
 1

Abstract— Systems biology seeks to develop an understanding

of the myriad interacting components of full biological systems,

often in order to help treat or prevent diseases. System biology

relies heavily on computation for parameterization of systems

and their simulation. Although MATLAB is a convenient

programming environment of choice for most scientists, its

performance suffers because of single-threaded interpreted

execution model. Optimizations of code and architectures are

required in order for scientists to perform large-scale simulations

on desktop machines. This paper presents a study of accelerating

two typical systems biology applications, Heart Wall Tracking

and Cardiac Myocyte Simulation, which result in 2.4x and 5.0x

speed-ups, respectively. Our optimizations include improving

single thread performance by using compiled (vs. interpreted)

code as well as taking advantage of multiple thread execution by

offloading parts of code via multi-core CPU or GPU. We show

that each of the applications presents different programming and

architectural challenges related to code structure and degree of

parallelism exhibited. GPUs have the potential to provide the

best speed-up if overhead due to the driver and data transfer can

be eliminated. The feasibility of optimizations is analyzed in

terms of the tradeoff between coding effort, degree of code

modification and achievable speed-up. The paper also discusses

code and architecture changes that would result in better

acceleration.

Index Terms—Biological Systems, Simulation, Parallel

Processing

I. INTRODUCTION

The field of systems biology uses computational methods to

process large amounts of data describing full biological systems

in order to develop models of physical processes taking place

inside of them. One type of systems biology task involves

processing of biomedical images that provide a rich source of

data for building and testing models, such as in the Heart Wall

Tracking application. On the other hand, biological systems

that have already been parameterized, such as the one in the

Cardiac Myocyte Simulation, are simulated to reconstruct their

behavior.

Processing of large amounts of image data as well as

simulating accurate models in MATLAB is usually

time-consuming. Although MATLAB provides a convenient

high-level environment for expressing algorithms, its

performance is limited by its single-threaded interpreted

execution model. Since the availability of results in reasonable

time is critical to scientists’ ability to conduct research,

biological models are often simplified and simulation intervals

shortened at the expense of fidelity.

The easiest way to optimize MATLAB application is to turn

parts of it into compiled code. This can be done using the

original MATLAB code (via convenient tools such as

Embedded MATLAB Compiler) or by using the equivalent

hand-written C code (via MATLAB MEX Compiler). While

the former often requires some changes to the code (nested

structure and variable sizes), it is a convenient solution overall.

The latter, on the other hand, can provide better performance at

the expense of sometimes considerable coding effort.

Extraction of parallelism with multi-core processors, on the

other hand, requires parallel programming skills and the

knowledge of new languages. However, the use of many

high-level MATLAB functions makes it difficult to extract

parallelism and translate code to another language. Also, the

moderate amount of parallelism in many applications requires

taking into account the significant communication overhead

when using a co-processor such as the GPU. Existing parallel

processing packages for MATLAB are limited to a subset of

functions and require a large degree of parallelism to justify the

cost of offloading.

As a result, acceleration of applications is currently a

demanding task that is usually done manually by skilled

programmers. The drastic optimizations necessitate time

consuming modifications to code structure that sacrifice

modularity, which in turn can make the code difficult to use for

the scientist. Moreover, many scientists are unwilling to accept

such sacrifices unless they yield at least an order of magnitude

speed-up.

This paper introduces our work in progress, still

developmental. We make the following contributions:

 Describe experiences in accelerating two typical

MATLAB systems biology applications by optimizing

original code and rewriting parts of it for multi-threaded

CPU and GPU.

 Characterize the degree of parallelism in each

application and the feasibility of optimization.

 Illustrate common architecture and language difficulties

faced during the optimization process.

 Investigate how to best obtain code acceleration while

maintaining the original MATLAB code structure.

The ultimate goal of our research is to develop tools for

analysis, compilation and automatic offloading of parallel

computation to make acceleration available to an ordinary

MATLAB programmer.

