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Abstract— Systems biology seeks to develop an understanding 

of the myriad interacting components of full biological systems, 

often in order to help treat or prevent diseases. System biology 

relies heavily on computation for parameterization of systems 

and their simulation. Although MATLAB is a convenient 

programming environment of choice for most scientists, its 

performance suffers because of single-threaded interpreted 

execution model. Optimizations of code and architectures are 

required in order for scientists to perform large-scale simulations 

on desktop machines. This paper presents a study of accelerating 

two typical systems biology applications, Heart Wall Tracking 

and Cardiac Myocyte Simulation, which result in 2.4x and 5.0x 

speed-ups, respectively. Our optimizations include improving 

single thread performance by using compiled (vs. interpreted) 

code as well as taking advantage of multiple thread execution by 

offloading parts of code via multi-core CPU or GPU. We show 

that each of the applications presents different programming and 

architectural challenges related to code structure and degree of 

parallelism exhibited. GPUs have the potential to provide the 

best speed-up if overhead due to the driver and data transfer can 

be eliminated. The feasibility of optimizations is analyzed in 

terms of the tradeoff between coding effort, degree of code 

modification and achievable speed-up. The paper also discusses 

code and architecture changes that would result in better 

acceleration. 

 

Index Terms—Biological Systems, Simulation, Parallel 

Processing 

 

I. INTRODUCTION 

The field of systems biology uses computational methods to 

process large amounts of data describing full biological systems 

in order to develop models of physical processes taking place 

inside of them. One type of systems biology task involves 

processing of biomedical images that provide a rich source of 

data for building and testing models, such as in the Heart Wall 

Tracking application. On the other hand, biological systems 

that have already been parameterized, such as the one in the 

Cardiac Myocyte Simulation, are simulated to reconstruct their 

behavior. 

Processing of large amounts of image data as well as 

simulating accurate models in MATLAB is usually 

time-consuming. Although MATLAB provides a convenient 

high-level environment for expressing algorithms, its 

performance is limited by its single-threaded interpreted 

execution model. Since the availability of results in reasonable 

time is critical to scientists’ ability to conduct research, 

biological models are often simplified and simulation intervals 

shortened at the expense of fidelity. 

The easiest way to optimize MATLAB application is to turn 

parts of it into compiled code. This can be done using the 

original MATLAB code (via convenient tools such as 

Embedded MATLAB Compiler) or by using the equivalent 

hand-written C code (via MATLAB MEX Compiler). While 

the former often requires some changes to the code (nested 

structure and variable sizes), it is a convenient solution overall. 

The latter, on the other hand, can provide better performance at 

the expense of sometimes considerable coding effort. 

Extraction of parallelism with multi-core processors, on the 

other hand, requires parallel programming skills and the 

knowledge of new languages. However, the use of many 

high-level MATLAB functions makes it difficult to extract 

parallelism and translate code to another language. Also, the 

moderate amount of parallelism in many applications requires 

taking into account the significant communication overhead 

when using a co-processor such as the GPU. Existing parallel 

processing packages for MATLAB are limited to a subset of 

functions and require a large degree of parallelism to justify the 

cost of offloading. 

As a result, acceleration of applications is currently a 

demanding task that is usually done manually by skilled 

programmers. The drastic optimizations necessitate time 

consuming modifications to code structure that sacrifice 

modularity, which in turn can make the code difficult to use for 

the scientist. Moreover, many scientists are unwilling to accept 

such sacrifices unless they yield at least an order of magnitude 

speed-up. 

This paper introduces our work in progress, still 

developmental. We make the following contributions: 

 Describe experiences in accelerating two typical 

MATLAB systems biology applications by optimizing 

original code and rewriting parts of it for multi-threaded 

CPU and GPU. 

 Characterize the degree of parallelism in each 

application and the feasibility of optimization. 

 Illustrate common architecture and language difficulties 

faced during the optimization process. 

 Investigate how to best obtain code acceleration while 

maintaining the original MATLAB code structure.  

The ultimate goal of our research is to develop tools for 

analysis, compilation and automatic offloading of parallel 

computation to make acceleration available to an ordinary 

MATLAB programmer. 
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II. RELATED WORK 

The early attempts to optimize MATLAB targeted 

utilization of clusters with MPI algorithms as back-end engines 

for computation. Software such as ParMatlab, Matpar, 

MALTAB Parallel Toolbox and StarP use this approach. Wide 

availability of desktop machines motivated parallelization 

approaches for multi-core shared memory processors. Some of 

the above mentioned software supports this approach as well. 

