one that
most graphics cards do.

The näıve version of this is to generate all fragments for
all polygons but only plot those that lie within the screen
bounds. This is a bad idea; perspective projection often re-
sults in polygons hundreds of times larger than the screen,
and generating all of those fragments could take a very very
long time; in rare cases floating point roundoff could even
cause ~p+ ~dp to be exactly equal to ~p, resulting in an infinite
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loop.
The correct solution here is to modify d~p0 to step not just

to the first row or column of pixels, but all the way to the
first row or column on the screen. This means we redefine

d~p0 =

{
(dp1 ie − p1 i) d~p if p1 i > 0
(0− p1 i) d~p otherwise

Similarly, as soon we DDA to the edge of the screen, we can
quit. Thus, the adjusted algorithm to only creates on-screen
fragments with very little extra work.

11



Chapter 2

Raytracing: Screen → Idea

2.1 Introduction to Raytracing

Raytracing tries to solve the same problem as rasterization—
that is, create a set of pixel colors to represent a mathemati-
cal description of stuff—but goes about it in reverse. Where
rasterization asks the questions “what pixels are contained
within this object” raytracing asks instead “what objects are
visible within this pixel?” It forms the second major tech-
nique of drawing on raster displays.

Raytracing is currently slower than rasterization, though
it admits almost unlimited amounts of parallelism causing
some people think it will become faster in years to come.
Currently its primary advantage is that the process does not
depend on pixel locality and so can easily model reflection,
transparency, and similar optical properties.

The speed of a raytracing system depends largely on the
quality of the spatial hierarchy used. Conceptually, the idea
here is to collect a group of nearby objects and find a bound-
ing box for them; if a box is not visible from a particular
pixel, none of the objects within it are either. I will not dis-
cuss these hierarchies further, beyond stating that k-d trees

are one of the more popular spatial hierarchies and many
discussions of k-d trees (and other hierarchies) are available
online.

2.2 Primary and Secondary Rays

A ray is a semi-infinite line; it is typically stored as a point
called the ray origin, ro; and a direction vector −→r d. Then
the ray itself is the set of points {ro + t−→r d | t ∈ [0,∞)}, and
the goal of raytracing is to find the point in the ray contained
within another object which is closest to the ray origin (that
is, with minimal t).

Ray tracing creates one or more rays per pixel. Those rays
are intersected with objects in the scene and then, generally,
several secondary rays are generated from those intersection
points, and intersected with the scene again, and then more
are generated, etc., until you get tired of shooting rays, at
which point you do some sort of direct illumination (see 2.5)
and call it good.

There are a number of ways to generate rays from pixels.
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For all of them we need the camera position and orienta-
tion, given by the eye position e and the forward, up, and

right directions
−→
f , −→u , and −→r ; the ray origin is generally just

e. The most common choice for ray direction is designed to
replicate the standard rasterization perspective look: given
normalized device coordinates for a pixel (x, y), its ray direc-

tion is
−→
f cos(θ) + (x−→r + y−→u ) sin(θ), where θ is the field of

view. Fish-eye
(
x−→r + y−→u +

√
1− x2 − y2

−→
f
)
and cylindri-

cal
(
y−→u + cos(x)

−→
f + sin(x)−→r

)
projections are also used in

some settings.
Sections 2.6 and 2.6.4 discusses some of the techniques used

to generate secondary rays.

2.3 Rays and Ray-* Intersections

In general, the intersection of a ray ro + t−→r d with some
object g(p) = 0 is found as the minimal t for which
g(ro + t−→r d) = 0. Constrained minimization of this type
is a widely-studied problem in numerical analysis, optimiza-
tion, and many branches of engineering and science. How-
ever, most raytracers use only three particular solutions: ray-
plane, ray-AABB, and ray-sphere intersections.