Experiences Accelerating MATLAB Systems

Biology Applications

Lukasz G. Szafaryn, Kevin Skadron, Jeffrey J. Saucerman

University of Virginia

{lgs9a, ks7h, jjs3g}@virginia.edu

 2

II. RELATED WORK

The early attempts to optimize MATLAB targeted

utilization of clusters with MPI algorithms as back-end engines

for computation. Software such as ParMatlab, Matpar,

MALTAB Parallel Toolbox and StarP use this approach. Wide

availability of desktop machines motivated parallelization

approaches for multi-core shared memory processors. Some of

the above mentioned software supports this approach as well.

Packages such as Otter, FALCON, and Menhir link compiled

MATLAB code with parallel numerical libraries that can run

on heterogeneous architectures [1]. Jacket is an example of

applying this approach to GPUs. It uses precompiled

GPU-enabled versions of popular MATLAB functions and

compiles simple structures such as loops [2]. The MEX

interface provided in MATLAB allows for linking various

types of hardware-accelerated code [3]. While the popular

OpenMP standard is still not supported, packages with

multi-threaded replacements for common MATLAB functions

are available. Recent introduction of an API for

general-purpose GPU computation provides a more convenient

way to use GPUs as accelerators for MATLAB code.

Throughput-oriented GPUs provide considerable speedup even

over quad-core CPUs for a range of applications [4].

III. EXPERIMENT SETUP AND METHODOLOGY

Several techniques were used for optimizing applications

described in this paper. Parts of applications were compiled to

MEX files either from the original MATLAB code (using

Embedded MATLAB) or the equivalent hand-written C code

(using MEX Compiler). Only performance of the latter (~20%

better than the former on average) is reported. MATLAB

differential equation solver in Cardiac Myocyte Simulation was

replaced by compiled CVODE solver [5]. We used the .NET

thread standard for CPU multi-threaded code and CUDA [6]

for GPU multi-threaded code. Our desktop machine was

equipped with Intel Core 2 CPU (2 cores clocked at 1.86 GHz

each), NVIDIA GeForce GTX 280 GPU (240 streaming

processors clocked at 1296 MHz and 1024 MB of RAM) and 2

GB of RAM. All code was compiled using MS Visual Studio

2005 compiler and tested under Windows XP SP3. MATLAB

profiler and a high-resolution C timer were used for

performance measurements.

IV. HEART WALL TRACKING

A. Application Description

This application tracks the movement of a mouse heart over

a sequence of 100 609x590 ultrasound images to observe

response to the stimulus. In its initial stage, the program

performs image processing operations on the first image to

detect initial, partial shapes of inner and outer heart walls.

These operations include: edge detection, SRAD despeckling

[7], morphological transformation and dilation. In order to

reconstruct approximated full shapes of heart walls, the

program generates ellipses that are superimposed over the

image and sampled to mark points on the heart walls (Hough

Search). In its final Tracking stage, program tracks movement

of surfaces by detecting the movement of image areas under

sample points as the shapes of the heart walls change

throughout the sequence of images.

B. Algorithm and Optimizations

Only three parts of the application (Table 1) have enough

parallelism and significant contribution to overall run time to

justify optimization efforts. Because of the complexity of code,

we could not use automated compilation tools. We avoided

converting all parts of the application to C (with expected 3x

speed-up) in order to focus on exposing GPU optimization

potential which was of more interest to us for this application.

The first two parts, SRAD and Hough Search, were simple

enough to be entirely converted to C which resulted in 2.46x

and 2.41x speed-ups, respectively. Since these two functions

operate on entire images, there was sufficient data to distribute

calculations across several parallel processors, thus justifying

the use of GPU. The independent nature of operations with

little need for synchronization and sufficient work per kernel

minimized GPU overhead ultimately resulting in speed-ups of

9.90x and 7.45x for the two functions, respectively.

Fig. 1. Tracking part of the Heart Wall Tracking application.

