Composite Metrics for System Throughput in HPC

John D. McCalpin, Ph.D. IBM Corporation Austin, TX

> SuperComputing 2003 Phoenix, AZ November 20, 2003

Overview

- The HPC Challenge Benchmark was announced last night at the TOP500 BOF
- The HPC Challenge Benchmark consists of
 - LINPACK (HPL)
 - STREAM
 - **PTRANS** (transposing the array used by HPL)
 - GUPS
 - and some low-level MPI latency & BW measurements
- No single figure of merit is defined

The Big Question

- Q: How should one think about composite figures of merit based on such a collection of low-level measurements?
- A: Composite Figures of Merit must be based on "time" rather than "rate"
 - i.e., weighted harmonic means of rates
- Why?
 - Combining "rates" in any other way fails to have a "Law of Diminishing Returns"

Does Peak GFLOPS predict SPECfp_rate2000?

SPECfp_rate2000 vs Peak MFLOPS

Does Sustained Memory Bandwidth predict

SPECfp_rate2000? SPECfp_rate2000 vs Sustained BW

A Simple Composite Model

- Assume the time to solution is composed of a compute time proportional to peak GFLOPS plus a memory transfer time proportional to sustained memory bandwidth
- Assume "x Bytes/FLOP" to get:

"Balanced GFLOPS" =
$$\frac{1 \text{ "Effective FP op"}}{\left(\frac{1 \text{ FP op}}{\text{Peak GFLOPS}}\right) + \left(\frac{x \text{ Bytes}}{\text{Sustained GB/s}}\right)}$$

Does this Revised Metric predict SPECfp_rate2000?

Optimized SPECfp_rate2000 Estimates

Statistical Metrics

What about other applications?

- Effectiveness of caches varies by application area
- Requirements for interconnect performance vary by application area
 - Some apps are short-message dominated
 - Some apps are long-message dominated
- Composite models can be tuned to specific application areas if app properties known

An Example Model tuned for CFD

• Analyze applications and pick reasonable values:

- Two cases tested:
 - Assume long messages (network BW tracks PTRANS)
 - Assume short messages (network BW tracks GUPS)
- The relative time contributions will quickly identify applications that are poorly balanced for the target workload

Comparing p655 cluster vs p690 SMP Assumes long messages

Comparing p655 cluster vs p690 SMP Assumes short messages

Summary

- The composite methodology is
 - Simple to understand
 - Based on the components of the HPC Challenge Benchmark
 - Based on a mathematically correct model of performance
- Much work remains on documenting the work requirements of various application areas in relation to the component microbenchmarks