2.3.1 Ray-Plane Intersection

Planes can be described in a number of ways; principle among
them are implicit Ax+By + Cz +D = 0, point-and-normal
(−→n , p), and three-point (p0, p1, p2). We will use the point-
normal version, noting that

−→n ≡ (A,B,C) ≡ (
−−−−−→
p1 − p0)× (

−−−−−→
p2 − p0)

and that the point
(
−D

A , 0, 0
)
is on the plane.

ro −→r d

−−−−→
c − ro

p

(
−−−→
p−ro)·−→n
−→r d·−→n

−→rd + ro

−→n

−−−−→
p − ro

c

c′
c′′

r
d

Figure 2.1: Some of the geometry used in the ray-plane and ray-
sphere intersection routines.

The distance between the ray origin ro and a plane is
(
−−−−→
ro − p) · −→n 1

‖−→n‖ . The distance the ray travels toward the

plane per unit t is −→r d · −→n −1
‖−→n‖ . Setting these equal to one

another we get t = (
−−−−→
p−ro)·−→n−→r d·−→n

. That’s all there is to ray-plane
intersection.

2.3.2 Ray-Sphere Intersection

Given a sphere with center c and radius r, we first evaluate
if the ray originates inside the sphere (‖−−−−→c− ro‖2 < r2) or
not. We then find the t value of the point where the ray

comes closest to the center of the sphere, tc = (
−−−−→
c−ro)·−→r d

‖−→r d‖
. If

the ray origin is outside and its value is negative, there is
no intersection. Otherwise we proceed to find the squared
distance of closest approach d2 = ‖ro + tc

−→r d − c‖2. If d2 >
r2, which can only happen if the ray originates outside the
sphere, then there is no intersection; otherwise we find how
far from the point of closest approach the point of intersection

is as toffset =
√
r2−d2

‖−→r d‖
. If the origin is inside, the point of

intersection is ro + (tc + toffset)
−→r d; otherwise, it is ro + (tc −
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toffset)
−→r d. This is formalized in Algorithm 2.1

Algorithm 2.1 Ray-Sphere Intersection

Input: Ray (ro,
−→rd) and sphere (c, r)

Purpose: Find t of intersection, or fail.

1: inside ⇐
(
‖−−−−→c− ro‖2 < r2

)
2: tc ⇐ (

−−−−→
c−ro)·−→r d

‖−→r d‖
3: if not inside and tc < 0 then
4: return no intersection
5: d2 ⇐ ‖ro + tc

−→r d − c‖2
6: if not inside and d2 > r2 then
7: return no intersection
8: toffset ⇐

√
r2−d2

‖−→r d‖
.

9: if inside then
10: return t = tc + toffset
11: else
12: return t = tc − toffset

2.3.3 Ray-AABB Intersection

It is rare to want to create images of axis-aligned bounding
boxes (AABBs), but it is easy to find ray-AABB intersections
and easy to find AABBs for most objects, so most raytracers
try AABB intersections before trying the intersections of the
objects within the AABB.
AABBs consist of six axis-aligned planes. For the axis-

aligned case, the ray-plane intersection becomes quite sim-
ple because the normal has only one non-zero element; thus,
for the plane, e.g., x = a, the t value of intersection is
tx=a = a−rox−→rdx

. The ray then intersects the AABB if and only
if there is some positive t between all six planes; for minimum

point (a, b, c) and maximum point (A,B,C), we have

[0,∞) ∩ [tx=a, tx=A] ∩ [ty=b, ty=B] ∩ [tz=c, tz=C ] 6= ∅.

It is usually not important to know the t-value for an AABB
intersection, but if needed it is simply the smallest t in the
interval defined above.

2.4 Inverse Mapping and Barycentric
Coordinates

Once you have found an intersection with some object it
is generally desirable to know where you hit it so that you
can apply texture mapping, normal interpolation, or the like.
This process is called “inverse mapping.”