TABLE I

PERFORMANCE OF HEART WALL TRACKING APPLICATION

Application

Part

MATLAB

run time [s]

C

run time [s] /

speed-up [x]

CUDA

run time [s] /

speed-up [x]

CUDA’

run time [s] /

speed-up [x]

SRAD 8.71 3.54 / 2.46 0.88 / 9.90 0.24 / 36.66

Hough

Search
15.87 6.59 / 2.41 2.13 / 7.45 0.58 / 27.60

Tracking –

convolution
94.63 --- 37.30 / 2.54 10.07 / 9.40

Tracking -

algebraic
20.94 --- 8.95 / 2.34 2.42 / 8.67

Tracking –

statistical
13.70 --- 9.32 / 1.47 2.52 / 5.44

Tracking -

all
129.28 --- 55.97 / 2.31 15.11 / 8.55

All Parts 187.39 --- 78.40 / 2.39 21.17 / 8.85

Update templates

Read next frame

Track inner point

movement

Track outer point

movement

Save point locations,

display image

Loop for the # of

inner points (20)

Loop for the # of

outer points (31)

Loop for the # of

frames in a batch

(10)

Loop for the # of

batches of frames

(10)

 3

The tracking part of the application consists of multiple

nested loops (Fig. 1) that process batches of sample points from

the image. There is a sequential dependency between processed

frames. Because of the substantial coding effort involved, we

only attempted to optimize individual operations on a

fine-grained level. These consist of a large number of small

serial steps with interleaved control statements. Each of the

steps involves a small amount of data processing performed

only on a subset of entire image. Because of this, the utilization

of GPU was limited only to three streaming processors and

GPU overhead (data transfer and kernel launch) became

significant. Since the run time of the entire application was by

far dominated by the Tracking stage, we had to resort to more

drastic GPU optimization techniques that sacrificed modularity

in order to further improve performance. These techniques

included combining unrelated functions and data transfers in

single kernels, which ultimately resulted in 2.39x speed-up.

The last column in Table 1 illustrates that the best speed-up

could be achieved with GPU if its overhead was eliminated by

using a combined CPU-GPU chip architecture. This estimate is

based on our measurements of kernel launch and data transfer

times for offloaded operations, which was 73% on average.

V. CARDIAC MYOCYTE SIMULATION

A. Application Description

This simulation models the behavior of a cardiac myocyte

(heart muscle cell) according to the work by Saucerman and

Bers [8]. The model integrates cardiac myocyte electrical

activity with the calcineurin pathway, which is a key aspect of

the development of heart failure. The model spans large

number of temporal scales to reflect how changes in heart rate

as observed during exercise or stress contribute to calcineurin

pathway activation, which ultimately leads to the expression of

numerous genes that remodel the heart’s structure. It can be

used to identify potential therapeutic targets that may be useful

for the treatment of heart failure. Biochemical reactions, ion

transport and electrical activity in the cell are modeled with 91

ordinary differential equations (ODEs) that are determined by

more than 200 experimentally validated parameters. The

application feeds differential equations into the solver to obtain

results for a specified time interval (5 s for the simulation

described here). Since the ODEs are stiff (exhibit fast rate of

change within short time intervals), they need to be simulated

at small time scales with an adaptive step size solver.

B. Algorithm and Optimizations

The execution time of the application is almost entirely

dominated by the MATLAB ODE solver (~25%) and the

evaluations of the model (~70%). Therefore only the structure

of the solver (Fig. 2) and the input files are of interest to us. The

process of ODE solving is based on the causal relationship

between values of ODEs at different time steps, thus it is mostly

sequential. At every dynamically determined time step, the

solver evaluates the model consisting of a set of 91 ODEs

(“1x91 evaluation”) and 480 supporting equations to determine

behavior of the system at that particular time instance. If

evaluation results are not within the expected tolerance

(usually as a result of incorrect determination of the time step),

the recovery process takes place. As a part of this process,

MATLAB solver recalculates the Jacobian, which results in 91

evaluations of the model (“91x91 evaluation”).