Packages such as Otter, FALCON, and Menhir link compiled 

MATLAB code with parallel numerical libraries that can run 

on heterogeneous architectures [1]. Jacket is an example of 

applying this approach to GPUs. It uses precompiled 

GPU-enabled versions of popular MATLAB functions and 

compiles simple structures such as loops [2]. The MEX 

interface provided in MATLAB allows for linking various 

types of hardware-accelerated code [3]. While the popular 

OpenMP standard is still not supported, packages with 

multi-threaded replacements for common MATLAB functions 

are available. Recent introduction of an API for 

general-purpose GPU computation provides a more convenient 

way to use GPUs as accelerators for MATLAB code. 

Throughput-oriented GPUs provide considerable speedup even 

over quad-core CPUs for a range of applications [4]. 

 

III. EXPERIMENT SETUP AND METHODOLOGY 

Several techniques were used for optimizing applications 

described in this paper. Parts of applications were compiled to 

MEX files either from the original MATLAB code (using 

Embedded MATLAB) or the equivalent hand-written C code 

(using MEX Compiler). Only performance of the latter (~20% 

better than the former on average) is reported. MATLAB 

differential equation solver in Cardiac Myocyte Simulation was 

replaced by compiled CVODE solver [5]. We used the .NET 

thread standard for CPU multi-threaded code and CUDA [6] 

for GPU multi-threaded code. Our desktop machine was 

equipped with Intel Core 2 CPU (2 cores clocked at 1.86 GHz 

each), NVIDIA GeForce GTX 280 GPU (240 streaming 

processors clocked at 1296 MHz and 1024 MB of RAM) and 2 

GB of RAM. All code was compiled using MS Visual Studio 

2005 compiler and tested under Windows XP SP3. MATLAB 

profiler and a high-resolution C timer were used for 

performance measurements. 

 

IV. HEART WALL TRACKING 

A. Application Description 

This application tracks the movement of a mouse heart over 

a sequence of 100 609x590 ultrasound images to observe 

response to the stimulus. In its initial stage, the program 

performs image processing operations on the first image to 

detect initial, partial shapes of inner and outer heart walls. 

These operations include: edge detection, SRAD despeckling 

[7], morphological transformation and dilation. In order to 

reconstruct approximated full shapes of heart walls, the 

program generates ellipses that are superimposed over the 

image and sampled to mark points on the heart walls (Hough 

Search). In its final Tracking stage, program tracks movement 

of surfaces by detecting the movement of image areas under 

sample points as the shapes of the heart walls change 

throughout the sequence of images. 

B. Algorithm and Optimizations 

Only three parts of the application (Table 1) have enough 

parallelism and significant contribution to overall run time to 

justify optimization efforts. Because of the complexity of code, 

we could not use automated compilation tools. We avoided 

converting all parts of the application to C (with expected 3x 

speed-up) in order to focus on exposing GPU optimization 

potential which was of more interest to us for this application. 

The first two parts, SRAD and Hough Search, were simple 

enough to be entirely converted to C which resulted in 2.46x 

and 2.41x speed-ups, respectively. Since these two functions 

operate on entire images, there was sufficient data to distribute 

calculations across several parallel processors, thus justifying 

the use of GPU. The independent nature of operations with 

little need for synchronization and sufficient work per kernel 

minimized GPU overhead ultimately resulting in speed-ups of 

9.90x and 7.45x for the two functions, respectively. 

 

 
 

Fig. 1. Tracking part of the Heart Wall Tracking application. 

 
TABLE I 

PERFORMANCE OF HEART WALL TRACKING APPLICATION 

Application 

Part 

MATLAB 

run time [s] 

C 

run time [s] / 

speed-up [x] 

CUDA 

run time [s] / 

speed-up [x] 

CUDA’ 

run time [s] / 

speed-up [x] 

SRAD 8.71 3.54 / 2.46 0.88 / 9.90 0.24 / 36.66 

Hough 

Search 
15.87 6.59 / 2.41  2.13 / 7.45 0.58 / 27.60 

Tracking – 

convolution 
94.63 --- 37.30 / 2.54 10.07 / 9.40 

Tracking - 

algebraic 
20.94 --- 8.95 / 2.34 2.42 / 8.67 

Tracking – 

statistical 
13.70 --- 9.32 / 1.47 2.52 / 5.44 

Tracking - 

all 
129.28 --- 55.97 / 2.31 15.11 / 8.55 

All Parts 187.39 --- 78.40 / 2.39 21.17 / 8.85 

Update templates 

Read next frame 

Track inner point 

movement 

Track outer point 

movement 

Save point locations, 

display image 

Loop for the # of 

inner points (20) 

Loop for the # of 

outer points (31) 

Loop for the # of 

frames in a batch 

(10) 

Loop for the # of 

batches of frames 

(10) 
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The tracking part of the application consists of multiple 

nested loops (Fig. 1) that process batches of sample points from 

the image. There is a sequential dependency between processed 

frames. Because of the substantial coding effort involved, we 

only attempted to optimize individual operations on a 

fine-grained level. These consist of a large number of small 

serial steps with interleaved control statements. Each of the 

steps involves a small amount of data processing performed 

only on a subset of entire image. Because of this, the utilization 

of GPU was limited only to three streaming processors and 

GPU overhead (data transfer and kernel launch) became 

significant. Since the run time of the entire application was by 

far dominated by the Tracking stage, we had to resort to more 

drastic GPU optimization techniques that sacrificed modularity 

in order to further improve performance. These techniques 

included combining unrelated functions and data transfers in 

single kernels, which ultimately resulted in 2.39x speed-up. 