2.4.1 Inverse Sphere Mapping

For a sphere, if the point of intersection is p then the normal
simply points from the center to the point of intersection,
−→n = 1

r

−−−→
p− c. From that it is easy to derive that the longitude

is atan2(nx, nz) and the latitude is atan2(ny,
√
n2
x + n2

z).

2.4.2 Inverse Triangle Mapping

For a triangle, the typical inverse mapping gives you the
Barycentric coordinates of the point of intersection. Barycen-
tric coordinates are three numbers, one per vertex of the tri-
angle, which state how close to each of the three vertices the
point in question is. In particular, given an intersection point
of p and vertices p0, p1, and p2, the barycentric coordinates
(b0, b1, b2) satisfy the two properties that (a) they sum to 1,
and (b) p = b0p0 + b1p1 + b2p2. Every point in the same
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p

p0 p1

p2 −→e 2

−→e 1
−→e 0

Figure 2.2: Finding Barycentric coordinates. If −→e2 · (p2 − p0) = 1,
then b2 = −→e 2 ·(p−p0), and similarly for b1. Since b0+b1+b2 = 1, b0
is simply 1−b1−b2. Thus, assuming that correctly-scaled −→e 1 and

−→e 2

are precomputed, we can compute the barycentric coordinates using
just six multiplies and nine adds.

plane as the triangle has a unique set of Barycentric coordi-
nates, and all three coordinates are positive if and only if the
point is within the triangle’s bounds.

There are many techniques for inverse mapping a triangle.
The one I present here is not the most common, but is easy
and efficient as long as you compute and store the information
only once. First, observe that since bi is the “nearness” to
point pi, it is also the distance from the edge joining the
other two points. This distance can be found directly by
using a dot product with a vector perpendicular to this edge.
This process is illustrated in Figure 2.2; in that image, b1 =
−→e 1 · (p−p0) because

−→e 1 points directly away from the edge
between pi6=1. Similarly, b2 = −→e 2 · (p − p0) and b0 = 1 −
b1 − b2. It thus suffices to find −→e 1 and −→e 2 in order to find

the barycentric coordinates. This may be done as

−→a 1 =
−−−−−→
p2 − p0 ×−→n

−→a 2 =
−−−−−→
p1 − p0 ×−→n

−→e 1 =
1

−→a 1 ·
−−−−−→
p1 − p0

−→a 1

−→e 2 =
1

−→a 2 ·
−−−−−→
p2 − p0

−→a 2.

These two −→e i vectors can be precomputed and stored along
with the normal −→n in each triangle data structure to allow
rapid ray-triangle intersections. Note that this also suffices
for the inside-outside test needed to turn a ray-plane inter-
section into a ray-triangle intersection; a point is inside a
triangle if and only if all three barycentric coordinates are
between zero and one.

Because p = b0p0+b1p1+b2p2, we can use the barycentric
coordinates to find all the information stored in each vertex
interpolated to any point on the interior of the triangle: ~p =
b0 ~p0+ b1 ~p1+ b2 ~p2. You can then use that information just as
you would in rasterization (see Section 1.7).

2.5 Direct Illumination

Once we have a point in space mapped to a pixel, one of the
most common tasks is to approximate the color and lighting
at that point Typically computer-faked light is divided into
three parts: ambient, diffuse, and specular. Each of these
will generate a color vector for each light source; these color
vectors are then multiplied element-wise by the color of the
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object. which may be different for each type of light:(
~ma ⊗

∑
l∈L

~lc × la

)
+

(
~md ⊗

∑
l∈L

~lc × ld

)
+

(
~ms ⊗

∑
l∈L

~lc × ls

)
.

A note about notation in this section: n̂ is the unit-length
normal vector, ê a unit-length vector that points towards the
eye of the viewer, ˆ̀ a unit-length vector that points towards
the light source, and la, ld, and ls are the ambient, diffuse,
and specular light intensities, respectively. I also use TaU to
mean max(0, a) in this section for compactness of notation.