Fig. 2. Main part of MATLAB ODE solver in Cardiac Myocyte Simulation.

Our first optimization included performing the 1x91 and

91x91evaluations in C code, which resulted in 2.94x speed-up.

In our second attempt we optimized the 91x91 evaluation by

multi-threading and using multiple CPU cores, which resulted

in 3.31x speed-up for 2 cores. We also coded the same 91x91

evaluation for GPU, however, data transfer overhead brought

the speed-up down to 1.48x. The 1x91 evaluation did not have

enough parallelism to justify offloading to either

multi-threaded CPU or GPU. Finally, we replaced the

interpreted MATLAB solver with an external, compiled

CVODE solver. The compiled C version of the model evaluated

with CVODE solver resulted in the speed-up of 5.04x. Rows 4

and 9 in Table 1 show that the best speed-up could be achieved

with the use of GPU if its overhead was eliminated by using a

combined CPU-GPU chip architecture.

TABLE II

PERFORMANCE OF CARDIAC MYOCYTE SIMULATION

Application Part Run time [s] /

 speed-up [x]
 ODE Solver ODE Model

1 MATLAB MATLAB 10.3 / 1.00

2 MATLAB C 3.50 / 2.94

3 MATLAB CUDA (GPU) 6.96 / 1.48

4 MATLAB CUDA (GPU) ‘ 3.02 / 3.41

5 MATLAB C (Multi-threaded CPU) 3.11 / 3.31

6 CVODE MATLAB 7.21 / 1.43

7 CVODE C 2.04 / 5.04

8 CVODE CUDA (GPU) 5.52 / 1.87

9 CVODE CUDA (GPU) ‘ 1.61 / 6.39

Take next time step

Predict value

1x91 ODE

Evaluation

Recalculate Jacobian

91x91 ODE Evaluation

Reduce time step

Adjust next time step

Converged or

iteration limit?

Converging too

slow?

Yes

No Yes

No Results within

tolerance?

No

Yes

 4

VI. DISCUSSION

The process of optimizing the Heart Wall Tracking

application illustrates the diverse nature of a typical image

processing application. While simple functions such as SRAD

and Hough Search are nicely parallel, the structure of the

Tracking function that dominates the application is largely

sequential. In the former case, the speed-up obtained with GPU

is limited by the size of images still commonly used by

scientists. In the latter case, the parallelism is limited to within

a single image with the complexity of code requiring

significant changes in order to parallelize, which in turn limits

the effectiveness of the offloading of individual operations.

Currently, we are in the process of modifying coarse-grained

loop structure of the Tracking code to achieve better speedups

at a significant programming cost.

In case of the Heart Wall Tracking application, the

increased performance allows faster processing of images and

higher throughput. However, the accuracy of processing is not

affected as it is limited by the fixed size of images obtained

from the medical equipment. In case of the Cardiac Myocyte

Simulation, on the other hand, both the amount and the

accuracy of results can benefit from faster processing. Cardiac

function spans from millisecond-scale dynamics of electrical

activity to the remodeling of gene expression and heart

structure over weeks. The ability to develop predictive models

is severely limited by computational resources. As a result of

this, most current models of cardiac myocytes are limited to

several minutes of simulated time, and comprehensive analyses

of these models are not generally performed. Accelerated

simulations provide an opportunity to expand the aspects of

heart function accessible to modeling, as well as providing

opportunities to more thoroughly analyze the properties of

current models. Such advances are crucial for modeling the

slow, adaptive process of heart failure and other heart diseases.

The process of optimizing Cardiac Myocyte Simulation was

challenging because of the sequential time-step nature of the

ODE solving process which limits parallelism to within a

single time step. Since the MATLAB ODE solver is an

encapsulated function call, its replacement with CVODE did

not alter the structure of user’s code. The best speedup of 5.04x

that we finally obtained (with compiled solver and compiled

model) could be further increased by eliminating MATLAB

environment entirely. Our optimization allows reducing the

simulation time and/or including more details in the model.