The last column in Table 1 illustrates that the best speed-up 

could be achieved with GPU if its overhead was eliminated by 

using a combined CPU-GPU chip architecture. This estimate is 

based on our measurements of kernel launch and data transfer 

times for offloaded operations, which was 73% on average. 

 

V. CARDIAC MYOCYTE SIMULATION 

A. Application Description 

This simulation models the behavior of a cardiac myocyte 

(heart muscle cell) according to the work by Saucerman and 

Bers [8]. The model integrates cardiac myocyte electrical 

activity with the calcineurin pathway, which is a key aspect of 

the development of heart failure. The model spans large 

number of temporal scales to reflect how changes in heart rate 

as observed during exercise or stress contribute to calcineurin 

pathway activation, which ultimately leads to the expression of 

numerous genes that remodel the heart’s structure. It can be 

used to identify potential therapeutic targets that may be useful 

for the treatment of heart failure. Biochemical reactions, ion 

transport and electrical activity in the cell are modeled with 91 

ordinary differential equations (ODEs) that are determined by 

more than 200 experimentally validated parameters. The 

application feeds differential equations into the solver to obtain 

results for a specified time interval (5 s for the simulation 

described here). Since the ODEs are stiff (exhibit fast rate of 

change within short time intervals), they need to be simulated 

at small time scales with an adaptive step size solver. 

 

B. Algorithm and Optimizations 

The execution time of the application is almost entirely 

dominated by the MATLAB ODE solver (~25%) and the 

evaluations of the model (~70%). Therefore only the structure 

of the solver (Fig. 2) and the input files are of interest to us. The 

process of ODE solving is based on the causal relationship 

between values of ODEs at different time steps, thus it is mostly 

sequential. At every dynamically determined time step, the 

solver evaluates the model consisting of a set of 91 ODEs 

(“1x91 evaluation”) and 480 supporting equations to determine 

behavior of the system at that particular time instance. If 

evaluation results are not within the expected tolerance 

(usually as a result of incorrect determination of the time step), 

the recovery process takes place. As a part of this process, 

MATLAB solver recalculates the Jacobian, which results in 91 

evaluations of the model (“91x91 evaluation”). 

 

 
 

Fig. 2. Main part of MATLAB ODE solver in Cardiac Myocyte Simulation. 

 

Our first optimization included performing the 1x91 and 

91x91evaluations in C code, which resulted in 2.94x speed-up. 

In our second attempt we optimized the 91x91 evaluation by 

multi-threading and using multiple CPU cores, which resulted 

in 3.31x speed-up for 2 cores. We also coded the same 91x91 

evaluation for GPU, however, data transfer overhead brought 

the speed-up down to 1.48x. The 1x91 evaluation did not have 

enough parallelism to justify offloading to either 

multi-threaded CPU or GPU. Finally, we replaced the 

interpreted MATLAB solver with an external, compiled 

CVODE solver. The compiled C version of the model evaluated 

with CVODE solver resulted in the speed-up of 5.04x. Rows 4 

and 9 in Table 1 show that the best speed-up could be achieved 

with the use of GPU if its overhead was eliminated by using a 

combined CPU-GPU chip architecture. 

 
TABLE II 

PERFORMANCE OF CARDIAC MYOCYTE SIMULATION 

 
Application Part Run time [s] / 

 speed-up [x] 
 ODE Solver ODE Model 

1 MATLAB MATLAB 10.3 / 1.00 

2 MATLAB C 3.50 / 2.94 

3 MATLAB CUDA (GPU) 6.96 / 1.48 

4 MATLAB CUDA (GPU) ‘ 3.02 / 3.41 

5 MATLAB C (Multi-threaded CPU) 3.11 / 3.31 

6 CVODE MATLAB 7.21 / 1.43 

7 CVODE C 2.04 / 5.04 

8 CVODE CUDA (GPU) 5.52 / 1.87 

9 CVODE CUDA (GPU) ‘ 1.61 / 6.39 

 

Take next time step 

Predict value 

1x91 ODE 

Evaluation 

Recalculate Jacobian 

91x91 ODE Evaluation 

Reduce time step 

Adjust next time step 

Converged or 

iteration limit? 

