Evaluating Overheads of Multi-bit Soft Error Protection Techniques at Hardware Level

Problem-Motivation-Approach

Problem

- As devices become smaller, particle strike radius affects more circuit components.
- In addition to storage (SRAM) circuits, it is now becoming a concern for logic (combinational/sequential) components.
- Single particle strikes can cause a multi-bit soft error that affects bits in the same or adjacent components.

Motivation

- Traditional techniques for single-bit soft errors in logic do not provide satisfactory protection against multi-bit errors.
- We need to evaluate more aggressive techniques as they significantly change the overhead of protection.
- We evaluate:
 - SECED (Single Error Correction, Double Error Detection)
 - Error Correcting Codes
 - Spatial Redundancy
 - Temporal Redundancy

Approach

- Use example processor design
 - OpenRISC 1000:
 - Area, power, speed, etc.
 - Microarchitectural details
 - Design principles and design details

- Design protection scenarios in terms of
 - Area
 - Average Power

Soft Error Protection

Types of Circuits

- Fine-grained Techniques
 - SECED (Single Error Correction, Double Error Detection)
 - Error Correcting Codes
 - Spatial Redundancy
 - Temporal Redundancy
- Coarse-grained Techniques
 - Cycle-level Spatial Redundancy
 - Multi-cycle-level Spatial and Temporal Redundancy

Area Overhead

- Component-level

- Spatial Redundancy
 - SECED offers protection for storage elements at low overhead, therefore it is preferred by IBM (SECED) and Intel (RIMI).
 - Spatial Redundancy is optimal for logic circuits, where it protects both sequential and combinational logic on an overhead lower than that of SECED.

- Delay and Power Overhead

- Component-level

- Spatial Redundancy
 - Granularity does not affect the overall delay, as there is still the same amount of logic in the critical path.
 - Power overhead of Spatial Redundancy slightly decreases at higher granularity due to the smaller number of storage elements protected.

Design Scenarios

- Designs that use SECED codes for storage (SRAM) circuits and Spatial Redundancy for logic (combinational/sequential) circuits.

- Area can be traded for performance by checking correctness at multi-cycle time scale (100 cycles, for example).
- Performance can be traded for area by performing redundant computation in parallel under Temporal Redundancy.

- Designs that use Reed-Solomon codes for the lowest component (SRAM) in the shortest overall delay.
- Checking correctness at a multi-cycle time scale can be done in the critical path, thus shortening the overall delay.
- Designs that recognize the use of SECED for logic circuits achieve the lowest power consumption.

Lessons and Future Goals

- Lessons Learned
 - Multi-bit soft errors are becoming a concern in logic (combinational/sequential) circuits.
 - Protection against multi-bit errors in logic components requires techniques that are more aggressive than traditionally used parity approaches.
 - Error detection/correcting codes are preferred for storage (SRAM) circuits while Spatial Redundancy is preferred for logic (combinational/sequential) circuits.
 - Improved protection granularity of Spatial Redundancy only slightly increases overhead when traded for performance.
 - Area can be traded for performance by checking correctness in parallel under Temporal Redundancy.

- Future Goals
 - Use error injection in the simulator to evaluate granularity of and effectiveness of protection techniques.
 - Evaluate performance and power for common benchmarks.
 - Investigate recovery overhead of protection mechanisms.
 - Consider wider range of protection techniques.
 - Evaluate benefit of multi-cycle Temporal Redundancy in a superscalar processor at application level.

Project Information

- Presenter: Lukasz G. Szafaryn
- Affiliation: Department of Computer Science
- University of Virginia
- Project Title: Evaluating Overheads of Multi-bit Soft Error Protection Techniques at Hardware Level
- Project Type: SRC
- Sponsor: SRC
- Funding: $200K
- Task Number: 2042
- Duration: 2010-2012
- Publications: Presentations, Publications
- Technology Transfer

- Lessons from the project and their impact on the industry.
- Would like to identify new technology transfer opportunities.