Results obtained for both applications considered in this

paper suggest that GPU would offer the greatest potential for

code acceleration if its overhead due to the driver and data

transfer was eliminated. Future-generation chips that combine

heterogeneous CPU-GPU cores in one package [9] should

overcome this problem. The Heart Wall Tracking application

would ultimately benefit more from the use of GPU because of

the larger degree of parallelism (determined by each individual

operation performed on subsets of 609x590 images). In the

Cardiac Myocyte Simulation, on the other hand, the achievable

GPU speedup is limited by the serial structure of the solver of

and limited workload (only about 480 equations) in the

evaluation of the model.

VII. CONCLUSIONS AND FUTURE WORK

Our experiences with accelerating two representative

systems biology applications, Heart Wall Tracking and Cardiac

Myocyte Simulation, allow us to conclude:

 Many important applications remain difficult to

reorganize for scalable parallelism.

 Retaining structure and extensibility of the code further

limits parallelism, but major structural changes are

unacceptable to many users.

 Improvement in application performance is mainly

proportional to the coding effort.

 The use of software with persistent CPU threads is

required to eliminate thread launch overhead for small

workloads.

 Combined CPU-GPU chips should eliminate current

overhead and make GPUs the most successful

accelerators even for medium and small workloads.

 Packages such as Jacket fail for this type of applications

because they lack support for functions that dominate

execution time and they assume large parallelism.

With the current programming paradigm, a scientist

attempting to use compilation for speed-up is either required to

write compliant MATLAB code or to generate C code

manually. Also, the specifics of the particular accelerator need

to be known to determine the benefit of offloading. A

promising alternative could be an approach based on compiler

assistance. Compiler should analyze a particular section of

source code, determine whether it would benefit from

accelerating, compile it and/or automatically offload it to an

appropriate back-end engine transparently to the user. A more

advanced compiler also should derive dependency tree that

could be used to batch accelerator offload requests.

Interesting directions for future work include automated

compiler analysis within the MATLAB runtime to perform the

necessary restructuring transparently while preserving the

overall MATLAB programming “look and feel”. This includes

automatic analysis of whether to optimize and/or offload a

particular section of code or run it natively on a CPU.

Techniques to cope with tightly coupled serial-parallel steps

using alternative accelerators are another possibility.

REFERENCES

[1] R. Choy and A. Edelman. Parallel MATLAB: Doing it right. IEEE

Proceedings. Volume 93: 331-341, Issue 2, February 2005.

[2] Accelereyes. Jacket. http://www.accelereyes.com/overview.php, 2008.

[3] Mathworks. Using MEX-Files to Call C and Fortran Programs. MATLAB

Documentation. http://www.mathworks.com/access/helpdesk.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron. A

Performance Study of General Purpose Applications on Graphics

Processors using CUDA. JPDC, Elsevier, June 2008.

[5] Lawrence Livermore National Laboratory. Sundials: CVODE.

 https://computation.llnl.gov/casc/sundials/main.html.

[6] J. Nickolls, I. Buck, M. Garland, K. Skadron. Scalable Parallel

Programming with CUDA. ACM Queue, 6(2):40-53, Mar.-Apr. 2008.

[7] Y. Yongjian and S.T. Acton. Speckle reducing anisotropic diffusion. IEEE

Transactions on Image Processing. Volume 11, November 2002.

[8] J. J. Saucerman and D. M. Bers. Calmodulin Mediates Differential

Sensitivity of CaMKII and Calcineurin to Local Ca
2+

 in Cardiac Myocytes.

Biophysical Journal 95:4597-4612, 2008.

[9] AMD. The Industry-Changing Impact of Accelerated Computing.

http://www.amd.com/us/Documents/AMD_fusion_Whitepaper.pdf. 2008.