Converging too 

slow? 

Yes 

No Yes 

No Results within 

tolerance? 

No 

Yes 
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VI. DISCUSSION 

The process of optimizing the Heart Wall Tracking 

application illustrates the diverse nature of a typical image 

processing application. While simple functions such as SRAD 

and Hough Search are nicely parallel, the structure of the 

Tracking function that dominates the application is largely 

sequential. In the former case, the speed-up obtained with GPU 

is limited by the size of images still commonly used by 

scientists. In the latter case, the parallelism is limited to within 

a single image with the complexity of code requiring 

significant changes in order to parallelize, which in turn limits 

the effectiveness of the offloading of individual operations. 

Currently, we are in the process of modifying coarse-grained 

loop structure of the Tracking code to achieve better speedups 

at a significant programming cost. 

In case of the Heart Wall Tracking application, the 

increased performance allows faster processing of images and 

higher throughput. However, the accuracy of processing is not 

affected as it is limited by the fixed size of images obtained 

from the medical equipment. In case of the Cardiac Myocyte 

Simulation, on the other hand, both the amount and the 

accuracy of results can benefit from faster processing. Cardiac 

function spans from millisecond-scale dynamics of electrical 

activity to the remodeling of gene expression and heart 

structure over weeks. The ability to develop predictive models 

is severely limited by computational resources. As a result of 

this, most current models of cardiac myocytes are limited to 

several minutes of simulated time, and comprehensive analyses 

of these models are not generally performed. Accelerated 

simulations provide an opportunity to expand the aspects of 

heart function accessible to modeling, as well as providing 

opportunities to more thoroughly analyze the properties of 

current models. Such advances are crucial for modeling the 

slow, adaptive process of heart failure and other heart diseases. 

The process of optimizing Cardiac Myocyte Simulation was 

challenging because of the sequential time-step nature of the 

ODE solving process which limits parallelism to within a 

single time step. Since the MATLAB ODE solver is an 

encapsulated function call, its replacement with CVODE did 

not alter the structure of user’s code. The best speedup of 5.04x 

that we finally obtained (with compiled solver and compiled 

model) could be further increased by eliminating MATLAB 

environment entirely. Our optimization allows reducing the 

simulation time and/or including more details in the model. 

Results obtained for both applications considered in this 

paper suggest that GPU would offer the greatest potential for 

code acceleration if its overhead due to the driver and data 

transfer was eliminated. Future-generation chips that combine 

heterogeneous CPU-GPU cores in one package [9] should 

overcome this problem. The Heart Wall Tracking application 

would ultimately benefit more from the use of GPU because of 

the larger degree of parallelism (determined by each individual 

operation performed on subsets of 609x590 images). In the 

Cardiac Myocyte Simulation, on the other hand, the achievable 

GPU speedup is limited by the serial structure of the solver of 

and limited workload (only about 480 equations) in the 

evaluation of the model. 

VII. CONCLUSIONS AND FUTURE WORK 

Our experiences with accelerating two representative 

systems biology applications, Heart Wall Tracking and Cardiac 

Myocyte Simulation, allow us to conclude:  

 Many important applications remain difficult to 

reorganize for scalable parallelism. 

 Retaining structure and extensibility of the code further 

limits parallelism, but major structural changes are 

unacceptable to many users. 

 Improvement in application performance is mainly 

proportional to the coding effort. 

 The use of software with persistent CPU threads is 

required to eliminate thread launch overhead for small 

workloads. 

 Combined CPU-GPU chips should eliminate current 

overhead and make GPUs the most successful 

accelerators even for medium and small workloads. 

 Packages such as Jacket fail for this type of applications 

because they lack support for functions that dominate 

execution time and they assume large parallelism. 

With the current programming paradigm, a scientist 

attempting to use compilation for speed-up is either required to 

write compliant MATLAB code or to generate C code 

manually. Also, the specifics of the particular accelerator need 

to be known to determine the benefit of offloading. A 

promising alternative could be an approach based on compiler 

assistance. Compiler should analyze a particular section of 

source code, determine whether it would benefit from 

accelerating, compile it and/or automatically offload it to an 

appropriate back-end engine transparently to the user. A more 

advanced compiler also should derive dependency tree that 

could be used to batch accelerator offload requests.  

Interesting directions for future work include automated 

compiler analysis within the MATLAB runtime to perform the 

necessary restructuring transparently while preserving the 

overall MATLAB programming “look and feel”. This includes 

automatic analysis of whether to optimize and/or offload a 

particular section of code or run it natively on a CPU. 

Techniques to cope with tightly coupled serial-parallel steps 

using alternative accelerators are another possibility. 
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