In all cases the discussion below assumes no attenuation of
light with distance or angle; to add attenuation, simply mul-
tiply the results below by an attenuation factor (ex: since
point light falls with the square of the distance, we would
simply multiply all the results below by 1

d2
to model its at-

tenuation).

2.5.1 Ambient Light

Ambient light is assumed to come from everywhere and reach
everywhere equally. Thus, the ambient light color is inde-
pendent of the object; la is simply a constant. There is no
ambient light in the real world; instead, it is a substitute
for tracing light that reaches an object by first bouncing off
other objects. In general, keep the ambient light small, no
more than 20% of the total light possible.

2.5.2 Diffuse Light

Diffuse light is the main component we think of when consid-
ering a matte object. There are several different models for
generating it.

In the Lambert model, ld = Tn̂ · ˆ̀U. This is what would
happen if every photon bounced in a completely random di-
rection on a smooth surface.

The Minnaert model extends the Lambert model by biasing
the light to bounce away from the surface; the bias is given by
a constant k ∈ [0, 1], and the formula is ld = Tn̂· l̂UkTn̂·êU1−k.
This was created to model the appearance of the moon; the
lower k the brighter the edges of an object will appear.

The Oren-Nayer models assumes an object is made out of
a sub-pixel-resolution bumps and crevices. It is quite com-
plicated, but very close to what real-world objects look like.
Let σ ∈ [0, 1] be the roughness of the surface. Then the
Oren-Nayer model is

f̂e =
ê− (ê · n̂)n̂
‖ê− (ê · n̂)n̂‖

f̂` =
ˆ̀− (ˆ̀· n̂)n̂∥∥∥ˆ̀− (ˆ̀· n̂)n̂

∥∥∥
θ` = cos−1(ˆ̀· n̂) θe = cos−1(ê · n̂)

α = 0.45
σ2

σ2 + 0.09
sin(max(θ`, θe)) tan(min(θ`, θe))

ld = Tn̂ · ˆ̀U
(
1− 0.5

σ2

σ2 + 0.33
+ αTf̂e · f̂lU

)
Any of these can be turned into a toon shader by simply

picking a cutoff value of ld and clamping numbers above it to
1, numbers below it to 0.

2.5.3 Specular Light

The specular highlight of an object (shiny spot) has even
more versions than does diffuse lighting. Most of versions
rely on a hardness number n ≥ 1 which makes the shine
spot small, on the reflection of the light off the surface r̂ =
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2(n̂ · ˆ̀)n̂− ˆ̀, and/or on the vector halfway between the light

and the eye ĥ =
ˆ̀+ê∥∥∥ˆ̀+ê

∥∥∥ .
The Phong model is ls = Tr̂ · êUn and the Blinn-Phong

is ls = Tĥ · n̂Un. They are similar in look and are easy to
compute; generally Blinn-Phong is used in conjunction with
a single approximate ê and ˆ̀while Phong is used if ˆ̀ and/or
ê vary across the scene.

The Gaussian model is more accurate, but likewise more

expensive to compute: ls = e−m cos−2Tn̂·ĥU (note e is Euler’s
number, ê is the vector to the eye). Better and more expen-
sive is the Beckmann distribution

ls =
m

Tn̂ · ĥU4
e−m tan2(cos−1Tn̂·ĥU).

Fresnel’s law specifies how much light penetrates a trans-
parent object; this can be combined with the Beckmann dis-
tribution to get the Cook-Torrance model. Let λ be the Fres-
nel factor and β the computed Beckmann distribution; then
Cook-Torrance gives

ls = β
(1 + Tê · n̂U)λ

Tê · n̂U
min

1,
2
(
ĥ · n̂

)
2 (ê · n̂)

ê · ĥ
,
2
(
ĥ · n̂

)
2
(
ˆ̀· n̂

)
ê · ĥ

 .

There are also a variety of anisotropic models (notably
Heidrich-Seidel and Ward) which depend additionally upon
the principle tangent vector of the surface and can give the
appearance of brushed metal, hair, and the like, but which
are beyond the scope of this booklet.

2.6 Secondary Rays

Shadows, reflection, and transparency are easily achieved us-
ing secondary rays: Once you find an intersection point p you
then generate a new ray with p as its origin and intersect that
ray with the scene. Care should be taken that roundoff errors
in storing p do not cause the the secondary ray to intersect
the object from which it originates.

2.6.1 Shadows

A point is in shadow relative to a particular light source if
the ray (p, ˆ̀) intersects anything closer than the light source
itself.

2.6.2 Reflection

A mirrored object’s color is given by the ray tracing result of
the ray (p, 2(n̂ · ê)n̂− ê)). A partially mirrored object mixes
that color result with a standard lighting computation at p.
One reflection ray might generate another; a cutoff number
of recursions is necessary to prevent infinite loops.

2.6.3 Transparency

Transparency is somewhat more complicated, relying on
Snell’s Law. For it to make sense, every surface needs to
be a boundary between two materials, which is not trivially
true in the case of triangles nor intersecting spheres. How-
ever, assuming that we know that the ray is traveling from
a material with index of refraction n1 for index of refraction
n2, we can derive a rule for finding the transmitted ray.

The cosine of the entering ray is (ê · n̂), meaning that it’s
sine is

√
1− (ê · n̂)2, or ‖− ê−(ê · n̂)n̂‖2. The sine of the out-
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going vector thus needs to be n1
n2

√
1− (ê · n̂); if that is greater

than 1, we have total internal refraction and use the reflec-
tion equation instead; otherwise, the cosine of the outgoing

ray is
√
1− (n1

n2
)2(1− (ê · n̂)). Putting this all together, we

have

1: a ⇐ ê · n̂
2: b ⇐ n1

n2

√
1− (ê · n̂)

3: if b ≥ 1 then
4: return 2(n̂ · ê)n̂− ê)

5: c ⇐
√
1− n2

1

n2
2
(1− (ê · n̂))

6: return n1
n2
(−ê− (ê · n̂)n̂)− cn̂

2.6.4 Global Illumination

The standard lighting models pretend like the world is di-
vided into a small number of light emitters and a vast supply
of things that emit no light. This is obviously not true; if
nothing but light sources gave off photons, we could only see
the light sources themselves. With global illumination, you
try to discover the impact of light bouncing off of the wall,
floor, and other objects by creating a number of secondary
rays sampling the diffuse reflection of each object. Ideally, the
distribution of rays should parallel the chosen model of diffuse
lighting (see Section 2.5.2) and should be so dense as to be
intractable for any reasonable scene. Much of the research in
photo-realistic rendering is devoted to finding shortcuts and
techniques that make this process require fewer rays for the
same visual image quality.

2.7 Photon Mapping and Caustics

Photon mapping is raytracing run backwards: instead of
shooting rays from the eye, you shoot them from the lights.
The quantity of light reaching each point in the scene is
recorded and used when the scene is rendered, either by ray-
tracing or rasterizing. Since many photons leaving a light
source never reach the eye, this is an inefficient way of cre-
ating a single picture; however, it allows lens and mirror-
bounced light (called caustics) to be rendered, and it can be
more efficient than viewer-centric global illumination if many
images are to be made of the same static scene.

2.8 Sub-, Super-, and
Importance-Sampling

Sub-sampling is shooting fewer rays than you have pixels, in-
terpolating the colors to neighboring pixels. Super-sampling
is shooting several rays per pixel, averaging colors to create
an anti-aliased image. Importance sampling shoots fewer rays
per pixel into “boring” areas and more into “important” ar-
eas. Image-space importance sampling shoots more rays into
areas of the scene where neighboring pixels differ in color;
scene-space importance sampling shoots more rays toward
particular items.
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